
UMASS AMHERST MATH 411 SECTION 2, FALL 2009, F. HAJIR

HOMEWORK 2: DUE TH. OCT. 1

READINGS: These notes are intended as a supplement to the textbook, not a
replacement for it.

1. Elements of a group, their powers and their orders

Let (G, ∗, e) be a group. For convenience, we will often write write ab instead of a ∗ b. We
will write a−1 for the inverse of a, which is okay because we have proved that the inverse is
unique. Note that when the binary operation ∗ is addition (+), the usual notation for the
inverse of a is −a, not a−1. Also, in that case, the identity element is usually 0.

Suppose a, b ∈ G. You should prove for yourself that: (ab)−1 = b−1a−1 and more generally,
if a1, . . . , an ∈ G, (a1 · · · an)−1 = a−1

n · · · a−1
1 . We also recall that Generaralized Associativity

follows from associativity, i.e. a1 · · · an does not depend on how we parenthesize the product.
From now on, let G be a group and a ∈ G an element of G.
For a ∈ G and n ∈ Z we define an to be aa · · · a (product of n a’s), if n > 0, e if n = 0,

and a−1 · · · a−1 (product of |n| a−1s) if n < 0.

PROBLEM 1. For a ∈ G and m, n ∈ Z, prove that anam = an+m and (an)m = anm.
Hint: first do the case where either m or n is 0. Next do m > 0, n > 0. Now do the other

cases.
Recall that the order of a in G is defined by

ordG(a) = min{m ≥ 1|am = e}.
If am 6= e for all m ≥ 1, then we say that ordG(a) = ∞. In other words, ordG(a) is the
smallest positive exponent which “kills” a. [Note: you should think of the identity element
as “dead”, so a “killer” of x is something that renders x into the identity]. Note that a has
order 1 if and only if a = e.

PROBLEM 2. List the elements of S4 (as permutations) and find the order of each one
in S4. Note: S4 has 24 elements.

Lemma 1.1. If (G, ∗, e) is a finite group (i.e. G is a finite set, i.e. it has only finitely many
elements), and a ∈ G, then ordG(a) < ∞.

Proof. Consider the set {am|m ≥ 1}. This is a subset of G (why?), hence must be finite.
Thus, a, a2, a3, . . . cannot all be pairwise distinct. Thus, there exist integers 1 ≤ i < j such
that ai = aj. Let us write j = i + r with r ≥ 1. Then ai = ai+r = aiar. Therefore e = ar

(why?). Thus, ordG(a) ≤ r < ∞. �

PROBLEM 3. Prove: If a ∈ G has finite order k = ordG(a), then a, a2, a3, . . . , ak−1, ak are
all distinct.

1
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Hint: suppose not; then ai = ai+r for some i, r ≥ 1 (why?). Now derive an upper bound
for r and obtain a contradiction to the minimality of k as “killer exponent” of a. If you have
trouble, see Lemma 3.2 of these notes, but try it yourself first.

Recall some notation from number theory. If k, n are integers and k 6= 0, then we write
k|n (read: k divides n, or n is a multiple of k) if and only if kt = n for some integer t. For
example 1|n for all integers n, but n|1 implies that n = ±1. We have n|0 for every integer
n because n · 0 = 0.

NOTE: THE FOLLOWING RESULT IS VERY USEFUL AND IMPORTANT.

Lemma 1.2. Suppose a ∈ G has finite order k = ordG(a). If an = e for some n ∈ Z, then
k|n. In fact, for n ∈ Z, an = e if and only k|n. In other words,

the killer exponents of a are exactly the integer multiples of ordG(a).

Proof. By the Euclidean (or division) algorithm, there exist integers q, r such that

n = qk + r, 0 ≤ r ≤ k − 1.

In fact, a pair of integers (n, k) with k 6= 0, uniquely determines integers (q, r) with 0 ≤
r ≤ |k| − 1 such that n = qk + r. Here is one way to see this. Let’s assume n, k > 0 for
convenience. The other cases easily follow from this anyway. For every real number x, we
can write x = [x] + 〈x〉 where [x] is the largest integer not greater than x and 0 ≤ 〈x〉 < 1.
Sometimes [x] is called the integral part (or floor) of x and 〈x〉 is its fractional part. Returning
to n = kq + r, we simply take x = n/k ∈ R and write q = [n/k]; then 〈n/k〉 = n/k− q = r/k
for a unique integer r in the range 0 ≤ r ≤ k−1. For more details, you may consult Theorem
1.26 in the book, for example.

Now, recall k = ordG(a) ≥ 1 and suppose n ∈ Z. Writing n = kq + r, with 0 ≤ r ≤ k− 1,
we have an = akq+r = akqar by PROBLEM 1. Thus an = (ak)qar = eqar = ar. If we
assume an = e, then ar = e; but 0 ≤ r ≤ k − 1 < ordG(a). By the definition of ordG(a),
a, a2, · · · , ak−1 are all distinct from e. Hence, we must have r = 0. Thus, an = e implies that
n = kq i.e. k|n. On the other hand, if k|n, i.e. kq = n, then an = (ak)q = eq = e. �

PROBLEM 4. a) What is the order of 5 in (Z, +)?
b) The group of non-zero real numbers under multiplication is denoted by R×. What are

the elements of order 2 in R×? [First make sure you understand who the identity of this
group is].

c) Are there any elements of order 3 in R×?

PROBLEM 5. Prove that if G is a group and a ∈ G, then ordG(a) = ordG(a−1). Be sure
to include the case where ordG(a) is infinite.

PROBLEM 6. Suppose G is a group and g ∈ G has order m = pn where p is a prime
number and n is a positive integer. Let h = gn. Show that h has order p in G.
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2. Homomorphisms, Isomorphisms, and Subgroups

Definition 2.1. Suppose (G1, ∗1, e1) and (G2, ∗2, e2) are groups, and f : G1 → G2 is a map.
We say that f is a group homomorphism (usually homomorphism for short) if

f(a ∗1 b) = f(a) ∗2 f(b) for all a, b ∈ G1.

In other words, f carries the product of two elments in G1 to the product of their images in
G2; we say that f respects the groups laws of G1 and G2.

Example 2.2. We will define a group V = {e, a, b, c} as follows. Let S be a square whose
sides (edges) are labelled {1, 2, 3, 4} with 1, 2 forming one pair of opposite edges and 3, 4
forming the other pair. Let a be the reflection of the square across the line that bisects edges
3, 4. Let b be the reflection of the square across the line that bisets 1, 2. And let c be the
rotation by 180 degrees of the square about is center (where the diagonals meet). Together
with the identity symmetry (do nothing!), these 4 symmetries of the square form a group,
under composition of functions (which is always associative as we saw last time). Spend a
moment to verify that this is the case. Now we will define a map σ : V → S4 which is a
group homomorphism, namely each element of V permutes the edges thus gives rise to an
element of S4 since we have labelled the edges with the integers 1, 2, 3, 4. Thus,

e 7→ σ(e) =

(
1 2 3 4
1 2 3 4

)
, a 7→ σ(a) =

(
1 2 3 4
2 1 3 4

)
,

b 7→ σ(b) =

(
1 2 3 4
1 2 4 3

)
, c 7→ σ(c) =

(
1 2 3 4
2 1 4 3

)
.

In order to check that this is indeed a homomorphism, we would have to verify σ(xy) =
σ(x)σ(y) for all pairs (x, y) ∈ V × V . Note that there are 16 such pairs. In general, if G1 is
a finite group of order N , then to say that f : G1 → G2 is a homomorphism is to summarize
in one breath N2 different equalities! Thus, being a homomorphism is a strong condition.

A homomorphism f : G1 → G2 is called trivial if f(g1) = e2 for all g1 ∈ G1. You should
check that this is indeed a homomorphism. Philosophically speaking, whenever there is a
non-trival homomorphism from a group G1 to a group G2, then in some sense “a piece” of
G1 (called a quotient of G1) is “identical” to “a piece” of G2 (called a subgroup of G2). This
will be made precise later in the form of several “Isomorphism Theorems.”

Lemma 2.3. If f : G1 → G2 is a homomorphism, then f(e1) = e2, and f(gn) = f(g)n for
all g ∈ G, and all n ∈ Z. In particular, f(g−1) = f(g)−1.

Proof. For example, f(e1 ∗1 e1) = f(e1) ∗2 f(e1) = f(e1). Now use the cancellation law (or
multiply by f(e1)

−1) to get f(e1) = e2. Now f(g) ∗2 f(g−1) = f(g ∗1 g−1) = f(e1) = e2 and
similarly for f(g−1)f(g). Hence, f(g−1) fulfills the role of inverse for f(g) in G2. By the
uniqueness of inverses, f(g−1) = f(g)−1. The other cases left to reader, or look in book,
Lemma 2.36. �
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Recall the group V from the example above. Under the map σ, it maps to the following
group W = {E, A, B, C} where

E =

(
1 2 3 4
1 2 3 4

)
, A =

(
1 2 3 4
2 1 3 4

)
, B =

(
1 2 3 4
1 2 4 3

)
, C =

(
1 2 3 4
2 1 4 3

)
.

If you write the group tables for V and W , you will have a dejà vu feeling. You’ll see that
you’re just writing the same group twice, the only difference being that the group elements
have slightly different names. We say that the groups are isomorphic, the exact definition is
to follow.

Definition 2.4. Suppose G1, G2 are groups. A map f : G1 → G2 is called a group isomor-
phism (isomorphism for short) if 1) f is a homomorphism , and 2) f is bijective.

When we study sets, we feel that two sets “have the same structure” if we can set up a
one-to-one-correspondence between them (i.e. a bijection). Now a group is a set carrying the
additional structure of a composition law (verifying certain special properties). We feel that
two groups “have the same structure” if we can set up a one-to-one-correspondence between
the underlying sets (i.e. a bijection) which, additionally, “respects” the law of composition
(i.e. is a homomorphism).

Definition 2.5. An automorphism of a group G is an isomrphism f : G → G. The identity
map from a group to itself is the trivial automorphism. The set of all automorphisms from
G to itself is called Aut gp(G).

PROBLEM 7. Suppose G is a group. Consider the map ι : G → G which sends a 7→ a−1.
Prove or disprove: ι is always an automorphism of G. If this is false, can you think of a
general condition on G under which it becomes true?

PROBLEM 8. Suppose (G1, ∗1, e1) and (G2, ∗2, e2) are groups, and f : G1 → G2 is an
isomorphism. Since f is a bijection, an inverse function f−1 : G2 → G1 exists and is unique.
Prove that f−1 is an isomorphism.

Definition 2.6. Suppose (G, ∗, e) is a group and H ⊆ G is a subset of G. We say that H
is a subgroup of G if

i) h1, h2 ∈ H implies that h1 ∗ h2 ∈ H (“closure”)
ii) e ∈ H (“identity”)
iii) for all h ∈ H, h−1 ∈ H (“inverse”).

Let us interpret this definition in the following way: i) says that when we restrict the
binary operation from G to H, we obtain not just a map H × H → G but H × H → H.
In other words, restricting the operation to elements of H yields a binary operation on H!
Properties ii) and iii) then simply say that this binary operation of H obtained by restricting
the law of composition of G to H makes H into a group. We often write H ≤ G as shorthand
notation for H is a subgroup of G. Every group G has two God-given subgroups, namely,
{e} the subgroup consisting of the identity alone, and G itself. A subgroup H ≤ G is called
non-trivial if H 6= {e}, and it is proper if H 6= G.

Example. The group GL2(Q) consists of two-by-two matrices with rational entries having
non-zero determinant, under matrix multiplication. It is a subgroup of GL2(R). [check that
this is so].
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Definition 2.7. If f : G1 → G2 is a homomorphism, then

ker(f) = {g1 ∈ G1|f(g1) = e2}, Im(f) = {g2 ∈ G2|g2 = f(g1) for some g1 ∈ G1}.

Lemma 2.8. If f : G1 → G2 is a homomorphism, then ker(f) is a subgroup of G1 and
Im(f) is a subgroup of G2.

Proof. This is very easy if you keep in mind that f(g−1) = f(g)−1 and f(e1) = e2. �

PROBLEM 9. i) Verify that The set SL2(R) consisting of two-by-two real-entry matrices
having determinant 1 is a subgroup of GL2(R).

ii) Recall the group R× consisting of non-zero numbers under multiplication. Now the
determinant gives us a map

det : GL2(R) −→ R×,

sending a matrix A to det A. Is this a group homomorphism? Prove your answer is correct.
iii) Is det : GL2(R) −→ R× surjective? Is it injective? Justify your answers.
iv) What is ker(det)?
v) Now reprove i) in an easy way using iv).

PROBLEM 10. Prove that a homomorphism is injective if and only if its kernel is trivial.

3. Subgroup generated by an element

Definition 3.1. If a ∈ G, < a >= {an|n ∈ Z} is called the subgroup generated by a.

To check that it is indeed a subgroup, all we need, really, is apply PROBLEM 1: am+n =
aman.

Lemma 3.2. For a ∈ G, | < a > | = ordG(a), i.e. the cardinality of the subgroup generated
by a coincides with the order of a in G.

Proof. If a has infinite order, then by definition, am 6= e for all m ≥ 1. I claim that
a, a2, a3, · · · are all pairwise distinct. Otherwise, ai = ai+r for some integers i, r ≥ 1. By the
cancellation law, we then would have e = ar and recall that r ≥ 1. Thus, a has finite order,
a contradiction. Thus, a, a2, a3, . . . are all distinct, thus, | < a > | = ∞. If a has finite order,
then this lemma is proved in the proof of Prop 2.28 in the book, but here is the argument
again. Say ordG(a) = k < ∞. Then ai 6= aj for 1 ≤ i < j ≤ k. Otherwise, ai = aj = ai+r

with j = i + r and i, r ≥ 1. Since j = i + r ≤ k and i ≥ 1, we have 1 ≤ r ≤ k − 1. But
ar = 1 and 1 ≤ r ≤ k − 1 contradict the fact that k = ordG(a) is the minimal exponent
“killing” a. Thus, a, a2, · · · , ak are all distinct. Note tat there are k of them. On the other
hand, ak+1 = a and in general, at = ai where i is the remainder when t is divided by k. We
have shown that | < a > | = k. �

PROBLEM 11. [EXTRA CREDIT] Show that a finite group of even order must contain
an element of order 2. [Hint: one way to proceed (there are many) would be to show that
there is an element of even order; why would that practically clinch it?]
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4. Tune in next week for ...

If G is a finite group and H is a subgroup of G, we know that |H| ≤ |G| just because H
is a subset of G. But it turns out that: DRUMROLL PLEASE

Our TARGET THEOREM for the near future: If G is a finite group and H is a subgroup
of it, then |H| divides |G|. (Lagrange’s Theorem).

In order to do this, we will introduce cosets, and review equivalence classes.


