
UMASS AMHERST MATH 411 SECTION 2, FALL 2009, F. HAJIR

HOMEWORK 1

1. Some Definitions

Suppose S and T are sets. A map (or a function) F from S to T is a rule which assigns to
each element of S a unique element of T . We say that S is the source of F and T is the target
of F . Thus, if s ∈ S is an element of s, the notation F (s) carries no ambiguity: there is a
well-defined rule which tells us what F (s) is; its value does not depend on the time of day
or the person who is evaluating it. For example, let R be the set of real numbers and R>0

the set of positive real numbers. If we say that for x ∈ R>0, F (x) =
√

x, where
√

x means
the unique positive square root of x, then F : R>0 → R is a well-defined function. However,
if we say that for x ∈ R>0, F (x) is defined by the equation F (x)2 = x, then F is not a
function, because F (x) = x2 does not identify F (x) uniquely: we would have F (x) =

√
x or

F (x) = −
√

x for any given x.
Now let us go back to arbitrary sets S and T and a function F : S → T . We say F is

surjective (or onto) if every element of T is an “F -value” i.e. for every t ∈ T , there exists
s ∈ S such that F (s) = t. We say F is injective (or one-to-one) if whenever s, s′ ∈ S and
s 6= s′, then F (s) 6= F (s′). In other words, F is injective means that no two distinct elements
of S are sent to the same element of T by F . For any set S, we define the identity function
IdS : S → S by IdS(s) = s for all s ∈ S.

We say a map F is bijective if F is surjective as well as injective. A bijective map is also
sometimes called a set equivalence or a one-to-one correspondence. We say that F : S → T
has an inverse, if there exists a function G : T → S such that F ◦G = IdT and G◦F = IdS. If
F has an inverse G, then G is unique. We denote by Maps(S, T ) the set of all maps from S to
T . The subset of Maps(S, S) consisting of bijective maps from S to itself is denoted Perm(S)
or Sym(S). In class, we discussed the fact that (Sym(S), ◦, IdS) where ◦ is composition of
functions and IdS is the identity map of S, is always a group. If S = {1, 2, 3, . . . , n} is the
set of the first n positive integers, then Sym(S) has a special name Sn and is called the nth
symmetric group.

2. Some Problems

PROBLEM 1. Define F : Q×Q → Q by

F (a/b, c/d) = (a + c)/(b + d).

Is F a well-defined function? (Hint: the point here is that an element of Q is a rational
number and as such can be expressed as a/b in infinitely many ways. For example, the
rational number 1/3 is also expressible as 2/6, 27/81 etc.)

PROBLEM 2. Suppose F : S → T has an inverse G. Show that G is a bijection.

PROBLEM 3. Suppose G : S → T and F : T → U are functions. Prove the following:
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i) If F, G are both injective, then so is F ◦G.
ii) If F, G are both surjective, then so is F ◦G.
iii) If F, G are both bijective, then so is F ◦G.

3. Some more definitions

Definition 3.1. Suppose G is a set. A composition law (binary operation) on G is a rule
which assigns to each ordered pair of elments of G, say a and b, an elment of G, call it a ∗ b.
In other words, a composition law is a map

G×G −→ G
(a, b) 7→ a ∗ b

which sends the ordered pair (a, b) ∈ G×G to the element a ∗ b ∈ G.
Whenever G is a set and ∗ is a binary operation on G, we say (G, ∗) is a magma.
We say ∗ is associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G. We say ∗ is commutative

if a ∗ b = b ∗ a for all a, b ∈ G. In this course, we will always work with associative laws of
composition, but we will frequently work with non-commutative composition laws.

4. Some More Problems

PROBLEM 4. Perhaps the most natural example of a composition law is given by com-
position of functions (that’s where the name comes from). So, let S be a set, and let
G = Maps(S, S) be the set of all maps from S to itself. In other words, an element of
Maps(S, S) is just a function f : S → S whose source and target are both S. Then com-
position of functions defines a law of composition on G: if f, g ∈ Maps(S, S), then we put
f ∗ g = f ◦ g where f ◦ g is the “composite” map defined by (f ◦ g)(s) = f(g(s)) for s ∈ S.

PROBLEM 4A. Explain why the operation of composition defines an associative law of
composition on Maps(S, S). (Start with three functions f, g, h ∈ Maps(S, S), then ....).

Here is an example. Let S = {Burger, Fries, Coke}. Suppose we define two function
f, g : S → S as follows:

f(Burger) = Coke, f(Fries) = Fries, f(Coke) = Coke

and

g(Burger) = Coke, g(Fries) = Fries, g(Coke) = Burger.

Now let h = f ◦ g. For example have h(Burger) = f(g(Burger)) = f(Coke) = Coke.

PROBLEM 4B. Complete the table below:
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Burger Fries Coke
f
g

h = f ◦ g
i = g ◦ f
j = f ◦ f
k = g ◦ g

f ◦ h
j ◦ g

Can you explain why f ◦ h and j ◦ g are the same function (without doing any calculation
of what functions they actually are)?

PROBELM 5. In this problem, we will define the concept of a “lefty group” which is very
similar to the definition of group we gave in class. The goal is to show that lefty groups and
groups actually are the same thing.

Definition 4.1. Suppose (G, ∗) is a magma and e ∈ G is an element of G. We say that e
is a lefty identity for ∗ if e ∗ a = a for all a ∈ G. We say that e is righty identity for ∗ if
a ∗ e = a for all a ∈ G.

A lefty group is a triple (G, ∗, e) where G is a set, e ∈ G is an element of G and ∗ is a
composition law on G satisfying the following properties:

i) ∗ is associative
ii) e is lefty identity for ∗, i.e. e ∗ a = a for all a ∈ G.
iii) every a ∈ G,

has a lefty inverse, i.e. for every a ∈ G, there exists b ∈ G such that b ∗ a = e.

Now suppose (G, ∗, e) is a lefty group

Probelm 5A. Suppose a ∈ G and let b be its lefty inverse, i.e. b ∗ a = e. Show that b is
also a righty inverse of a, i.e. a ∗ b = e.

Hint: Let c be the lefty inverse of b and write a ∗ b = e ∗ (a ∗ b) = (c ∗ b) ∗ (a ∗ b) and now
use associativity.

Problem 5B. By assumption, e is a lefty identity. Prove that e is also a righty identity.
Hint: for a ∈ G, we must show a ∗ e = a. Start with a ∗ e = a ∗ (b ∗ a) where b is the left

inverse of a and use associativity together with A.

Problem 5C. Show that if e′ ∈ G satisfies e′ ∗ a = a for all a ∈ G, (in other words, e′ is a
lefty identity for ∗), then e′ = e.

Problem 5D. Show that if b, b′ ∈ G are both lefty inverses of a ∈ G, then b = b′, i.e. the
lefty inverse of any element is unique.
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Problem 5E. It is clear that if (G, ∗, e) is a group, then it is also a lefty group. Using A
and B, show that every lefty group is a group. Therefore, the concepts of “lefty group” and
“group” actually coincide.

PROBLEM 6. Suppose (G, ∗, e) is a group and g ∈ G. Show that if g ∗ g = g, then g = e.

PROBLEM 7. Let S3 = Perm({1, 2, 3}) be the set of all permutations of the set {1, 2, 3}.
Its six elements are

e =

(
1 2 3
1 2 3

)
, a =

(
1 2 3
1 3 2

)
, b =

(
1 2 3
2 1 3

)
,

c =

(
1 2 3
2 3 1

)
, d =

(
1 2 3
3 1 2

)
, f =

(
1 2 3
3 2 1

)
.

Complete the following 6× 6 “multiplication” table of α ◦ β for this group.

α \ β e a b c d f

e
a
b
c
d
f

Verify that each line has a unique “e”. How can you “see” at a glance whether this group
is commutative or not from the table?

PROBLEM 8 (Extra Credit). On the real interval (0, 1), we define the following six
functions:

E(x) = x, A(x) =
1

x
, B(x) = 1− x, C(x) =

1

1− x
, D(x) =

x

x− 1
, F (x) =

x− 1

x
.

Let G = {A, B, C,D,E, F}. Verify that composition of functions makes (G, ◦, E) into a
group by completing the following “multiplication” table.

α \ β E A B C D F

E
A
B
C
D
F

Can you give a bijection from {a, b, c, d, e, f} to {A, B, C,D,E, F} which will carry the table
of PROBLEM 7 exactly onto the table of this problem? In what sense(s) would you say the
group (G, ◦, E) of this problem is or is not the “same” as the group S3 of PROBLEM 7?


