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HOMEWORK 8: NUMBER THEORY

1. A little number theory

The set Z is really much more marvelous than you think. We have already discussed
its first marvelous quality: its infinitude. What makes it even more marvelous are the two
binary operations + and ×. What is a binary operation, you ask? Good question.

Definition 1.1. Let X be a set. A binary operation on a set is a map µ : X × X → X.
Thus, an operation is a rule, which, given an ordered pair (x, x′) of elements of x, produces
an element x′′ = µ(x, x′) of X in a well-determined way. An alternative notation is often
more convenient, namely if • stands for some kind of “operational” symbol, then instead of
writing µ(x, x′), we write more compactly x •x′. An operation • on X is called commutative
if a•b = b•a for all a, b ∈ X. It is called associative if for all a, b, c ∈ X, (a•b)•c = a•(b•c).

Non-Example 1.2. If N is the set of natural numbers, ordinary addition (+) defines a
commutative operation on N. However, subtraction (−) does not define an operation on N
because for a, b ∈ N, it is not always the case that a− b ∈ N.

Example 1.3. The operations +,×,− on Z are familiar to you; addition and multiplication
are associative and commutative, but subtraction is neither. Why did I leave out ÷? Well,
÷ does not actually define an operation on Z because given a, b ∈ Z, it is not always that
case that a ÷ b is in Z. Let us define an operation on Z as follows: given a, b ∈ Z, we put
a • b = |a2 − b2|. Then • is a well-defined operation on Z. It is clearly commutative. Is it
associative?

Going back to what I started with, the set Z is really marvelous because it has two com-
patible operations +,× defined on it. What this means is that the two operations “respect”
each other: namely, if a, b, c ∈ Z, then a × (b + c) = (a × b) + (a × c). We say that ×
distributes over +. Moreover, these operations satisfy a whole host of other properties.1

Of the two basic operations (+,×) on Z, the more subtle of the two is multiplication.
How numbers are put together additively is not too mysterious: each integer n decomposes
additively into a sum of n 1’s: n = 1 + 1 + · · · + 1. As we traverse the number line,
this decomposition grows in a regular fashion, picking up one more “1” as it goes. But
how numbers decompose multiplicatively is much less predictable as we traverse the number
line.2This comment hopefully serves to explain a little the claim that multiplication is more
subtle than addition.

The most subtle and interesting concept then, for the algebraic structure of Z, is that of
divisibility. Divisibility is a relation on Z which is transitive and reflexive but not symmetric;

1As your study of algebra continues these properties will collectively come to be known as “ring properties”;
by the way, “algebra” is the study of sets equipped with certain kinds of operations.

2For instance, 17 is indecomposable, 18 = 2 · 3 · 3, 19 is indecomposable,20 = 2 · 2 · 5, 21 = 3 · 7 etc.
1
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thus it is not an equivalence relation. Its importance is reflected in the multiplicity (excuse
the pun) of names for this concept.

Definition 1.4. If n and d are integers, we write d|n if and only if the equation dx = n has
a unique solution x ∈ Z. The following phrases are all equivalent:

• d|n,
• d divides n,
• n is a multiple of d,
• n is is divisible by d,
• d is a factor of n,
• d is a divisor of n,
• there exists a unique x ∈ Z such that n = dx (in shorthand, we write this as n/d ∈ Z).

Example 1.5. For any integer d ∈ Z\{0}, we have d|0, as the equation dx = 0 has a unique
solution x = 0. On the other hand, the statement 0|n is false for every n ∈ Z, because
the equation 0x = n has no solutions if n 6= 0 and infinitely many solutions if n = 0! In
summary, 0 doesn’t divide anybody but 0 is divisible by everybody other than
itself.

Definition 1.6. For any integer n 6= 0, let Div(n) = {d ∈ Z | d|n} be the set of divisors
of n. We let Div+(n) = {d ∈ Z | d > 0, d|n} be the set of positive divisors of n and put
σ0(n) = |Div+(n)|.

Since d ∈ Div(n) ⇒ |d| ≤ |n|, Div(n) is a finite set, and in fact, we have the very crude
bounds |Div(n)| ≤ 2n and |Div+(n)| ≤ n.

The set Z \ {0} is equipped with the involution “multiplication by −1”. This involution
reduces many issues having to do with multiplicative properties of integers to essentially the
same question on the set N of positive integers. In other words, for every positive divisor of
n there is exacly one negative divisor of n, so it suffices to work with Div+(n) and this is
often more convenient.

Now, suppose n ∈ N. Every d ∈ Div+(n), can be graphically represented by a d× e grid
of n = de dots arranged in d rows and e columns. We note that |Div+(n)| is never empty
since 1|n and n|n, corresponding to the 1 × n and n × 1 arrangements of n points. Now,
for certain integers n ≥ 2, no other rectangular arrangement is possible; these n are called
primes.

Definition 1.7. A positive integer n is prime if |Div+(n)| = 2. In other words, n is prime
if and only if it has exactly two positive divisors, namely 1 and n. An integer n is called
composite if |Div+(n)| ≥ 3. Thus, every integer > 1 is either prime or composite.

Non-Example 1.8. Note that 1 has but a single positive divisor hence 1 is not a prime
according to our definition. It is not a composite either! It is clear that it plays a very special
role in multiplication, since 1 divides every integer. A number which divides every element
of Z is called unit. The only units in Z are ±1. The number 1 is further distinguished by
its role as the identity for multiplication, namely 1 · a = a for all a ∈ Z.

Example 1.9. The primes less than 50 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37, 41, 43, 47.

The importance of primes for arithmetic is that every integer can be decomposed into a
product of primes, and that, up to reordering of the factors, this “prime decomposition” is
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unique (this is a very important fact, known as The Fundamental Theorem of Arithmetic).
Here is an analogy. In this sense, the primes are to arithmetic what “the elements” are to
chemistry: we understand molecules in terms of the elements which constitute them. For
now, let us show that every integer is a product of primes.

Theorem 1.10. If n > 1 is an integer, then n is a product of primes.

Proof. We will give a proof by complete mathematical induction. So, for n ≥ 2, we define
the statement P (n) as follows.

P (n) : n is a “product of primes”,

which is shorthand for the following more precise statement: there exist primes p1, · · · , pr

and positive integerrs a1, . . . , ar such that n = pa1
1 . . . par

r . Note that n is a “product of
primes” thus encompasses the possibility that n is a prime itself. Let us check the validity
of the base case, i.e. P (2); 2 is a prime, so 2 is a product of primes. We will now proceed to
the “induction step” of complete induction, so we have to establish

(*) Given an arbitrary k ≥ 2, if P (j) holds for 2 ≤ j ≤ k, then P (k + 1) holds.

The statement (*) can be restated as P (2)∧P (3)∧ · · · ∧P (k) ⇒ P (k +1). So, we assume
for 2 ≤ m ≤ k, m is a product of primes and seek to show that k + 1 is a product of primes.
If k + 1 is a prime itself, then it is a product of primes and we would be done. The other
possibility is that k + 1 is not a product of primes, i.e. k + 1 is composite (since k + 1 > 1).
Thus, there exist integers 1 < d ≤ e < k + 1 such that de = k + 1. But by the induction
hypothesis, since d, e are integers in the range [2, k], each of them is a product of primes,
hence so is k + 1 = de. This establish (*).

We have thus established P (n) for all n ≥ 2 by complete induction on n. �

Second Proof of Theorem 1.10. Let us now give a proof by contradiction which relies on the
Well-ordering principle. The strategy is to use the following lemma.

Lemma 1.11. If an integer m ≥ 2 is not a product of primes, then there exists an integer
1 < k < m such that k is not a product of primes.

Proof. Since n is not a product of primes, n itself is not a prime. Since n ≥ 2, |Div+(n)| ≥ 2,
and since n is not prime |Div+(n)| 6= 2, hence |Div+(n)| > 2. Therefore, there exists
d ∈ Div+(n)\ with 1 < d < n, which implies that n = de with 1 < e < n also. Since n is not
a product of primes, at least one of d, e must not be a product of primes; since both d and
e are in the range [2, n− 1], this proves the existence of an integer k, 1 < k < n such that k
is not a product of primes. �

It should be clear how to prove the theorem using the Lemma. Suppose the theorem is
false. Thus, there exists an integer n ≥ 2 such that n is not a product of primes. Applying
the lemma to this n, we get an integer 1 < k1 < n. Applying the lemma to k1, now we get
an integer 1 < k2 < k1 < n. It is clear that if we repeat this procedure, we obtain infinitely
many integers in the range [2, n − 1] which is a contradiction. To be even more precise,
repeating this procedure n − 1 times, we obtain 1 < kn−1 < kn−2 < · · · < k2 < k1 < n, i.e.
we have n− 1 distinct integers in the range [2, n− 1] which is impossible. This contradiction
proves that every integer is a product of primes.
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We can rephrase the endgame of this proof a little more efficiently by using the well-
ordering principle. If we assume the theorem is false, i.e. that the set

{n ≥ 2 | n is not a product of primes}
is non-empty, then by the well-ordering principle, there exists a least element m ≥ 2 which
is not the product of primes. By the Lemma, there exists 1 < k < m such that k is not a
product of primes, contradicting the minimality of m. �

The following theorem and proof, going back at least to Euclid, is a classic.

Theorem 1.12. There are infinitely many primes.

Proof. How do we show that a set X is infinite? One way to do so would be to show that if
F ⊆ X is any non-empty finite subset of X, then X \ F is non-empty. So, let P be the set
of all primes, and let F be a finite set of primes. Since F is finite, it has a maximal element,
say `. Now, define N = 1 +

∏
p≤` p, i.e. N is one more than the product of all the primes

up to and including `. Since N > 1, it is a product of primes by the previous theorem, so
there exists at least one prime q which divides N . We claim that q /∈ F . This is because
q|N so N/q is an integer, but for p ∈ F , N/p = x + 1/p for some integer x. In other words,
for any p ∈ F , when N is divided by p, the remainder is 1, but when N is divided by q, the
remainder is 0. Hence, q /∈ F . We have shown that for every finite subset F of P, P\F 6= ∅,
hence P is infinite. �

Recall that for an integer n 6= 0, Div+(n) is a finite set. If m is another non-zero integer,
then Div+(n) ∩ Div+(m) is clearly a finite set and is non-empty since it contains 1, hence
it has a unique largest element, which we denote by gcd(m, n) = gcd(n, m) and of course
call the greatest common divisor of m and n. Apparently the “greatest common factor” is
much more à la mode in schools these days. In the reverse direction, for an integer n, we
let nZ = {nm | m ∈ Z} = {k | k is divisible by n} be the set of integer multiples of n. If m
and n are non-zero integers, then It is clear that nZ∩mZ∩N is not empty since it contains
|mn|. Thus, this set must have a least element (by the Well-ordering principle) which we
call lcm(m, n) = lcm(n, m), the least common multiple of m and n.

Calculating the greatest common divisor and least common multiple of pairs of integers is
an important computational task in many situtations, so fortunately there is a very efficient
procedure for calculating them. It is based on the Division algorithm, which is simply what
we usually call Long Division.

Theorem 1.13 (The Division, or Euclidean, Algorithm). Given integers n, k ∈ N, there
exists a unique pair (q, r) where q ∈ N and r ∈ {0, 1, 2, 3, . . . , k − 1} such that n = qk + r.
We call q the quotient and r = Rem[n÷ k] the remainder of n÷ k.

Proof. First let us prove uniqueness of the pair (q, r). Suppose for pairs (q, r) and (q′, r′)
where q, q′ ∈ N and r, r′ ∈ {0, 1, 2, 3, . . . , k− 1}, we have n = qk + r = q′k + r′. By switching
the pairs if necessary, we may assume that q ≥ q′. Then (q − q′)k = r′ − r. We claim that
q = q′ and prove this by contradiction. If not, then q − q′ > 0 and k ≥ 1 together imply
that r′ − r = (q − q′)k ≥ k which in turn implies that r′ ≥ k since r ≥ 0, but r′ < k by
assumption, giving the desired contradiction. Thus, q = q′, and since r′ − r = (q − q′)k, we
get r′ = r also. This proves uniqueness of the specified pair (q, r). Now let us establish the
existence of this pair.
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Since k 6= 0 by assumption, the set S = {x ∈ N | xk ≤ n} is finite. It therefore has a
largest element; we put q = max S for this maximal element, and let r = n− qk. It remains
to show that 0 ≤ r ≤ k− 1. Since q ∈ S, qk ≤ n so r = n− qk ≥ 0. To show that r ≤ k− 1,
let us use proof by contradiction. If r ≥ k, then

n = qk + r = qk + k + r − k = (q + 1)k + (r − k),

which, since r − k ≥ 0 would show that q + 1 ∈ S contradicting the fact that q = max S.
Thus 0 ≤ r ≤ k − 1. �

The division algorithm can be used to calculate the greatest common divisor of two given
positive integers efficiently. Let us examine the key idea. Given n1, n2 ≥ 1, we rearrange
them if necessary to have n1 ≥ n2. If n1 = n2, then we rejoice because then gcd(n1, n2) = n2

without any further ado. The strategy is to replace the pair (n1, n2) by a smaller pair
(n2, n3) with the same gcd! So where do we get n3 from? Easy, we take n3 to be the
remainder when n1 is divided by n2! Thus, we need to prove a little lemma.

Lemma 1.14. If n ≥ k ≥ 1 and n = qk + r with q ∈ N, then gcd(n, k) = gcd(k, r).

Proof. Recall that gcd(n, k) is by definition the largest element of Div+(n) ∩ Div+(k), thus
it suffices to prove that

Div+(n) ∩Div+(k) = Div+(k) ∩Div+(r).

To prove the above equality of sets, we well show that each set is contained in the other.
So, suppose d|n and d|k. Then d|qk so d|(n− qk) i.e. d|r. So now d|k and d|r showing that
Div+(n) ∩ Div+(k) ⊆ Div+(k) ∩ Div+(r). On the other hand, if d|r and d|k, then d|qk so
d|(qk+r) i.e. d|n, showing the reverse inclusion. This completes the proof of the lemma. �

The strategy for computing gcd(n1, n2) should now be clear. Let n3 = Rem[n1 ÷ n2], and
indeed for each i ≥ 3, successively define ni = Rem[ni−2 ÷ ni−1]. Then, n2 > n3 > · · ·
gives a strictly decreasing sequence of remainders (which are automatically non-negative!),
i.e. n2 > n3 > · · · ≥ 0, thus this sequence must eventually hit 0. Let s ≥ 2 be the least
integer such that ns = 0. Thus, we have

gcd(n1, n2) = gcd(n2, n3) = · · · = gcd(ns−2, ns−1) = gcd(ns−1, 0), ns−1 6= 0.

Since ns−1 6= 0, gcd(ns−1, 0) = ns−1. Another perspective is that since ns = Rem[ns−2 ÷
ns−1] = 0, we have ns−1|ns−2 and hence gcd(ns−2, ns−1) = ns−1. Either way, we find
gcd(n1, n2) = ns−1 is the penultimate remainder (just before getting remainder 0).

Example 1.15. Let us use the above algorithm to compute gcd(432, 60). So, n1 = 432,
n2 = 60. We get 432 = 7 · 60 + 12 so n3 = 12, and 60 = 5 · 12 so n4 = 0. Thus,
gcd(432, 60) = n3 = 12. Let’s do one more. What is gcd(89, 55)? Letting n1 = 89, n2 = 55,
we have n3 = 34, n4 = 21, n5 = 13, n6 = 8, n7 = 5, n6 = 3, n7 = 2, n8 = 1, n9 = 0. Phew,
gcd(89, 55) = n8 = 1.

Definition 1.16. If m, n are integers, we say that m and n are coprime or relatively prime
to each other if gcd(m, n) = 1.

Theorem 1.17 (Bezout’s Theorem). Suppose a, b are integers and d = gcd(a, b). Then
there exist integers x, y such that ax + by = d. In particular, if a and b are relatively prime,
then some integer linear combination of a and b is 1. Indeed, for m ∈ Z, the equation
aX + bY = m is solvable with X, Y ∈ Z if and only if d|m.



6 MATH 300 HW 7

Sketch of Proof. The integers x, y can in fact be found via the repeated application of the
Euclidean algorithm we described for computing gcd(a, b). Recall that we put n1 = max(a, b),
n2 = min(a, b) and define recursively nj+1 to be the remainder of nj−1 divided by nj for
j ≥ 2, viz. nj−1 = qjnj + nj+1. Then gcd(a, b) = ns−1 where ns = 0 (with s minimal
for this property). From ns−3 = qs−2ns−2 + ns−1, we climb one level higher to ns−1 =
ns−3 − qs−2ns−2 = ns−3 − qs−2(ns−4 − ns−3qs−3), and so on until we obtain an expression
ns−1 = xn1 + yn2 for some integers x, y. Once we have x, y ∈ Z with ax + by = d where
d = gcd(a, b), then for any multiple m of d, say m = kd, we have aX + bY = m for X = kx
and Y = ky. On the other hand, suppose aX + bY = m with integers X, Y . We want to
show that then m is a multiple of d, so let us divide and see: we have m = qd+ r for integers
q, r where 0 ≤ r < d. By multiplying ax + by = d by q, we find axq + byq = m − r. We
subtract this from aX + bY = m to find a(X − xq) + b(Y − yq) = r. Since d|a and d|b, we
conclude that d|r, which, when combined with the inequality 0 ≤ d < r gives r = 0, i.e. d|m
as desired. �

Remark. We should note the following important interpretation of the theorem. The set of
Z-linear combinations of a and b is exactly the set of Z-multiples of their greatest common
divisor, i.e. we have an equality of sets

{aX + bY | X, Y ∈ Z} = {kd | k ∈ Z}.

Even more briefly, one can write aZ + bZ = dZ where d = gcd(a, b). Later when you study
rings (in Math 412), you will come to interpret this statement as “The ideal generated by a
and b is principal, generated by gcd(a, b).”

Example 1.18. Determine gcd(200, 126) and express it as a linear combination of these
integers. We write

200 = 126 + 74 n3 = 74

126 = 74 + 52 n4 = 52

74 = 52 + 22 n5 = 22

52 = 2 · 22 + 8 n6 = 8

22 = 2 · 8 + 6 n7 = 6

8 = 6 + 2 n8 = 2

6 = = 3 · 2 n9 = 0.
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Thus, n8 = 2 = gcd(200, 126). Reversing the steps, we have

2 = 8− 6

= 8− (22− 2 · 8)

= −22 + 3 · 8
= −22 + 3(52− 2 · 22)

= 3 · 52− 7 · 22

= 3 · 52− 7(74− 52)

= −7 · 74 + 10 · 52

= −7 · 74 + 10(126− 74)

= 10 · 126− 17 · 74

= 10 · 126− 17(200− 126)

= 27 · 126− 17 · 200.

There is a nice method, advocated by W.A. Blankinship (Amer. Math. Monthly, 1963),
for keeping track of the straightforward but somewhat messy book-keeping of the above
algorithm. It produces gcd(n1, n2) and the “Bezout numbers” x, y such that xn1 + yn2 =
gcd(n1, n2) all in one shot. Namely, to find gcd(n1, n2), we write them in a column next to
the 2 × 2 identity matrix, then we do the usual operations for finding n3, n4, . . . but apply
each operation to the whole row. We stop when we reach a row that begins with 0. The
penultimate row will then be d, x, y where d = gcd(n1, n2) and d = xn1 + yn2! Instead of
giving a formal algorithm (and proving that it does what we say), we will be satisfied with
reworking the above example with Blankinship as our guide.

Example 1.19. To find gcd(200, 126), we follow the same steps as before, but carry the
algebra to the entire row each time:

200 1 0
126 0 1
74 1 −1
52 −1 2
22 2 −3
8 −5 8
6 12 −19
2 −17 27
0 63 −100.

We read off that −17 · 200 + 27 · 126 = 2. We also can read off 6 = 12 · 200− 19 · 126 etc. in
case we wanted to. Note that 0 = 63 ·200−100 ·126, in other words, the sixty-third multiple
of 200 is also the hundredth multiple of 126, and so this number, 63 ·200 = 100 ·126 = 12600
is a common multiple of 200 and 126. Are you thinking what I’m thinking? This must be
the least common multiple of 200 and 126! Yes, that is true.

Remark. If you are familiar with row operations on matrices, you will note that the sequence
of moves in the Blankinship algorithm is nothing more than that. I leave it as a challenge to
the interested reader to investigate (and prove if true) whether the last row of the Blankinship
algorithm will always display 0 r s where |rn1| = |sn2| = lcm(n1, n2).
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The Bezout theorem has a bunch of important and useful consequences.

Theorem 1.20. If p is a prime and p|ab where a, b ∈ Z, then p|a or p|b.

Proof. Let us write ab = pk for some k ∈ Z. If a and b are both divisible by p, then we are
done. So, let us assume one of them is not divisible by p, say b. Then by Bezout’s theorem,
there exist x, y ∈ Z such that bx + py = 1. Multiplying this last equation by b, we find
abx + apy = a, or p(k + ay) = a, so p|a. �

Corollary 1.21. If n ≥ 1 and m1, · · · , mn ∈ Z are n integers whose product is divisibe by
p, then at least one of these integers is divisible by p, i.e. p|m1 · · ·mn implies that then there
exists 1 ≤ j ≤ n such that p|mj.

Proof. The proof is by induction on n, and is left as an exercise. �

Corollary 1.22. For a, b, c ∈ Z, if a|bc, and gcd(a, b) = 1, then a|c.

Proof. We use Bezout to write ax + by = 1 with x, y ∈ Z. We multiply this by c to get
axc + bcy = c, then note that a|axc and a|bcy, so a|axc + bcy = c. �

Another consequence of the Bezout theorem is the following. Let’s give it a fanciful name
in the hope that you will remember its statement. It will be extremely useful to you when
you study group theory.

Theorem 1.23 (The Supremacy of gcd and lcm). Suppose a, b ∈ Z. Every common multiple
of a and b is a multiple of their least common multiple lcm(a, b) and every common divisor
of a and b is a divisor of their greatest common divisor gcd(a, b). In other words,

a|c, b|c =⇒ lcm(a, b)|c
d|a, d|b =⇒ d| gcd(a, b).

Proof. Let l = lcm(a, b) and g = gcd(a, b). First, let’s show that a|c, b|c ⇒ l|c. We may write
c = as and c = bt for integers s, t. We want to show that c divided by l gives remainder 0, so
let’s divide and see! We have c = lq + r for some integer q and some r satisfying 0 ≤ r < l.
We have c = at = lq+r so r = at− lq. Since l is a multiple of a, we then have a|r. Similarly,
c = bu = lq + r so r = bu − lq is a multiple of b. Thus, r is a common multiple of a and
b. But 0 ≤ r < l and l is the least (positive!) common multiple of a and b so r cannot be
positive. Thus r = 0, i.e. l divides c.

Now let’s show that d|a, d|b ⇒ d|g. We may write a = de and b = df with e, f ∈ Z (by
assumption), and g = ax + by for x, y ∈ Z (by Bezout). Assembling all of this together, we
get g = dex + dfy = d(ex + fy), hence d|g. �

Now let us state and prove the Fundamental Theorem of Arithmetic. It says that, except
for the way the prime factors are ordered, how a number breaks up into prime factors is
unique.

Theorem 1.24 (The Fundamental Theorem of Arithmetic). If n ∈ N, then there is a unique
function en : P → Z≥0 from the set of all primes P to the set of non-negative integers such
that

n =
∏
p∈P

pen(p).

The function en vanishes on all but finitely many primes.
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Proof. We have already shown in Theorem 1.10 that every integer > 1 is a product of primes
(and 1 is an “empty” product of primes, i.e. the function e0 is just the function that takes
the value 0 at every prime). To show uniqueness, let us proceed by contradiction (hoping
to use the well-ordering principle once again). So, we suppose that there exist positive
integers n > 1 that admit at least two distinct factorizations. By the well-ordering principle,
there exists a least such integer, let us call it m. Thus, there exist two factorizations,
m = p1p2 · · · pr = q1q2 · · · qs, where the pi, qj are all primes, not necessarily distinct, ordered
so that p1 ≤ p2 ≤ . . . ≤ pr and q1 ≤ q2 ≤ . . . ≤ qs. By assumption, the lists p1, . . . , pr

q1, . . . , qs are not identical. We can assume without loss of generality3 that p1 ≤ q1. By
Corollary 1.21, p1|qi for some 1 ≤ i ≤ s. Since qi and p1 are both primes, we then have p1 = qi.
So, p1 ≤ q1 ≤ qi = p1, so p1 = q1. Letting m′ = m/p1, we have, m′ = p2 · · · pr = q2 · · · qs.
Now these two factorizations must be distinct, since the two distinct factorizations of m are
gotten by including the equal prime factors p1 and q1 at the beginning of each one. Thus,
0 < m′ < m and m′ has two distinct factorizations, contradicting the fact that m is the
least positive integer admitting two distinct factorizations. This contradiction completes the
proof. �

To compute lcm(m,n), one can compute gcd(m,n) and then use part (c) of the following
fact.

Theorem 1.25. Suppose m,n ≥ 1 and

m =
∏
p∈P

pem(p), n =
∏
p∈P

pen(p).

Then
(a)

gcd(m, n) =
∏
p∈P

pmin(em(p),en(p)).

(b)

lcm(m, n) =
∏
p∈P

pmax(em(p),en(p)).

(c) If m, n ≥ 1, then lcm(m,n) · gcd(m, n) = mn.

Proof. We leave the proof to the interested reader. �

2. Some more number theory

One of the biggest mysteries in number theory is the following problem:

Major Problem. Explain the distribution of prime numbers on the number line.

If we list the primes in order, then it becomes apparent fairly quickly that they start to
“thin out.” In other words, if you take an interval of length N for a large but fixed N ,

3This oft-quoted phrase warns the reader that the author is about to make an assumption, but that
this assumption is not central to the validity of the proof. Without the assumption, a simple and obvious
modification or repetition of the argument can be made to account for all possible cases. For instance, in
this case, if it happens that q1 ≤ p1, then we simply repeat the argument, replacing all the q’s by p’s and
vice versa.
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then look at N consecutive positive integers, starting with a + 1, then the chances that this
interval [a + 1, a + N ] contains a prime goes to zero as a goes to infinity. Here is a “movie”
of this phenomenon: If you take a “window” of fixed width and shift it to the right, the
chances that you catch a prime for any given frame goes to zero as you shift to the right.

In a sense, you should expect that the primes are “outmuscled” by the composites, because
everytime you have a bunch of primes, you can combine them in many ways in order to
make composites, but there is only one way to make a prime. In particular, in one of the
homework problems, you will show that no matter how large N is, as you shift to the right,
you are bound to hit a frame with no primes in it. Here is another way in which composites
“outmuscle” the primes.

Example 2.1. A sequence x0, x1, x2, · · · in Z is called arithmetic if there exists an integer a
(called the addend) such that xn+1− xn = a for all n ≥ 1. Equivalently, xn = x0 + na. Show
that any arithmetic sequence in Z with non-zero addend contains infinitely many composites.

Here is a proof. Suppose (xn)n≥0 is an arithmetic sequence with addend a. If all the xn

are composite, we are certainly done! If not, let p = x0 + ma be prime for some m ≥ 0. We
claim that if n = m + kp, where k ≥ 1, then xn is composite. Once we prove the claim, we
are done, of course. To prove the claim, note first that xn is divisible by p because

xn = x0 + an = x0 + a(m + kp) = x0 + am + akp = p + akp = p(1 + ak).

Note that xn = p(1 + ak) > p for k ≥ 1, hence xn is divisible by p and greater than p hence
it is composite, proving the claim.

On the other hand, primes are “persistent” in some ways. For instance, as we proved, there
are infinitely many of them! A much more subtle and powerful theorem, first formulated by
Lagrange, and finally proved by Peter Gustav Lejeune Dirichlet in 1837, says that in any
arithmetic progression that has the potential of having infinitely many primes does have
infinitely many primes.

Theorem 2.2 (Dirichlet’s Theorem on Primes in Arithmetic Progressions). If x0, a ∈ N
and gcd(a, x0) = 1, then the arithmetic sequence x0, x0 + a, x0 + 2a, . . . , x0 + an, . . . contains
infinitely many primes.

Note that the assumption gcd(x0, a) = 1 is needed, because otherwise all the elements
in the sequence are divisible by d > 1 where d = gcd(x0, a). Dirichlet’s ideas for proving
this theorem consitute the foundations of an entire branch of modern mathematics known
as “analytic number theory.”

Another “prime persistence” theorem, due to Chebyshev, is known as “Bertrand’s Pos-
tulate.” It says that for n ≥ 1, the interval (n, 2n] contains at least one prime. Here is an
unsolved problem.

Question 2.3. Is it true that for all large enough n, (say n ≥ 117), the interval [n, n +
√

n]
contains a prime? (It is believed that the answer is “yes” but no proof or counterexample is
known at present).

A spectacular and recent “prime persistence” theorem is the following.

Theorem 2.4 (Peter Green and Terence Tao, 2004). Given N ≥ 1, there exists integers
x0, a ∈ N such that x0 + a, x0 + 2a, . . . , x0 + Na are all primes. In other words, there are
arbitrarily long arithmetic progressions of primes.
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See http://arxiv.org/abs/math.NT/0404188 for their paper. You may not understand
much, but you’ll get a glimpse of what a mathematical “preprint” (an article in pre-published
form) looks like. One of the most exciting aspects of their proof is that it uses techniques of
“ergodic theory,” a branch of “analysis” (calculus).

The fact that the study of smooth functions R → R should say anything about arithmetic
properties of whole numbers might be surprising at first, but this tradition actually goes way
back to Leonhard Euler at least who gave a proof of the infinitude of primes based on the
fact that the harmonic series

1 +
1

2
+

1

3
+ · · ·

diverges! Euler’s observation led Georg Bernhard Riemann to the study of the function

ζ(x) = 1 +
1

2x
+

1

3x
+ · · ·+ 1

nx
+ · · ·

which Euler had introduced, but which we now call the Riemann Zeta Function. Riemann
observed that the analytic properties of this function reveal some deep arithmetic facts about
the distribution of primes on the number line! The connection between them is sealed by
the Euler Product Formula:

ζ(x) =
∏
p∈P

1

1− 1
px

which in turn holds because of the Fundamental Theorem of Arithmetic. In 1859, Riemann
outlined a program, completed by de la Vallée-Poussin and Hadamard independently in 1896,
for proving a conjecture of Gauss which we now call the Prime Number Theorem. To state
it, let us define the Prime Counting Function π(x) = |{p ∈ P | p ≤ x}| which counts the
number of primes in the interval [1, x]. Up close, this function is quite choppy, as it jumps
by 1 everytime it encounters a prime. But if you look at its graph on a very large interval,
it looks remarkably smooth. So the question is: Is there a nice simple continuous function
whose graph approaches the graph of π(x) as x tends to infinity? The answer is “Yes,” and
one function which fits the bill is x/ ln(x).

Theorem 2.5 (The Prime Number Theorem). We have

lim
x→∞

π(x)

x/ ln(x)
= 1.

The theorem says that π(x) and x/ ln(x) are about the same size. For example, in 1959,
Derrick Lehmer (my mathematical grandfather) calculated on his super-duper computer
that π(1010) = 455052511,i.e. is about 455 million. Let us compare that to 1010/ ln(1010) ≈
434294482 or about 434 million. I wonder whether you are impressed by this or not. On the
one hand, we are off by about 21 million primes! On the other hand, calculating 1010/ ln(1010)
takes just a second whereas counting how many primes there are up to 1010 is serious business.
In retrospect, 21 million primes out of 455 million is only about a 4.5% error. Not too bad
at all! Nonetheless, one would like to understand how much the error π(x)− x/ ln(x) is, or
at least put a cap on this error. Riemann’s method does give us a bound on this error, but
the bound is MUCH bigger than the actual errors we observe. Riemann has an explanation
for that too: He thinks it is highly likely that the roots of his function (not just for x in R
for complex numbers x) all lie on a certain line. To find out whether this is true or not is
one of the hottest problems in Mathematics. It is known as The Riemann Hypothesis, the
subject of various recent popular books.
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3. Problems

1. Suppose a, b, c ∈ Z.
(a) Show that if a|b and c 6= 0, then ca|cb.
(b) Show that if a|b and b|c, then a|c.
(c) Show that if a|b and a|c, then a|(mb + nc) for all m, n ∈ Z.

2. Show that there are arbitrarily long sequences of consecutive integers containing no
primes. In other words, show that given an integer N ≥ 1, there exists an integer a such
that a + 1, a + 2, . . . , a + N are all composites. Hint: try a = N ! + 1. Look for an “obvious”
divisor of a + 1, an “obvious” divisor of a + 2 etc.

3. Suppose a, b, n are integers, n ≥ 1 and a = nd + r, b = ne + s with 0 ≤ r, s < n, so
that r, s are the remainders for a÷ n and b÷ n, respectively. Show that r = s if and only if
n|(a − b). [In other words, two integers give the same remainder when divided by n if and
only if their difference is divisible by n.]

4. If n ≥ 1 and m1, · · · , mn ∈ Z are n integers whose product is divisibe by p, then at
least one of these integers is divisible by p, i.e. p|m1 · · ·mn implies that then there exists
1 ≤ j ≤ n such that p|mj. Hint: use induction on n.

5. (a) Calculate gcd(315, 168) using the Euclidean algorithm, then use this information
to calculate lcm(315, 168). Determine integers x, y such that 315x + 168y = gcd(315, 168).
You may use the Blankinship version of the Bezout algorithm if you wish. Now obtain the
prime factorizations of 315 and 168 to double-check your computation of the gcd and lcm of
315 and 168.

(b) Calculate gcd(89, 148) using the Euclidean algorithm.

6. (a) Show that if n > 1 is composite, then there exists d in the range 1 < d ≤
√

n such
that d|n. (Hint: you might want to use proof by contradiction).

(b) Use (a) to show that if n is not divisible by any integers in the range [2,
√

n], then n
is prime.

(c) Use (b) to show that if n is not divisible by any primes in the range [2,
√

n], then n
is prime.

(d) Use the procedure in (c) to verify that 229 is prime.
(e) Suppose you write down all the primes from 2 to n. We know that 2 is a prime so we

circle it and cross out all other multiples of 2. The next uncrossed number is 3 and we claim
that 3 therefore must be prime. Explain why. Now cross out all the multiples of 3. The next
uncrossed number is 5 so we claim it must be a prime. We continue in this fashion until we
get to

√
n. Explain why all the remaining numbers are prime. Carry out this procedure for

n = 100 to find all the primes less than 100. This is called the Eratosthenes sieve. (You may
want to write them in 10 rows of 10 numbers each).

7. (a) Prove that if n ∈ N, then gcd(n, n + 1) = 1.
(b) Is it possible to choose 51 integers in the interval [1, 100] such that no two chosen

numbers are relatively prime? [i.e. is there a subset S ⊂ {n ∈ N | 1 ≤ n ≤ 100} with
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|S| = 51 such that m, n ∈ S ⇒ gcd(m,n) > 1?] Prove that your answer is correct. (Hint:
If you get stuck, recall that an often useful problem-solving strategy is to attempt a simpler
problem first, so think about 6 integers in [1, 10] for example).

8. Show that for n ≥ 1, in any set of 2n+1 − 1 integers, there is a subset of exactly 2n of
them whose sum is divisible by 2n. (Hint: use ordinary induction on n).

9. Suppose x is a real number such that x+1/x is an integer. Show that xn +1/xn is also
an integer for all n ≥ 1. (Hint: Use complete induction on n).

10. Here is a “proof” by complete induction that all Fibonacci numbers are even! Your
job is to explain the error in the argument.

For n ≥ 0, let P (n) be the statement that Fn is even. We will prove P (n) by complete
induction on n. We check the base case, P (0): F0 = 0 is even. Now we move to the induction
step: We must show that if P (j) holds for 0 ≤ j ≤ n, then P (n) holds. Well, if P (j) holds
for 0 ≤ j ≤ n, then Fn+1 = Fn−1 + Fn is even because Fn−1 and Fn are even by P (n − 1)
and P (n), respectively. By Complete Induction, therefore, Fn is even for all n ≥ 0.

4. Extra Credit

A. Let a1, a2, . . . , a100 be a sequence of length 100 in N. Show that there is a non-trivial
subsequence of this sequence whose sum is divisible by 100. In other words, show that there
exists an integer N ≥ 1 and integers 1 ≤ i1 < i2 < · · · < iN ≤ 100 such that ai1+ai2+· · ·+ain

is divisible by 100.
Hint: Use the pigeon-whole principle as applied to the remainders of the numbers when

divided by 100.

B. It is a fact, due to Chebyshev, that for any integer n ≥ 1, there exists a prime in the
interval (n, 2n]. Use this fact to prove that the harmonic numbers defined by

Hk =
k∑

j=1

1

j
= 1 +

1

2
+

1

3
+ · · ·+ 1

k
,

are not integers for k > 1.

C. Recalling the Fibonacci numbers from the previous homework, show that

Fn = FkFn−k + Fk−1Fn−k−1 for 1 ≤ k ≤ n− 1.

5. Super Extra Credit

D. Let a1, a2, . . . , a51 be integers with 1 ≤ ai ≤ 100 for all 1 ≤ i ≤ 51. Prove that there
exists i 6= j such that ai|aj.

6. Super Duper Extra Credit

E. Let n ≥ 1 be a positive integer. Suppose you have 2n+1 not necessarily distinct positive
integers such that whenever one of the numbers is removed, the remaining 2n numbers can
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be divided into two groups of size n that add up to the same number. Show that the numbers
are all the same.

To state this more formally, let S = {1, 2, 3, . . . , 2n, 2n + 1}. Suppose f : S → N is a map
such that for all x ∈ S, there exist sets T, U ⊂ S \ {x} such that T ∩ U = ∅, |T | = |U | = n,
and

∑
t∈T f(t) =

∑
u∈U f(u). Show that f is a constant function i.e. for all s1, s2 ∈ S,

f(s1) = f(s2).
Hint: It is relatively easy to prove that all the numbers have the same parity. Is this

helpful at all?


