
UMASS AMHERST MATH 300 SP ’05, F. HAJIR

HOMEWORK 6: INDUCTION

1. Remembrances of Things Past

Let’s take a moment to recall some material which will hopefully be familiar to you from
your study of infinite series and matrices, etc.

A finite sum a1 + a2 + · · ·+ an can be expressed compactly as
∑n

j=1 aj. Note that it could

also be written as
∑n

umass=1 aumass. If a1, a2, . . . is an infinite sequence of real numbers, then
for the infinite sum a1 + a2 + · · · we write

∞∑
j=1

aj = lim
n→∞

n∑
j=1

aj,

i.e. the sum of the series is defined to be the limit of the partial sums, should this limit exist.
If it does not, we say that the series diverges.

A product of terms a1a2 · · · an is written as
∏n

j=1 aj.

You have probably encountered the factorial notation (when you studied the Taylor series
of ex for example): for an integer n ≥ 0, we define n! =

∏n
j=1 j. Note that 0! = 1 because by

definition, 0! is an empty product: an empty product should be interpreted as 1 always, just
as an empty sum should be interpreted as 0. A very useful fact is that n! ≈ e−nnn−0.5

√
2Π;

this rather good approximation (for large n) is known as Stirling’s formula.

If A =

(
a b
c d

)
and B =

(
e f
g h

)
are two matrices with real coefficients, then the

product of the two matrices AB is defined to be the matrix

AB =

(
ae + bg af + bh
ce + dg cf + dh

)
.

Matrices represent linear transformations of a plane (equipped with a basis) and the matrix
product defined above represents the composite of the two linear transformations correspond-
ing to A and B, respectively under a fixed basis. The determinant of the matrix A is defined
to be ad − bc; one can check directly that det(AB) = det(A) det(B), i.e. the determinant
map is multiplicative. For a more conceptual explanation, you should have attended an
Undergraduate Colloquium on March 24, 2005 [notes on my web page might pop up one day
...]

2. Mathematical Induction

One of the most powerful methods for proving certain kinds of propositions is mathemat-
ical induction. Keep in mind that inductive reasoning is quite distinct from mathematical
induction (from now on I will just say “induction” for short). Induction is based on the
well-ordering principle. There are several different “flavors” of induction; we will talk about
three: ordinary induction, complete induction, and two-variable induction.
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The basic idea is as follows. Imagine a typical guy. Let’s call him Larry. Larry is a
snacker. His favorite snack is Potato Chips. Larry has a peculiar habit. If he eats a chip
from a bag, then he simply must eat another chip from that bag (as long as another chip
exists in the bag). So, what can we conclude from this? That if you give Larry a bag of chips
and he eats a first chip, then he will completely eat the whole bag no matter how many
chips are in the bag. That’s it, that’s Mathematical Induction. Note the main “engine” of
the conclusion we reached about Larry is the “inductive step” that each consummed chip
necessarily will entail the consumption of another chip. The other necessary hypothesis (for
Larry to eat the whole bag) is of course is that he take that first plunge and actually eat
the first chip (the “base case”). Here is another analogy. Imagine you set up a bunch of
dominoes in your room and you space them so closely that you know for sure that should
any domino ever topple forward, then its succeeding neighbor will also fall forward. Then,
if any domino along the chain falls forward, all of the succeeding ones will as well.

Okay, now you are psychologically prepared for a more formal statement of the Principle
of Mathematical Induction.

Theorem 2.1 (The (Ordinary) Principle of Mathematical Induction). Suppose for each
integer n ≥ 1, P (n) is a statement. Assume moreover that

• P (1) is true, and
• Whenever P (k) happens to be true for some k ≥ 1, then P (k + 1) is also true, i.e.

P (k) ⇒ P (k + 1) for all k ≥ 1.

Then P (n) is true for all n ≥ 1.

Proof. We will give a proof by contradiction. Suppose it is not the cae that P (n) holds for all
n, i.e. the set S = {n ≥ 1 | P (n) is false } is non-empty. By the well-ordering principle, S
has a least element, let us call it m. We know that m > 1 since P (1) is true by assumption.
Since m is the smallest element of S, we know that m− 1 /∈ S. By definition of S, therefore,
P (m− 1) is true. Since P (k) ⇒ P (k + 1) for all k ≥ 1, we conclude that P (m) is true, but
m ∈ S so P (m) is false. This is a contradiction. So S must be empty after all, i.e. P (n)
holds for all n ≥ 1. �

Remark. Problem 5 on HW5 was just a different way of stating the above Principle.

We will now use mathematical induction to prove some formulas that we guessed using
inductive reasoning but have not yet verified, as well as some other kinds of statements.

Example 2.2. For each integer n ≥ 1, prove that P (n) : 1 + 2 + · · ·+ n = n(n + 1)/2. This
is crying out for proof by induction.

We first check P (1): 1 = 1(1 + 1)/2 CHECK.
Now we check the “induction step” i.e. P (k) ⇒ P (k + 1) for k ≥ 1. So, suppose P (k)

holds for some k ≥ 1. Then 1 + 2 + · · ·+ k = k(k + 1)/2. We have to show that this implies
P (k+1). Okay, let’s try to calculate 1+2+ · · ·+k+(k+1) using what we have been allowed
to assume, namely that the sum of the first k integers has a nifty closed-form formula. Okay

1 + 2 + · · ·+ k + (k + 1) = [1 + 2 + · · ·+ k] + (k + 1)

= k(k + 1)/2 + (k + 1)

= (k + 1)(1 + k/2)

= (k + 1)(k + 2)/2.
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Hey, we just showed that, for k ≥ 1, P (k + 1) follows if P (k) is true. That completes the
“induction step.” So, by the principle of mathematical induction, P (n) is true for all n ≥ 1.

Example 2.3. Show that if we order the odd positive integers in increasing size (as usual),
for n ≥ 1, the nth one is 2n − 1. In other words, P (n): if On is the nth odd integer, then
On = 2n−1. Let’s check the base case: n = 1: O1 = 1 and 2(1)−1 = 1 so it checks out okay.
Now let’s do the inductive step. If, for some k ≥ 1, Ok = 2k− 1, then, since Ok+1 = Ok + 2,
we have Ok+1 = (2k − 1) + 2 = (2k + 1). We might scratch our heads here a little and say
“Um, like, are we done now?” or “What the heck are we trying to do here?!” The answers
are “Not quite dude” and “Like you have to show P (k) ⇒ P (k + 1) dude,” respectively.
Let’s just work backwards just a tiny bit: what is P (k+1)? It says that Ok+1 = 2(k+1)−1.
So far, we have Ok+1 = 2k + 1. Oh but wait, 2k + 1 = 2k + 2− 1 = 2(k + 1)− 1 so we got it.

Just to be totally clear let’s now re-give the induction step. We suppose that k ≥ 1 is
some integer and that P (n) happens to hold for n = k, then try to derive that P (n) would
follow for n = k+1. So, we assume Ok = 2k−1, then compute Ok+1 = 2k−1+2 = 2k+1 =
2k + 2− 1 = 2(k + 1)− 1, so P (k) ⇒ P (k + 1).

Example 2.4. Prove that for n ≥ 1, the sum of the first n odd positive integers is n2. So,
let us define Tn to be the sum of the first n odd integers, i.e. Tn = 1 + 3 + 5 + · · ·+ (2n− 1),
since we figured out that 2n− 1 is the nth odd number. Let’s check the base case. Always
do that first. In fact, it pays to do just a few more cases after the base case. So, for n = 1,
Tn = T1 = 1 and n2 = 12 = 1 so they agree. We also check T2 = 1+3 = 22, T3 = 1+3+5 = 9
and that’s good too. Okay, let’s move to the heart of the matter, then inductive step. We
must show that P (k) implies P (k +1) for all k ≥ 1. Thus, if P (k) holds, then Tk = k2 which
implies that

Tk+1 = Tk + (2k + 1) = k2 + 2k + 1 = (k + 1)2,

so P (k + 1) holds, just as easy as that. The equality Tn = n2 has now been proved for all
n ≥ 1 by the principle of mathematical induction.

Example 2.5. Show that for n ≥ 5, 2n > n2. So we have P (n) : 2n > n2. You mean out
“statement” is not an equality, it’s an inequality? And we don’t start with n = 1? Dude,
can we still apply induction?! Of course we can, Dude! Base Case and Inductive Step that’s
what it’s all about! Base Case n = 5: 25 = 32 > 25 = 52 no sweat. Inductive Step: must
show, for k ≥ 5, that 2k > k2 implies 2k+1 > (k + 1)2. So suppose for some integer k ≥ 5,
2k > k2. Then 2k+1 = 2 · 2k > 2k2. Looking ahead (or working backwards) it sure would be
nice if 2k2 would be gracious enough to dominate (k + 1)2 for k ≥ 5. So, we boldly claim
2k2 > (k + 1)2 for k ≥ 5 which solves the problem assuming we can prove our claim. Now,

we write down 2k2
?
> (k + 1)2 on a Blue Wall napkin and expand and bring stuff from one

side to the other until we see the following argument work itself out in reverse order of how
we will now present it:1 Since k ≥ 5, we have k > k − 2 > 1 so k(k − 2) > 1 so k2 − 2k > 1
so k2 > 2k + 1 so 2k2 = k2 + k2 > k2 + 2k + 1 so 2k2 > (k + 1)2.

Example 2.6. Prove by induction that n3+(n+1)3+(n+2)3 is a multiple of 9 for all n ≥ 1.
The base case: n = 1, 1+8+27 = 36 = 4 ∗ 9 CHECK. Now we must show P (k) ⇒ P (k +1)

1One problem with reading mathematics is that the little scratchwork is never kept, even off in the
margins, the proofs are all presented neat and crisp. I’m not saying this should change, but if that stuff isn’t
there in the text you are reading, then you need to be supplying it as you read!
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for all k ≥ 1. So we assume the Induction Hypothesis: k3 + (k + 1)3 + (k + 2)3 = 9t for
some integer t. We must SHOW: (k + 1)3 + (k + 2)3 + (k + 3)3 = 9s for some integer s. We
recognize the first two terms of this sum as the last two terms of the sum in the induction
hypothesis, so we calculate

(k + 1)3 + (k + 2)3 + (k + 3)3 = 9t + (k + 3)3 − k3

= 9t + k3 + 9k2 + 27k + 27− k3

= 9t + 9k2 + 27k + 27

= 9s s = (t + k2 + 3k + 3) ∈ Z.

By the Principle of Mathematical Induction, we have proved that the sum of three consecutive
integer cubes is divisible by 9.

3. Problems

1. Prove by induction that, for all integers n ≥ 1,

n−1∑
i=0

2i = 2n − 1.

2. Prove by induction that for n ≥ 1, the sum of the cubes of the first n positive integers
is the square of the sum of the first n positive integers, i.e.

n∑
j=1

j3 =

(
n∑

i=1

i

)2

.

Feel free to use the formula for Bowling Numbers that we proved in class and in these notes.

3. Prove by induction that, for all integers n ≥ 1,

1

n!
≤ 1

2n−1
.

4. Prove, using induction, that if X is a finite set of size n ≥ 0, then X has 2n subsets, i.e.
that |P(X)| = 2|X|. You gave a proof of this on HW5. Your proof here must use induction
on the size of X.

5. Prove by induction that for n ≥ 2,
n∏

j=2

(1− 1

j2
) =

n + 1

2n
,

6. Prove by induction that if x > 1 is a real number then for all integers n ≥ 2, (1+x)n >
1 + nx.

7. Here is a “proof,” using induction, of the statement that all horses are have the same
color.

We must prove that for n ≥ 1,
H(n): If C is a collection of n horses, all the n horses in C have the same color.
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We will use induction on n to prove H(n). Base case: n = 1; since there is only one horse,
it has the same color as all the horses present in the collection, i.e. itself. Inductive Step:
we must show that H(k) implies H(k + 1). So we assume known that in any collection of
k horses, they all have the same color [the “induction hypothesis”] and must show this to
be the case for any collection of k + 1 horses. Let C be a collection of k + 1 horses. Take
any subcollection S = C \ {h} of size k, i.e. one which leaves out one horse, lets us call it
h. We know that all the horses in S have the same color by the induction hypothesis; it
remains only to show that h has the same color as all the horses in S. Now let S ′ = C \ {h′}
be a different collection of k horses in C, i.e. h′ 6= h. Then all the horses in S ′ have the
same color, again by the induction hypothesis. Since h ∈ S ′, h must have the same color
as all the other horses too, so all the horses in C have the same color. By the Principle of
Mathematical Induction, all horses have the same color.

Write a carefully written discussion of this proof, describing where and how it goes wrong.
[For you agree that the statement is false, right?!]

8. Define the famed Fibonacci Sequence F0, F1, F2, . . . as follows. Let F0 = 0, F1 = 1 and
define the rest recursively by letting Fn+1 = Fn +Fn−1 for all n ≥ 1. Thus, F2 = F1 +F0 = 1,
and F3 = F2 + F1 = 1 + 1 = 2 and so on, each new term being the sum of the two preceding
ones.

Let M be the matrix

M =

(
0 1
1 1

)
.

(a) Verify for a few small n, say 1 ≤ n ≤ 5, that Fn−1Fn+1 − F 2
n = (−1)n. Try to prove

this holds for all n, either using induction, or some other trick. [Do Try it, it’s good for you,
but if it gets hairy, don’t sweat it too much, you’ll see why in a minute.]

(b) Using induction on n, prove that, for n ≥ 1,

Mn =

(
Fn−1 Fn

Fn Fn+1

)
.

[For a reminder about matrix multiplication, see Remembrances of Things Past].
(c) Now Use (b) to prove the formula in (a).

9. Suppose m ≥ 2 and X1, . . . , Xm are countable sets. Use induction on m to prove that
X1 ∪X2 ∪ · · · ∪Xm is countable.

10. Use induction to prove that for any integer n ≥ 1, the number an = 5n + 2(3n−1) + 1
is divisible by 8, i.e. an/8 is an integer.

4. Extra Credit Problems

Suppose L is the set of all straight lines in the plane R2.
(a) Show that L is not countable.
(b) Let C ( L be a countable subset of L. Let X = ∪c∈Cc be the union of all the members

of C, so X is the union of countably many lines in R2. Show that X is a proper subset of
R2.

Hint: Use proof by contradiction. Look to contradict the fact that each line is uncountable.


