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7. Groups

We begin with a series of definitions:

Definition 7.1. Let G be a set. A (binary) operation or a composition law ∗
in G is a map:

∗ : G×G → G.

Instead of writing ∗(a, b) to indicate the result of applying the map ∗ to the
pair (a, b) ∈ G×G, we will usually write a ∗ b.

Definition 7.2. An operation ∗ on G is called associative if and only if

(7.1) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

Definition 7.3. An operation ∗ on G is called commutative if and only if

(7.2) a ∗ b = b ∗ a for all a, b ∈ G.

Definition 7.4. Given a set G with a binary operation ∗, an element e ∈ G
is called an identity element for ∗ if and only if:

(7.3) a ∗ e = e ∗ a = a for all a ∈ G.

Even though, in principle, a set G with a binary operation ∗ could have
different identity elements, it is easy to prove that, in fact, if an identity
element exists then it must be unique:

Proposition 7.5. Let G be a set with a binary operation ∗. Then if an identity
element exists it is unique.

Proof. Suppose e1 and e2 are elements in G satisfying (7.3). Then we have

e2 = e1 ∗ e2 = e1,

where in the first equality we use the fact that e1 is an identity and in the
second equality that e2 is an identity. !

Definition 7.6. Given a set G with a binary operation ∗ and an identity
element e, we say that b ∈ G is an inverse of a ∈ G if and only if

(7.4) a ∗ b = b ∗ a = e

Once again, it is easy to prove that, for associative operations, if an inverse
exists then it must be unique:

Proposition 7.7. Let G be a set with a binary operation ∗ and suppose there
exists an identity e. Then if an inverse of an element a exists, it is unique.
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Proof. Suppose b and c are inverses of a. Then we have:

b = b ∗ e (since e is the identity)

= b ∗ (a ∗ c) (since c is an inverse of a)

= (b ∗ a) ∗ c (by associativity)

= e ∗ c (since b is an inverse of a)

= c (since e is the identity)

!
Definition 7.8. A group is a set G with an operation ∗ such that:

i) ∗ is associative.
ii) There exists an identity element e ∈ G.
iii) Every element a ∈ G has an inverse.

If, in addition, ∗ is commutative then we say that G is a commutative group
or an abelian group.

Example 7.9. The integers Z with ∗ = + is an abelian group. We know
that addition is associative and commutative and 0 is the identity element.
Moreover, given any a ∈ Z, −a is the inverse of a.

Exactly the same arguments show that the rational numbers Q or the real
numbers R with the operation of addition are abelian groups whose identity
element is 0.

Example 7.10. Consider now the same set Z but with the operation ∗ =
product. We know that the product of integers is associative and commutative.
Moreover, the element 1 is the identity element since 1 · m = m · 1 = m for
all m ∈ Z. However, it is not true that every element has an inverse. In fact,
the only elements with an inverse are 1 and −1. So, Z with the multiplication
operation is not a group.

Consider next the set Q with the multiplication operation. Again, the prod-
uct of rational numbers is associative, commutative and 1 is the identity ele-
ment. What about existence of inverse? Every element except 0 has an inverse:
if a = p/q and p, q &= 0 then b = q/p is the inverse of a. But the element 0 does
not have an inverse: We cannot find a rational number b such that 0 · b = 1!

Since 0 is the only element without an inverse and the product of non-zero
numbers is not zero we can restrict the product operation to the set

Q∗ := {a ∈ Q : a &= 0}
to get an abelian group. Similarly, we can define a multiplicative group (R∗, ·),
where R∗ = R \ {0}.

Example 7.11. Note that there is no a priori restriction on what an operation
is, just that it is a map that to each ordered pair of elements of G assigns
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another element of G. For example G could be the set G = {p, s, r} and the
operation be:

p ∗ p = p ; s ∗ s = s ; r ∗ r = r ;

p ∗ s = s ∗ p = s ; p ∗ r = r ∗ p = p ; r ∗ s = s ∗ r = r.

(This is the operation derived from the paper/scissors/rock game.) Note that
in this case the operation is commutative by definition. However, we see by
inspection that there is no identity element. Is it associative? We have:

(p ∗ s) ∗ r = s ∗ r = r,

but

p ∗ (s ∗ r) = p ∗ r = p.

So, ∗ is not associative.

The following is one of the key examples and the one from which the term
composition law is derived.

Example 7.12. Let X be an arbitrary non-empty set and let

B(X) := {f : X → X : f is bijective },

and set f ∗ g = f ◦ g, the composition of maps. This makes sense since
the composition of bijections is a bijection. We have already shown that the
composition of maps is associative and that the identity map idX satisfies that

f ◦ idX = idX ◦ f = f.

Therefore, idX is the identity for (B(X), ∗).
Moreover, we have also proved that every bijection f ∈ B(X) has an inverse

map f−1 ∈ B(X) satisfying:

f ◦ f−1 = f−1 ◦ f = idX .

Thus, the inverse in the sense of maps is also the inverse for ∗. Therefore
(B(X), ∗) is a group. Note that in general this group is not commutative. For
example if

X = {1, . . . , n}

then B(X) is the set of permutations of {1, . . . , n} and we have already seen
that the composition of permutations is not commutative. Recall that in this
case we denote by Sn the group of permutations of {1, . . . , n}.
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8. The integers mod m. Modular Arithmetic.

In this section we will study in detail operations defined in a space of equiv-
alence classes. This is the most important example of a group that we will
study in this course.

We begin by recalling that given an integer m > 1, we have defined an
equivalence relation on Z:

a ∼ b ⇔ m|(a− b).

Since we will be studying this particular equivalence relation in detail we in-
troduce a specific notation to replace the generic notation ∼. We will say
that:

a ≡ b (mod m) ⇔ m|(a− b)

Let Rm : Z → {0, 1, . . . ,m − 1} be the map that assigns to each a ∈ Z the
remainder of dividing a by m; i.e. Rm(a) is the unique integer between 0 and
m− 1 such that there exists k ∈ Z with

a = k · m + Rm(a).

(What theorem guarantees the existence and uniqueness of this de-
composition?)

Then, since m|(a− b) if and only if Rm(a) = Rm(b) we have that

a ≡ b (mod m) ⇔ Rm(a) = Rm(b).

This means that the map Rm defines the equivalence relation a ≡ b (mod m)
and, consequently, the quotient space of this equivalence relation Z/∼ is
bijectively equivalent to {0, 1, . . . ,m− 1}. To keep track of the integer m used
to define the equivalent relation we will denote Z/∼ by Zm.

We now define an operation ⊕ in the set Z/∼ of equivalence classes in the
following way: Let C1 and C2 be equivalence classes, pick a1 ∈ C1 and a2 ∈ C2

then define:

(8.1) C1 ⊕ C2 := [a1 + a2]

Before we can accept this as a valid definition we need to check that the result
of the operation does not depend on our pick of representatives a1 and a2 in
the equivalence classes C1 and C2. Suppose we pick different elements, say
b1 ∈ C1 and b2 ∈ C2, then

a1 ≡ b1 (mod m) ⇒ m|(a1 − b1), and

a2 ≡ b2 (mod m) ⇒ m|(a2 − b2)

But then m divides (a1 − b1) + (a2 − b2) = (a1 + a2)− (b1 + b2). Therefore

a1 + a2 ≡ b1 + b2 (mod m)

and [a1 + a2] = [b1 + b2].
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For example, let m = 4, then there are 4 equivalence classes in Z4 which we
can list as [0], [1], [2], [3] and we have the following table for ⊕

⊕ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

Remark: Since the set Z/∼= Zm is bijectively equivalent to the set {0, 1, . . . ,m−
1} we may think of ⊕ as an operation on the set {0, 1, . . . ,m− 1}. With this
point of view, the table above describes an operation in the set {0, 1, 2, 3}.
Once one is used to the notion of quotients it is common to forget the square
brackets and to replace the symbol ⊕ by the standard +. But, for the remain-
ing of these notes we will keep the clumsier notation so we can be sure of where
we are working.

We now check the conditions for (Zm,⊕) to be a group:

Associativity:

([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b] + [c]).

Identity: The class [0] is the identity element since:

[a] + [0] = [a + 0] = [a] = [0 + a] = [0] + [a].

Existence of Inverse: For each [a] ∈ Zm the element [−a] is the inverse
of [a] since:

[a] + [−a] = [a− a] = [0] = [−a + a] = [−a] + [a].

Hence, (Zm,⊕) is a group. In fact, it is equally easy to check that (Zm,⊕)
is an abelian group. We leave the verification to the reader.

Remark: We make an important notational comment. When operating in
Zm the expressions:

a + b ≡ c (mod m)

and
[a]⊕ [b] = [c]

are completely equivalent. Notice that the first expression conveys more in-
formation since it makes explicit what m is. The second expression is simpler
once m is fixed. For example the statements

5 + 11 ≡ 2 (mod 7)

is equivalent to saying: In the group Z7

[5]⊕ [11] = [2].
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But note that for the second expression to make sense we need to specify the
group where the operation takes place.

We can similarly define a multiplication ⊗ in the set Z/∼ = Zm as follows:
Let C1 and C2 be equivalence classes, pick a1 ∈ C1 and a2 ∈ C2 then define:

(8.2) C1 ⊕ C2 := [a1 · a2]

Once again we need to check that this definition does not depend on the
representatives a1 and a2 that we picked.

Suppose we pick different elements, say b1 ∈ C1 and b2 ∈ C2, then since
a1 ≡ b1 (mod m) we have from the Division Theorem that:

a1 = k1m + r1 ; b1 = !1m + r1 ; 0 ≤ r1 < m.

(Why are the remainders the same?)
Similarly,

a2 = k2m + r2 ; b2 = !2m + r2 ; 0 ≤ r2 < m.

We then have:

a1 · a2 = k1k2m + k1r2m + k2r1m + r1r2 ≡ r1 · r2 (mod m),

b1 · b2 = !1!2m + !1r2m + !2r1m + r1r2 ≡ r1 · r2 (mod m).

Which means that [a1 ·a2] = [b1 ·b2]. So, the modular product ⊗ is well defined.

Example 8.1. Let us write the table for the modular product in Z4.

⊗ [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

Just as we did in the case of ⊕ we can easily check that ⊗ is associative,
commutative, and that [1] is the identity element. However, we cannot expect
to have an inverse since the element [0] will never have an inverse. We already
encountered this problem in the example of the product operation in Q and
we solved it by considering the set Q∗ = Q \ {0}. Can we do the same thing
here? The table for Z4 tells us that the answer is NO since the element [2] has
no inverse either!! It is then natural to ask:

Question: When does an element [a] ∈ Zm have an inverse in Zm; i.e. when
can we find b ∈ Z so that [a]⊗ [b] = [1]?

Fortunately, the answer to this question is very easy:

Theorem 8.2. Let [a] ∈ Zm then [a] has an inverse in (Zm,⊗) if and only if
gcd(a, m) = 1.
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Proof. Suppose that [a] has an inverse [b], then [a]⊗ [b] = [1]; i.e.

a · b ≡ 1 (mod m)

and this means that there exists k ∈ Z such that

a · b = k · m + 1.

But then

1 = a · b− k · m
and it follows that gcd(a, m) = 1. The converse is identical: if gcd(a, m) = 1
then there exist integers x, y such that

1 = a · x + m · y

But this implies that

a · x ≡ 1 (mod m)

or, equivalently, that [a]⊗ [x] = [1] and [x] is the inverse of [a] in (Zm,⊗). !

We can illustrate Theorem 8.2 in the case of Z4. The elements [1] and [3]
have inverses since

gcd(1, 4) = gcd(3, 4) = 1.

But the elements [0] and [2] do not since

gcd(0, 4) = 4 and gcd(2, 4) = 2.

We have the following important Corollary to Theorem 8.2:

Corollary 8.3. If p is prime then every non-zero element in (Zp,⊗) has an
inverse. Therefore if we denote by Z∗p = Zp \ {[0]}, then (Z∗p,⊗) is an abelian
group.

Proof. Let [a] ∈ Zp and suppose that [a] &= [0]. Then, p does not divide a and
since p is prime we must have gcd(a, p) = 1. Then by the Theorem, [a] has an
inverse in Zp. !
Example 8.4. Consider the multiplication table for Z5:

⊗ [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

We see that in this case [2]−1 = [3], [3]−1 = [2], and [4]−1 = [4].
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The fact that for a prime number p the operations in Zp, ⊕ and ⊗, satisfy
the same properties as the addition and product of rational or real numbers¶

means that we can operate with them just as we do with rationals or reals.
Let’s illustrate this point with a few examples.

Example 8.5. Solve the congruence equation

2x + 3 ≡ 4 (mod 5).

We can view this expression as an equation in Z5:

([2]⊗ x)⊕ [3] = [4].

We then have

[2]⊗ x = [4]⊕ (−[3]) = [1] (here − denotes the additive inverse in (Z5,⊕).)

Therefore
x = [2]−1 ⊗ ([2]⊗ x) = [2]−1 ⊗ [1] = [3]

since [2]−1 = [3] in Z5 (see Example 8.4). We can verify our result:

2 · 3 + 3 = 9 ≡ 4 (mod 5).

Example 8.6. Now let us try something harder. Solve the congruence equa-
tion

15x + 11 ≡ 7 (mod 31).

We can view this expression as an equation in Z31:

([15]⊗ x)⊕ [11] = [7].

We then have

[15]⊗x = [7]⊕(−[11]) = [7]⊕[20] = [27] (here − denotes the inverse in (Z5,⊕).)

Therefore
x = [15]−1 ⊗ ([15]⊗ x) = [15]−1 ⊗ [27].

We now need to compute [15]−1 in Z31. The proof of Theorem 8.2 tells us
how to proceed: Since gcd(15, 31) = 1 we can write 1 as an integral linear
combination of 15 and 31. In this case this is very easy

1 = 31 + (−2) · 15.

¶In addition to the properties we have already discussed, the modular product is distribu-
tive with respect to modular addition, that is:

[a]⊗ ([b]⊕ [c]) = ([a]⊗ [b])⊕ ([a]⊗ [c])

as is easily verified from the definitions. It is also easy to check that [a] ⊗ [0] = [0] for all
[a] ∈ Zp. All of these properties together define the notion of a field. The reals R and the
rationals Q are fields as is Zp for p prime. One big difference between them is that Zp is
finite, Q is denumerable, and R is uncountable.
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This means that (−2) · 5 ≡ 1 (mod 31), in other words that [−2] ⊗ [15] = [1]
in Z31. So [15]−1 = [−2] and x = [−2] ⊗ [27] = [−54] = [8]. Again, it is
worthwhile to verify our result:

15 · 8 + 11 = 131 = 4 · 31 + 7 ≡ 7 (mod 31).

Example 8.7. In this example we will use modular arithmetic to find the test
for divisibility by 11. Let m ∈ Z>0 be a positive integer and write m in its
decimal expansion:

m = akak−1 · · · a1a0,

where aj are digits between 0 and 9 and ak &= 0. In other words,

m = ak · 10k + ak−1 · 10k−1 + · · · + a1 · 10 + a0.

Theorem 8.8. m is divisible by 11 if and only if the alternating sum

a0 − a1 + a2 + · · · + (−1)kak =
k∑

j=0

(−1)jaj

is divisible by 11.

Proof. We will work in Z11. If m is divisible by 11 then [m] = [0] in Z11 and
therefore we have

[ak]⊗ [10k]⊕ [ak−1]⊗ [10k−1]⊕ · · · ⊕ [a1]⊗ [10]⊕ [a0] = [0].

But [10] = [−1] in Z11, therefore the above expression may be rewritten as

[ak]⊗ [(−1)k]⊕ [ak−1]⊗ [(−1)k−1]⊕ · · · ⊕ [a1]⊗ [−1]⊕ [a0] = [0],

or, given the definitions of ⊗ and ⊕ as:

(−1)k · ak + (−1)k−1 · ak−1 + · · · − a1 + a0] = [0]

which means that
a0 − a1 + a2 + · · · + (−1)kak

is divisible by 11. !
So, for example, 385 is divisible by 11 since the alternating sum of the

coefficients is 5 − 8 + 3 = 0 and 0 is divisible by 11. But 749 is not divisible
by 11 since, in this case, the alternating sum is: 9 − 4 + 7 = 12 which is not
divisible by 11.

9. Subgroups - Cyclic Groups

Definition 9.1. Let (G, ∗) be a group. A non-empty subset H ⊆ G is called
a subgroup if and only if

i) If h1, h2 ∈ H then h1 ∗ h2 ∈ H.
ii) For every h ∈ H, the inverse h−1 ∈ H.
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Remark: If H ⊆ G is a subgroup of (G, ∗) then (H, ∗) is a group as well.
We only need to check that H has an identity element but this is implied by
i) and ii) in Definition 9.1. Indeed, pick any element h ∈ H (we required H to
be non-empty), then by ii), h−1 ∈ H and by i), e = h−1 ∗ h ∈ H. But then e
is also the identity element in H.

Example 9.2. The integers Z are a subgroup of (Q, +). Indeed, if m, n ∈ Z
then m + n ∈ Z and −m ∈ Z. On the other hand, Z>0 is not a subgroup of
Z. While it is true that for m, n ∈ Z>0, m + n ∈ Z>0, it is not true that for
m ∈ Z>0, −m ∈ Z>0. Therefore the second condition in Definition 9.1 fails.

Example 9.3. For any n ∈ Z>0,

nZ := {k ∈ Z : n|k}
is a subgroup of (Z, +). Indeed, if n divides k1 and k2 then n divides k1+k2 and
if n divides k then n divides −k. Therefore both conditions in Definition 9.1
are satisfied.

Example 9.4. Consider the group (Z4,⊕). It follows from the operation table
for this group that the subset H = {[0], [2]} is a subgroup. Indeed, in Z4:

[0]⊕ [0] = [2]⊕ [2] = [0] ; [0]⊕ [2] = [2]⊕ [0] = [2]

and −[0] = [0] and −[2] = [2], where as always, − denotes the inverse in
(Z4,⊕).

Given a group (G, ∗) and an element g ∈ G we may define the n-th power
of g recursively:

• g1 = g;
• Assuming we have defined gn then we define gn+1 = gn ∗ g.

This defines gn for every n ∈ Z>0. We also define: g0 = e and for n ∈ Z>0:

g−n = (g−1)n.

Note that g−1 is the inverse of g with respect to ∗.
The following Lemma will be useful in proving a very important Theorem.

Lemma 9.5. For every n ∈ Z,

g−n = (g−1)n.

Proof. Note that the statement follows from the definition if n > 0 while it is
obvious if n = 0. We need to consider then the case n < 0. But then

(g−1)n = ((g−1)−1)−n = g−n.

!
Theorem 9.6. Let (G, ∗) be a group and let g ∈ G. Then for all !, k ∈ Z:

g! ∗ gk = g!+k.
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Proof. This proof is a good example of an argument which appears to be obvi-
ous but that requires quite a bit of work in order to prove it with the ingredients
at our disposal. The main difficulty is that we have different definitions for
positive and negative powers.

We will fix ! ∈ Z and prove the assertion of the Lemma for all k ∈ Z.
We begin with the easiest case: k = 0, then

g! ∗ g0 = g! ∗ e = g! = g!+0.

Next, we prove the result for k ∈ Z>0 by induction. We begin with the base
case k = 1. We need to distinguish three cases depending on whether ! > 0,
! = 0, or ! < 0.

i) If ! > 0, then g! ∗ g1 = g! ∗ g = g!+1 by the recursive definition of the
powers of an element.

ii) If ! = 0, then g0 = e and g0 ∗ g1 = e ∗ g1 = g1 = g0+1.
iii) Suppose now that ! < 0, and write ! = −s with s > 0. Then g! =

(g−1)s = (g−1)s−1 ∗ (g−1) by the previous cases (remember that s ≥ 0).
Then

g! ∗ g1 = ((g−1)s−1 ∗ (g−1)) ∗ g

= (g−1)s−1 ∗ ((g−1)) ∗ g)

= (g−1)s−1 ∗ e = (g−1)s−1

= g−(s−1)

= g!+1

Suppose now that the g! ∗ gn = g!+n for all all ! ∈ Z and some n ∈ Z>0. We
want to prove that

g! ∗ gn+1 = g!+n+1.

Now, by definition gn+1 = gn ∗ g, therefore

g! ∗ gn+1 = g! ∗ (gn ∗ g)

= (g! ∗ gn) ∗ g (associativity)

= g!+n ∗ g (inductive hypothesis)

= g!+n+1 (base case)

Unfortunately, our work is not yet done because we have only proved the
assertion of the Lemma for ! ∈ Z and k ∈ Z≥0. We still need to consider
the case k < 0. However we can use a trick to reduce it to the case we have
already proved! If k < 0, then k = −r with r > 0 and gk = (g−1)r by
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definition. Moreover, by Lemma 9.5, we have g! = (g−1)−!. Then

g! ∗ gk = (g−1)−! ∗ (g−1)r

= (g−1)−!+r (by the previous case since r > 0)

= g!−r (by Lemma 9.5)

= g!+k (since k = −r)

!

Remark: One can prove by induction that if a, b ∈ Z, then (ga)b = gab.
The proof is left as an exercise.

The following result is essentially a Corollary of Theorem 9.6 but we state
it as a Theorem because of its importance.

Theorem 9.7. Let (G, ∗) be a group and let g ∈ G. Then, the subset

H := {gk : k ∈ Z}

is a subgroup of G. Moreover, as a group (H, ∗) is commutative.

Proof. We need to check the two conditions in the definition of a group. Sup-
pose h1, h2 ∈ H then there exist k1, k2 ∈ Z such that h1 = gk1 and h2 = gk2 .
But then, Theorem 9.6 says that

h1 ∗ h2 = gk1 ∗ gk2 = gk1+k2 ∈ H.

So, the first condition is satisfied.
Suppose now that h ∈ H. Then h = gk for some k ∈ Z and, again from

Theorem 9.6 we have:

g−k ∗ gk = g−k+k = g0 = e,

and similarly gk ∗ g−k = e. Therefore

h−1 = g−k ∈ H.

Finally, it is easy to see that, as a group, H is abelian. If h1, h2 ∈ H we
have that h1 = gk1 and h2 = gk2 , for some k1, k2 ∈ Z. But then, Theorem 9.6
says that

h1 ∗ h2 = gk1+k2 = h2 ∗ h1.

!

Remarks: The subgroup H in Theorem 9.7 is called the subgroup generated
by g and g is called a generator of H. We will often denote by 〈g〉 the subgroup
generated by g. If the operation of the group is addition then we will usually
write k · g instead of gk.
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Example 9.8. If G = Z and n ∈ Z then the subgroup generated by n:

〈n〉 = {k · n : k ∈ Z}

coincides with the subgroup nZ ⊆ Z defined in Example 9.3.

Example 9.9. Consider the multiplicative group (Z∗5,⊗) whose group table is
given in Example 8.4. Note that every element g except [1] has the property
that 〈g〉 = Z∗5. For example:

[2]0 = [1]; [2]1 = [2]; [2]2 = [4]; [2]3 = [3].

Definition 9.10. A group G is said to be cyclic if there exists an element
g ∈ G such that

G = 〈g〉.

Example 9.11. The integers (Z, +) are a cyclic group since

Z = 〈1〉 = 〈−1〉.

In other words 1 is generator of Z. Similarly, nZ is a cyclic subgroup with
generator n (or −n).

By Example 9.9, the group (Z∗5,⊗) is cyclic. We may take any element
different from 1 as a generator.

On the other hand, (Q∗, ·) is not a cyclic group. Suppose r = p/q is a
generator and assume, without loss of generality, that gcd(p, q) = 1. Then if
x = rn ∈ 〈r〉, and x = a/b, gcd(a, b) = 1 then either p/b of q/b. Therefore it is
not possible to have Q∗ = 〈r〉 for any r ∈ Q∗.

Theorem 9.12. If G is a cyclic group then G is countable.

Proof. Let G be a cyclic group and suppose g is a generator; i.e.

G = 〈g〉.

Let f : Z → G be the map

f(n) = gn.

Since g is a generator of G we know that f is a surjective map. If f is also
injective then f is a bijection and G is denumerable.

Suppose then that f is not injective. Then there exist m, n ∈ Z, m &= n,
such that f(m) = f(n). We may assume without loss of generality that m > n.
Then

gm = gn ⇒ gm ∗ g−n = gm−n = e.

Let now A = {k ∈ Z>0 : gk = e}. We have that A &= ∅ (Why?). Let p be
the smallest element in A. We now claim:

Claim: f(m) = f(n) if and only if m ≡ n (mod p)
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Let us prove the Claim. Suppose m ≡ n (mod p), then m = kp + n but
then

f(m) = gm = gkp+n = (gp)k ∗ gn = ek ∗ gn = gn = f(n).

In particular, if r is the remainder of division of m by p, we have that f(m) =
f(r). Suppose then that f(m) = f(n) and let m ≡ r1 (mod p), m ≡ r2 (mod p),
with 0 ≤ r1, r2 ≤ p− 1. Then f(r1) = f(r2) and if, say r1 < r2, it follows that
gr2−r1 = e but since r2 − r1 < p this is not possible. Therefore r1 = r2 and
m ≡ n (mod p).

Now, the claim means that the group G is bijectively equivalent to Zp and,
therefore, |G| = p. We will soon see that in fact G is more than bijectively
equivalent to Zp. !

Remark: The arguments in the proof of Theorem 9.12 are very useful and
merit a close and careful reading. For example, suppose G is any group, cyclic
or not, and let g ∈ G then we define the order of the element g to be ∞ if
gm &= e for any m ∈ Z>0 or to be the smallest element in

A := {k ∈ Z>0 : gk = e}
if A is not empty.

Corollary 9.13. Let G be a group and suppose that |G| = m. Suppose g ∈ G
is an element of order m. Then G = 〈g〉; i.e. G is a cyclic group and g is a
generator.

Proof. Consider the elements e, g, g2, . . . , gm−1. We claim that all these ele-
ments are different. Suppose ga = gb with 0 ≤ a < b ≤ m − 1, then gb−a = e
and 0 < b − a < m which is impossible since by definition of order m is the
smallest positive integer k such that gk = 1. !
Theorem 9.14 (Fermat’s Little Theorem). If p is prime and p does not
divide a then

(9.1) ap−1 ≡ 1 (mod p).

Proof. We will work in Zp, then the assumption that p does not divide a means
that [a] &= [0] in Zp. We claim then that [a] has order p in (Zp,⊕). Certainly
p · [a] = [pa] = 0, so we need to show that if 1 < r < p then r · [a] &= [0].
Suppose r · [a] = 0 then p divides r · a but, since p is prime this means that
either p divides a, which is not possible by assumption, or p divides r, which
is impossible since 1 < r < p. Therefore such r does not exist and p is the
order of a. But if p is the order of [a] it follows from Corollary 9.13 that [a]
generates (Zp,⊕). This means that the sets

{[0], [a], [2a], [3a], . . . , [(p− 1]a]}
and

{[0], [1], [2], [3], . . . , [p− 1]}
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are equal. But then in (Z∗p,⊗):

[a]⊗ [2a]⊗ · · · ⊗ [(p− 1)a] = [1]⊗ [2]⊗ · · · ⊗ [(p− 1)]

which implies that

(1 · 2 · (p− 1)) · ap−1 ≡ 1 · 2 · (p− 1) (mod p)

and therefore
ap−1 ≡ 1 (mod p).

!
Example 9.15. Let us compute the remainder of dividing 1346 by 23. Since
23 is prime and clearly does not divide 13, we have that

1322 ≡ 1 (mod 23).

Hence
1346 ≡ 132 = 169 (mod 23).

Since 169 = 7× 23 + 8, we have that the remainder is 8.

Corollary 9.16. If p is prime and p does not divide a then

ap ≡ a (mod p).

Proof. Multiply both sides of identity (9.1) by a. !


