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Extensions of Number Fields with Wild
Ramification of Bounded Depth
Farshid Hajir and Christian Maire
Introduction

Fix a prime number p, a number field K, and a finite set S of primes of K. Let S, be the
set of all primes of K of residue characteristic p. Inside a fixed algebraic closure K of
K, let Ks be the maximal p-extension (Galois extension with pro-p Galois group) of K
unramified outside S, and put Gs = Gal(Ks/K). The study of these “fundamental groups”
is governed by a dichotomy between the tame (SNS, = @) and wild (SNS,, # @) cases.

One feature of this dichotomy is the following. In the tame case, every open
subgroup of Gs has finite abelianization (following Lubotzky, we say Gs is FAb). On the
other hand, if S, C S, then Gs has a surjection onto Z{f“ (induced by the Z,-extensions
of K), where r, is the number of imaginary places of K. (For surjections of Gs to Z, when
S CS;, see [19].) Indeed, the difference between the tame and wild cases is highlighted
by a conjecture of Fontaine and Mazur [8] which predicts that, in the tame case, Gs is
“p-adically finite,” meaning it has no infinite p-adic analytic quotients.

A second, and subtly related, feature is the following: for p € S—S,,, the filtration
D' (Ks/K,p) 2 D°(Ks/K,p) D --- of Gs by higher ramification groups at p (in the upper
numbering) has length at most 2, that is, D'(Ks/K,p) vanishes, whereas in the case of
wild ramification in an infinite p-extension, it is often the case that the higher ramifica-
tion groups of all indices are nontrivial; the latter condition is called “deeply ramified,”

[5], the archetypal example being a Z,-extension.
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In this paper, we study a generalization of tame extensions, namely towers with
wild ramification of bounded “depth.” To be precise, let v : S — [0, 0], sending p to vy,
be an arbitrary map (which will serve to limit the depth of ramification). Now define the
group Gs - as the quotient of Gs by the closed normal subgroup generated by all higher
ramification groups DV» (Ks/K,p) as p runs over S. The fixed field Ks -, of this subgroup,
with Galois group Gal(Ks /K) = Gs ., is the compositum of all finite p-extensions of K
having vanishing v,th higher ramification group at all p € S. If the image of v is simply
v(S) = {o0}, then Gs  is nothing but Gs, and much—most notably an estimate for its
relation-rank—is known about this group [10, 18, 20, 33].

The case of greatest interest for us is when v is “finite,” that is, v(S) C [0, c0).
Our philosophy is that “everything” which is true about Gs under the tame condition
(SN'S, = @) is also true about Gs - under the finiteness of depth condition (i.e., v is
finite). For example, when v is finite, Gs  is FAb. Moreover, when v is finite and Gs ~
is infinite, the number fields in the tower Ks /K form an “asymptotically good” fam-
ily (in the sense of Tsfasman and Vladut [35]), that is, the root discriminant of these
number fields remains bounded. The basic reason is that the exponent of a prime p
in the relative discriminant of /K, where L is contained in Ks, is a sum of orders of
ramification groups and therefore grows linearly in [L : K]. An explicit bound is given
in Section 4; a similar idea for function fields appears in Perret [23], (cf. our Remarks
3.6 and 4.3). Another perspective is that the fields in Ks /K have bounded conductor
when v is finite; see, for example, Shirai [34]. For applications of asymptotically good
families in the number field and function field settings, see [1, 13, 14, 15] and espe-
cially [35].

We investigate the group Gs . via generators and relations. While calculating
its generator-rank d(Gs ) = dimg, H' (Gs,v,F,) reduces to a standard calculation in
class field theory, estimating the relation-rank r(Gs v) = dimg, H*(Gs +,F,) presents an
essential technical difficulty we have not been able to overcome. This is explained in
Section 5.

We are, however, able to make certain interesting observations regarding the
relation-rank of Gs .. First, there are nontrivial cases (i.e., where v, > 2 for some
p € SNS;,) where Gs - is finite, and, of course, Gs can also be infinite since already
Gy can be infinite. However, it is not known whether, for finite v, Gs - is even finitely
presentable (has finite relation-rank), though, according to the philosophy explained
above, we suspect this is so. Our main result here is the construction (using results of
Wingberg and Gordeev) of a family of examples with infinite v and p = 2 achieving
1(Gs ~) = oo. These examples allow us to show that for fixed S and growing, but finite,

v, the relation-rank can become arbitrarily large.
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In the final part of the paper, further questions about the structure of Gs - are
discussed, especially as regards p-adic representations of these groups. We first examine
the tamely ramified case. Consider an irreducible p-adic representation p of Gal(K/K)
which factors through Gs, where SN S, = @. A theorem of Grothendieck ensures that p
is potentially semistable. Fontaine and Mazur [8] conjecture that potentially semistable
Galois representations unramified outside a finite set of places, such as our p, must
arise from the action of the absolute Galois group of K on a subquotient of the étale
cohomology of some algebraic variety over K; algebro-geometric considerations then
imply that p has finite image. This is how Fontaine and Mazur arrive at the prediction
that the tame groups Gs are p-adically finite (since all finitely generated p-adic analytic
groups are linear over Z,).

Our philosophy that the structure of Galois groups with wild ramification of
bounded depth mirrors that of the tame case led us to the suspicion that p-adic rep-
resentations which vanish at all higher ramification groups of some fixed finite depth
should be potentially semistable. Moreover, following Fontaine and Mazur, we would
also expect that, when v is finite, Gs y is p-adically finite. The relevance of a theorem
of Coates and Greenberg (based on an important result of Sen) for these questions was
pointed out to us by Schmidt [27], whom we thank. Namely, if (S,v) is a finitely indexed
setforK, and L/Kis a subextension of Ks /K, with p-adic analytic Galois group Gal(L/K),
then L/K is potentially tamely ramified, that is, there exists a finite Galois extension K’/K
with K’ C L such that L/K’ is tamely ramified.

Three immediate corollaries are: (1) a generalization of Grothendieck’s theorem,
namely: every p-adic representation of Gal(K/K) factoring through Gs  (with v finite)
is potentially semistable; (2) the Fontaine-Mazur conjecture implies that for finite v, the
groups Gs v are p-adically finite; and (3) the Fontaine-Mazur conjecture also implies that
if L/K is a Galois extension with infinite p-adic analytic Galois group Gal(L/K), then L/K
is either ramified at infinitely many primes, or it is deeply ramified at some prime p of
residue characteristic p, meaning the ramification groups of all indices are nontrivial.
Examples of extensions with p-adic analytic Galois group ramified at infinitely many
primes were recently constructed by Ramakrishna [24].

It is worth noting that in case L /K is ramified at infinitely many primes, a simple
calculation yields that the root discriminants of the fields in this extension tend to infin-
ity. It is natural to ask, then, if the same is true when L /K is infinitely ramified in the other
sense, that is, is deeply ramified. We answer this question in the affirmative in Section 4.
Thanks to the results described in the preceding paragraph and the fact that tame exten-
sions are asymptotically good, one can then reformulate the Fontaine-Mazur conjecture

as follows: if K is a number field and L/K is a Galois extension such that Gal(L/K) is



670 F. Hajir and C. Maire

an infinite p-adic analytic group, then L/K is asymptotically bad. In this way, one can
interpret the conjecture as a statement about the growth rate of the index of the nth
higher ramification groups inside deeply ramified p-adic analytic p-extensions. A more
far-reaching related question suggested by the extension of Grothendieck’s semistabil-
ity theorem to the finite-depth case is to investigate the possibility of characterizing
semistable p-adic representations in terms of the growth rate of the index of the corre-
sponding higher ramification groups.

In Section 7, we give some examples where we are able to check that Gs - is p-
adically finite without having to assume the tamely ramified Fontaine-Mazur conjecture.
(But we are not able to check whether these Gs - are actually infinite!)

Since much of our discussion holds in the context of all algebraic extensions, not
just p-extensions, we should explain that we have restricted ourselves to p-extensions
here partly to fixideas, but also partly because, for number fields, even the tame situation
is not well understood in the more general setting. For example, it is not known whether
the Galois group over K of the maximal algebraic extension of K unramified outside a
finite set S is finitely generated or not.

The organization of the paper is as follows. The first two sections comprise a
preliminary chapter of definitions and properties of ramification groups. We define the
extensions of interest to us in Section 3, and calculate the behavior of root discrim-
inants in them in Section 4. In Section 5, we use theorems of Gordeev and Wingberg
to explore the structure of the groups Gs . In particular, we pinpoint a difficulty in
directly extending the method for calculating the relation rank of Gs to that of Gs v,
and we construct a family of Gs. with infinite v which are not finitely presentable;
this furnishes examples of growing but finite v, for a fixed S, for which the relation
rank (and partial Euler characteristic r — d) of Gs. tend to infinity. Sections 6 and
7 are concerned with p-adic representations of Gs . ; in particular, we state an exten-
sion of [8, Conjecture 5a], for which we give some supporting evidence (Corollaries 7.9
and 7.10).

Part 1. Preliminaries

1 The setup

Let p be a prime number. Consider a number field K, a finite set S of primes of K equipped
with an indexing function v : S — [0, oo] sending p to v,; we will call the pair (S,v) an
indexed set for K. If v(S) C [0, o), we will call (S,v) a finitely indexed set, or simply say

that v is finite. Sometimes it will be convenient to extend v to all places of K by setting
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vy =0forp ¢ S.If v, = oo for all p € SN S, then the pair (S,v) can be abbreviated

by S.

We fix once and for all an algebraic closure K; an “extension of K” will mean

a subfield of this fixed algebraic closure. Let p be a prime ideal of K. We will use the

following notations:

groups

S, is the set of primes of K of residue characteristic p; S—S, means S—(SNS,,).

K, is the completion of K at p;

O, is the ring of integers of K;

U, is the group of units of O;

UM =fuel, [u—1eptfori>o; U =uy,;ul =

Jk is the group of idéles of K;

Ug = Hpes Uy Us v = Hp Ugv”) ; these products are extended over the infinite
places p as well, where, for such a place, U, = U,(JO) =K}

K is the maximal p-extension of K, with Galois group § = Gal(K/K);

ﬁp is the maximal p-extension of K, in a fixed Galois closure K, of K,, with
Galois group D, = Gal(ﬁp/Kp);

Ns - is the closed normal subgroup of § generated by all higher ramification
groups DV» (ﬁ/K,p) for all K-primes p;

Gs~ = §/Ns = Gal(Ks ~/K) is the Galois group of the maximal p-extension
of K unramified outside S and with ramification of depth at most v, for
peS;

d(G) = p-rkG = dimy, G/[G, G]GP is the p-rank of a group G;

for a pro-p group, r(G) = dimg, H?(G,F,) is the minimal number of relations
for defining G as a pro-p group;

ds~ =d(Gs~),rsv =7(Gs~);

(p is a primitive pth root of unity;

b, = 1if K, contains (;, 0 otherwise;

5(p,vy) =11if ¢, € Uff"’) , 0 otherwise;

bk = 1if K contains ¢, 0 otherwise;

8s = 0 unless 0k = 1 and S is empty, in which case, 65 = 1.

Let S’ be another finite set of prime ideals of K. For later use, we introduce the

A ={x € K*| (x) is a pth power in the group of fractional ideals of K}
As ={x € A| x e K vp € S)/K*T;

Asy={xeA| xe KU vp e S)/K<P;

AY ={x € K*| x € UK}V finite primes p ¢ S’ and x € K} vp € S}/K*P.

Using Kummer theory, we have the following proposition.
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Proposition 1.1. Suppose ¢, € K. Then,

(1) If S, C S, then p-rk(As) = p-rk(Cl¥'"), where CI3'" is the S-class group of K
in the narrow sense.

(2) IfS'US =S, then p-rk(A$') = p-rk(G$,), where G3, is the Galois group over
K of the maximal p-extension of K, unramified outside S’ in the narrow sense, in which

S splits completely. O

2 Higher ramification groups

For the convenience of the reader, we collect here some definitions and standard prop-
erties of higher ramification groups. The reader is invited to consult this section only as

needed, and is referred to Serre [30] for more details.

2.1 Ramification groups with lower numbering

Consider a finite Galois extension L/K of number fields and a prime 3 of L lying over p
of K.

Definition 2.1. The decomposition group D(L/K,B) C Gal(L/K) of L/K at P is the sta-
bilizer of ‘p and can be identified with the local Galois group D(/p) = Gal(Lyp/K,).

For x > —1, we define the higher ramification group of index x in the lower numbering

Dx(L/K,P) € D(B/p) by
Dy (L/K,B) = {o € D(B/p) | vp(o(a) — ) > x+1,Yor € O }. (2.1)

In the sequel, we will sometimes abbreviate the data (L/K,J3) as (B/p), for instance
D, (B/p) in place of D«(L/K,B), and so forth. Note that the ramification groups of
index —1, 0 are the decomposition and inertia groups of L/K at 3, respectively. The
higher ramification groups give a finite decreasing filtration of the decomposition group
D« (L/K,B) C Dy (L/K,PB), for x >y and D« (L/K, ) = {1} for all large enough x.

2.2 Ramification groups with upper numbering

Consider the map ¢ = @,k = @/, from [—1,00) to [-1,00) defined as follows: for
—1<u<0, o(u) =u;foru>0,let m = |u| and put

<p(u)=$(g1 oot gm + (W= M)gmy1), (2.2)
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where g; = |Di(L/K,B)|; in particular, for integral u, we have

] w
Q(u) =1+ &;)91- (2.3)

Proposition 2.2. The function ¢ is continuous, piecewise linear, strictly increasing, con-

cave, and satisfies ¢(0) =0, ¢(x) < x. O
Let p =Y /k,p =WPp/p : [-1,00) = [-1,00) be the inverse of ¢.

Proposition 2.3. The map 1 is continuous, piecewise linear, strictly increasing, convex,

and satisfies P(0) = 0, (y) > y. If n is an integer, then 1 (n) is an integer. O

Definition 2.4. We define the ramification group of indexy > —1 in the upper numbering
by DY(L/K, ) = Dy y) (L/K,B).

Remark 2.5. We note that D, (L/K, ) = D™ (L/K,B), DY(L/K,R) C Dy (L/K,*R), and for
y > z, DY(L/K,B) C D*(L/K,B). The ramification groups of PB°, o € Gal(L/K), are the
conjugates by o of the ramification groups for 8. We let D (L/K,p)(DY(L/K,p)) denote
the conjugacy class in Gal(L/K) of D (L/K, ) (D¥(L/X,RB)).

Now consider the behavior of these groups in a tower L’/L/K where L’/K and L/K

are finite Galois extensions, 3’ is a prime of L’ lying over 3 of L and p of K.

Proposition 2.6. One has
(1) @pr/p = @p/p © Ppryp, ADA Yy = Yoy © Vo3
(2) Dx(P'/PB) = Dx(B'/p) N Gal(L'/L);
(3) D¥(B/p) =DV (P'/p)D(B'/B)/D (P’'/P); in other words, DY (PB/p) is the image
of DY(’/p) in Gal(L/K) under the restriction map. O

The groups in the lower numbering behave well under taking subgroups, whereas the
groups in the upper numbering behave well under taking quotients. As noted in [30], the
restriction property allows one to define the ramification groups DY (L/K,3) with upper
numbering for all profinite extensions L/K. We now list some simple consequences of

the above proposition, which we will use later.

Proposition 2.7. (1) If PB/p is unramified, then DY (B/p) = DY (P’ /P).

(2) If DY(B’/PB) and DY (P/p) are trivial, then DY (P’ /p) is also trivial.

(3) If L” is a Galois extension of K such that LL” = L', and DY (B/p) = DY(P"/p) =
{1}, where " =P’ NL", then DY(P'/p) = {1} a
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Proof. (1) As PB/p is unramified, the lower numbering ramification groups of B’/ are

the same as those of 3’/p. The map Py, is then the same as Py /5. Then one has

DY(P'/p) =Dy, ) (F'/P) =Dy i) (B'/0)

(2.4)
=Dy, ) (B'/B) =DY(B'/R).

(2) The restriction property shows that DY(P’'/p) < Gal(L’/L). Moreover
DY(B'/p) =Dy, ) (B'/p). Now using the transitivity of  and other elementary prop-
erties, we have Dy (B’ /p) C Dyyrv) (B’/p). Thus,

Dy, ) (B'/p) € Gal(L'/L) N Dy, o) (B'/P)

(2.5)
=Dy ) (B'/B) = DY(P'/B).
Now we are done, since DY (B’ /P) is trivial.
(3) Follows easily from the restriction property. [ |

Proposition 2.8. Suppose L/K is a finite p-extension.

(1) If p has residue characteristic £ # p, DY(3/p) vanishes for all y > 0.

(2) If p has residue characteristic p, and DY (3/p) vanishes for some y < 1, then
P/p is unramified. O

Proof. (1) Since x = VPg,,(y) > 0, we have DY(B/p) = D« (B/p) = D1(P/p). Since L/K
is a p-extension, P /p is at most tamely ramified and the wild inertia group D;(B/p) is
trivial.
(2) We claim that x := g, (1) = 1. We already know that x is a positive integer.
We show that x < 1. We have
g1+ -+ 9x

1= gyl = S0 (2.6)

where g; = [Di(B/p)|. As Do(B/p)/D1(B/p) is trivial, go = g;. One obtains

T+— <1, (2.7)
and so x = 1. Now we see that if y < 1, then

D (‘B/P) = Dll’cp/pﬂ) (m/P) - Dll)sp/p(y) (%/P) =DV (ip/p) = {]}> (28)

and this implies the triviality of D (3/p) because this is a p-group and Do (3/p)/D1 (/)

has order prime to p. |



Wild Ramification of Bounded Depth 675
Remark 2.9. If B has residue characteristic p, then Py, (y) =y fory € [0, 1].

Proposition 2.10. Suppose that L/K is an abelian extension. Then D, (3/p) vanishes if
and only if D' (/p) does. O

Proof. One direction is trivial because D' (33/p) € D1(/p). We know that the image of
principal units under the local reciprocity map generates D' (8/p). Thus, if this group
is trivial, by using the structure of the group of local units we deduce the fact that the
inertia group has order prime to the residue characteristic of p, and then D;(B/p) is

trivial. [ |

Proposition 2.11. Suppose that DY(B’/p) = {1} for some y. Then D=*(P’'/P) = {1} for
z=Vgp/p(Y) O

Proof. One has

D(B'/%F) = Dy, (o) (B'/F) = Dy, L0 (B/P)
=Dy, (B'/p) N Gal(L'/L)
=DY(P'/p) N Gal(L'/L)
={1%

(2.9)

Part 2. Wild ramification of bounded depth

3 Definition and simple properties of towers
with bounded ramification

Let S be a finite set of primes of K, equipped with a map v: S — [0, o] sending p to v,.

Definition 3.1. Suppose that L/K is a finite Galois extension and p is a prime of K. We say
that the ramification of L/K at p is of depth at most y if DY (3/p) vanishes for all primes
P of L lying over p.

The ramification of L/K at p is of depth at most 0 (at most 1) means that p is unramified

(at most tamely ramified) in L/K.

Definition 3.2. Let Ks  be the compositum, inside our fixed algebraic closure of K, of all
finite p-extensions L of K which are unramified outside S and have the further property
that, for every p € S, the ramification of L/K at p is of depth at most v,. Note that the
infinite places of K are required to split completely in Ks -,. Let Gs = Gal(Ks ~/K).
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By Proposition 2.7, Ks ,, is the maximal p-extension of K unramified outside S
and ramified to depth at most v, for every p € S. If Ks is the maximal p-extension of
K unramified outside S, then Ks . is the fixed field corresponding to the closed normal
subgroup of Gs = Gal(Ks/K) generated by all DV» (Ks /K, p). If v vanishes identically, then
Ks ~ is simply the Hilbert p-class field tower of K. By Proposition 2.8, we may assume,
without loss of generality, that

peES—S, =v, =1, peESNS, = v, > 1. (3.1)

Example 3.3. Take K=Q, S = {p}. Then Gs ~ Z,,. For any finite indexing v of S, we have
Gs ~ finite with vanishing Euler characteristic.

Definition 3.4. Suppose that L/K is a finite extension contained in Ks.. We lift the
indexed set (S,v) of K to an indexed set (S,v)L = (S(L),v(L)) of L as follows:

S(L) = {P C O | P divides pO forsome p € S},  v(L)g =Py /p(vp). (3.2)

Note that for a tower F/L/K, the indexed sets (S,v)r and (S(L),v(L))r coincide, thanks to
the transitivity of .
Suppose that v is finite, and K; is the maximal abelian extension of K contained

in Ks - ; this is the field associated by class field theory to the idéle subgroup

Usy = Ju, [Tup™. (3.3)

pés peSs

Thus, K; is the ray class field of K modulo ms , = [],.s p/**1; in particular, K; /K is finite.

To simplify notation, we write (S(1),v(1)) for (S(K;1),v(K1)). Define inductively a
tower of finite abelian extensions as follows: K, ;1 is the maximal abelian extension of
K, contained in Ks(m)vn) and (S(n+1),v(n+ 1)) is the lift of (S(n),v(n)) to K, 1. Let

Ke = UnKy. By maximality for each step, K, /K is a Galois pro-p extension.

Theorem 3.5. Suppose that (S,v) is a finitely indexed set for K. With notations as above,
one has
(1) Koo = Ks v;
(2) if K/Ko is a Galois extension such that (S,v) is Gal(K/Ky)-stable, then all
K. /Ko, and Ks /Ko, are Galois extensions;
(3) if L/K is a finite Galois extension contained in Ks -, then Ks v = Ls(1) v (1);

(4) the open subgroups of Gs - have finite abelianization, that is, Gs  is FAb. O
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Proof. (1) For p € S, choose a compatible system PB,, € S(n), lying over p. Recall that
Vn(L)g,, =Wy, /p(vp). To increase the readability of what follows, we use the temporary
notation D[j](B/p) = D’ (P/p) and D{j}(P/p) = D;(B/p) for the upper and lower ramifi-
cation groups, respectively. Consider a positive integer n such that K,, C Ks , (this is
the case for n = 1). We calculate

D[V} (Br+1/p) N Gal (Kni1/Kn) = D{bg,,,/p(vp)} (Bnr1/p) N Gal (Kni1/Kn)
= D{l-l)(’p'1+1 /P (VP)} (mn+1 /%n)
= D{ll)‘anrl /‘Bn (ll)mn/lj (’Vp)) } (‘Bﬂ+1 /‘BTL)
=D [y, /p(vp)] (Brns1/Pn)
={1}.
(3.4)
But, by the restriction property of higher ramification groups, and the fact that
D[v,]|(Bn/p) vanishes, D[v,](PBns+1/p) C Gal(Kny1/Ky), hence is trivial. By induction,
Koo C KS,v~
To show the reverse inclusion, it suffices to show that if L is a finite abelian

p-extension of K;, (for an arbitrary n) which is Galois over K and contained in Ks -, then
L C Knt1. If B is a prime of L dividing P, we have

Dv(D)p, ] (B/Fn) = D[, /p(ve)] (B/%n)
=D{Uyp/p, oWy, /p(Vp) H(B/PBn)
=D {Wgp,p(vp) }(B/p) N Gal (L/Kn) (3.5)
=D[v,](B/p)
={1}.

By the maximality of Ky 1/Ky, we then have L C K41, completing the proof of (1).
(2) The proof is clear.
(3) Proposition 2.11 gives Ks C Lg(1) (1) - We show the reverse inclusion. Let

(Ln),, be the sequence of maximal abelian extensions giving UL, = Lg(1) ). Put L’ =
L, for an arbitrary fixed n. By (2), L’/K is Galois. One gets

{1} =D [v(L)p] (B'/B) = D{bg p(v(L)gp)} (B'/B)
=D{Wp/p(vp) } (B'/PB)
= D{Wg/p(vp) } (B'/p) N Gal (L'/1)
= D[v,](B'/p) N Gal (L'/L).
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Moreover, D[v,](B/p) = {1}, and so D[v,](B’/p) C Gal(L’/L). In conclusion D[v,](B'/p) =
{1}, and L, =L’ C Ks ~.

(4) If H is an open subgroup of Gs v, its fixed field L is a finite extension of K,
and the abelianization of H = Gg() () is isomorphic to a ray class group with finite

conductor, hence is finite. [ |

Remark 3.6. (1) The naive lift of v from K to L, namely 8 — ~v,, (for a prime ‘P of L lying
over p of K) would lead to examples where Ls1)~ 1) # Ks,. Here is a simple example
forp =2:let K=Q, L = Q(v/3), and F = K(v/2). We let i3, p be the unique primes of F, L,
respectively, dividing 2. One checks that D3(3/2) vanishes but that D3(3/p) does not.

(2) We should remark that the towers (of function fields) constructed in
Perret [23] are based on this naive lift of (S,v). They are contained in Ks ~, by Proposition
2.7, and, thanks to Hasse-Arf, have a slightly lower root discriminant bound than the
tower Ks ~ /K, (cf. Remark 4.3). The Galois group of Perret’'s tower, however, being less
natural, is probably very difficult to study. For example, Neiderreiter and Xing [21] have
shown that the relation-rank estimate conjectured by Perret is not correct, at least for
function fields over F5.

(3) By Theorem 3.5, the fields K;, are simply the fields fixed by the “commutator
series” of Gs . Also, K = the maximal unramified p-extension of K, is contained in Ks -,

for an arbitrary (S,v).

We conclude this section with a calculation of the generator rank of Gs . By the
Burnside basis theorem, this reduces to calculating the p-rank of its maximal abelian
quotient, which can be expressed, by class field theory, as the p-rank of an appropriate
ray class group. The reduction to abelian extensions also allows us to assume, without
loss of generality, that v takes integer values (thanks to Hasse-Arf). We also note that

if ming,es v, is large enough, then p-rk(Gs ) = p-rk(Gs).

Theorem 3.7. The generator-rank ds -, of Gs is the p-rank of the ray class group Clk m

of conductorm =[], ¢ plVel. It satisfies

u
ds ~ =p-rkAs v — p-rkEx + p-rk 2 5
Us U,
um (3.7)
=p-tkAs v —p-rkEx + Z dp + Z p-rk (i,,) .
peS—S, peESNS, up
O

Proof. Themain observation, as mentioned above, is that the fixed field K; of (the closure

of) the commutator subgroup [Gs ~, Gs ] is the field associated by class field theory to
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the idele subgroup
Usv = [Tus JTud™ . (3.8)
peS peS

Werecall that we defined certain number groups As -, in Section 1. We leave to the reader

the verification of the exactness of the sequence

Ug, Ik N |
Wls,  KUs,Jp KUY

11— Asy — Ay — — 1. (3.9)

Note that Jx/K*UgpJy = Clk /Clg. Moreover, it is easy to establish that p-rkA, =
p-rk Clk +p-rkEy, using the obvious map from Ay to the ideal classes killed by p. Putting

all of this together, we obtain the desired formula. |

Corollary 3.8. The generator rank ds of Gg satisfies

ds =p-rkAs —prkEx + Y 8+ Y prkuf. (3.10)
peS—S, peSNS, O
Proof. Forp € S, take v, = co. This is the well-known formula of Shafarevich [33]. W

4 Behavior of the root discriminant
4.1 Extensions of bounded depth

We now suppose that we have a finitely indexed set (S,v) of K. We will give an upper

bound for the root discriminant of the number fields in the tower Ks - /K.

Definition 4.1. Let K be a number field of degree n, and discriminant disckx. The root

discriminant rdg of K is defined by
rdg = |disck |'/™. (4.1)

Theorem 4.2. In the p-extension Ks - /K, the root discriminant is bounded. More pre-

cisely, if L is a finite extension of K contained in Ks -, then

1/[K:Q 1)/[K:Q
I'dL < I‘dK H (NK/QP) [ ] H (NK/QP)(VFJF 4 ] (42)
peES—S, peESNS, O
Proof. It suffices to consider K C L C Ks, such that L/K is Galois. Fix one of the 7,
primes P of L dividing p € S; since L/K is Galois, the ramification index ey, = e, and

residue degree fy;, = f, depend only on p. Let @ = @y /p, b =Py /.
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By the restriction property, DV» (/p) is trivial for all p in S; moreover, L/K is

unramified outside S. By definition,

DY*(B/p) = Dy, (B/p) ={1}. (4.3)

Let n =\(v,) and m = |n|. The PB-valuation of the relative different of L/K is given by
Hilbert's formula [30]

vp(OLk) =90+ g1+ -+ gm1—m, (4.4)

where g; = |D;j(B/p)l; note that g; = 1 for j > m. In particular, for p € S — S, the

ramification is tame, so we have

v (0 k) =ep — 1. (4.5)

From the definitions of { and ¢, one has

g1t - +gmtm—m)

vp =) = (4.6)
9o
Moreover,
V‘B(DL/K) =go+g1+ - -+gm—(m+1)
=go(vp £ 1) —(m+1) —(n—m)
(4.7)
=go(vp+1)—(n+1)
< (ep—=T)(vp +1),
since go = e, and v, = p(n) < n.
Putting the local data together and recalling that e,f,r, = [L: K], we have
Nijgdik <N [ el Dfme JT ptetDlerDiem
S-S, SNS,
pe pesSn (48)
<Ny/g H p(171/ep)[L:K] H p(vp+1)(171/ep)[L:K] _
pPES—Sp peESNS,
But [L: K] =[L:Q]/[K:Q] and
1/[L:
rd; =rdy Ny g (01) /"7, (4.9)

so we are done. [ |
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Remark 4.3. For the analogue of Perret's tower in the number field case, one has the

following root discriminant bound:

v K:
I‘d[_ < I'dK H (NK/QP)( v1/KQ) . (410)
peS

The details, which are essentially in [23], are left to the reader.

4.2 Deeply ramified extensions

Theorem 4.4. Suppose that K is a number field and L/K is a deeply ramified Galois
extension, that is, for some prime p of K, the higher ramification groups at p of all
indices are nontrivial. Then L/K is asymptotically bad, that is, there is a sequence of

finite subextensions of L /K with root discriminant tending to infinity. O

Proof. Let ‘P be a prime of L above p, a deeply ramified prime. We may choose a sequence
of finite normal extensions F, /K inside L such that (i) UF,, = L (so [F,, : K] — o0), and
(ii) for all integers c, there is an integer n such that D¢(F,, /K, ), the upper numbering
ramification group of index c at P, = P N F,, for Gal(F,/K), is nontrivial. We will show
that the root discriminant of F,, goes to infinity with n.

As in the proof of Theorem 4.2, we have

1/[K:Q]
I‘an = I‘dK (HNK/QC]T(F“/K‘CI)> . (411)

q

Here, the product is over primes q of K, and 7 is defined by t(F../K, q) = va(0r, /x)/eq/q,
where 9 is an arbitrary prime of F,, over q, and ey /4 is the ramification index of Q/q. It
suffices to show, therefore, that t(F, /K, p) goes to infinity with n.

Let c be a positive integer, and choose a corresponding n such that D¢ (F,, /K, B,)
is nontrivial. Let z,, be the largest integer j such that the lower numbering group
D;(Fn/K,Bn) is nontrivial. Recall Hilbert's formula, vy, (¢, /xk) = do + -+ + 92, — zn —
1 (where g; = |Di(Fn/K,PBn)l), and the definition of ¢g, ,o(zn) = (91 + -+ + 92,.)/90
(cf. Section 2). These give

(zn +1)

T(Fn/K,p) =14 @, /p(zn) — BT (4.12)

Recall that we have arranged D°(Fn/K,PBn) = Dy, () (Fn/K,Pn) to be non-
trivial. Since c is an integer, Py, /p(c) is an integer also (Proposition 2.2). By definition

of z,, wehave g, /,(c) < zn. Now we apply ¢ to this inequality to obtain @y /,(zn) > c.
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On the other hand, we have z,/go = zn/egp, /p < €p/p/(P — 1) (see Serre [30, Chapter IV,
Section 2, Exercise 3]).

Summarizing the argument, we have shown that for all integers c, there is an
integer n such that t(F,,/K,p) > ¢ — [K: Q], so t(F,,/K, p) tends to infinity. [ |

5 The relation-rank of Gs and Gs -

We put
Ts = diIIl[Fp Hz(Gs,Fp), Ts v = dime HZ(GSN,]FD), (5.1)

for the relation-rank of Gs and Gs ., respectively. An estimate for rs was given by
Shafarevich [33] in 1963. Estimating rs, appears to be a more delicate problem. In
fact, for p = 2, using results of Gordeev and Wingberg, we can find examples, with v,
finite for some p and infinite for others, where Gs -, is not finitely presentable! The main

problem, then, is the following.

Question 5.1. (a) Do we have rs , < oo for finitely indexed sets (S,v)?

(b) If so, give an explicit upper bound rs ,, < f(S,v).

Below, we will first indicate briefly why the proof of Shafarevich does not easily gen-
eralize to our case. The main results of this section are the construction (for p = 2)
of examples with rs , = co (where (S,v) is not finitely indexed), which then leads to a
family of examples showing that rs ., can tend to infinity for finitely indexed sets (S,v),

where S is fixed, but max,cs v, tends to infinity.

5.1 Shafarevich’s relation-rank bound

We saw in Section 4 that the generator-rank of Gs. is easily recognizable as the p-
rank of a ray class group. The fundamental arithmetic result about Gs is the following
estimate for its relation-rank (rather its partial Euler characteristic rs — ds) due to
Shafarevich [33].

Theorem 5.2. One has

rs —ds < p-rkEx — 0k + 05 — Z [Kp : Qp] . (5.2)

peESNS, O

We note in passing that when S, C S, we in fact know the partial Euler

characteristic exactly: rs —ds = —(r2 + 1) where r; is the number of imaginary places of
K (cf. Haberland [11] and, for p = 2, Schmidt [26]).
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We will sketch the proof of Theorem 5.2 given by Koch (cf. [11, Appendix,
pages 89-126] and [18]), indicating a difficulty one encounters upon attempting to gen-
eralize it by replacing S with (S,v).

Recall the group of (S,v)-unit ideles is

Usv = [TUd, (5.3)
P

where we have extended v to all places by setting v, =0forp ¢ S.
The local reciprocity map p, for a local Galois extension Ly /K, is defined for

Ly N Kgb, that is, on D(B/p)/[D (B/p), D (P/p)]. Moreover, by the restriction property of

higher ramification groups, we have

Vp ab _ Dve (q3/p)
D™ (Le N KG™/Ke) = B3 /8 A D (1/p). DR (5.4)

Also, p, (U,(;"“)) =D"r(Lp N KgP/K,); this gives the correspondence between the natural
filtration of units and the higher ramification groups.
Since D(B/p)/D°(B/p) is cyclic, we have

[D(B/p), D(B/p)] = [D(R/p), D°(B/p)]. (5.5)

This seemingly minor simplification will turn out to be quite important, as we will see
in a moment. Recall that Kg is the maximal p-extension of K unramified outside S, with
Galois group Gs = Gal(Ks/K); it will be convenient here to think of Ks as Ks ., with
v, = oo for p € S. We extend v to all places of K by v, =0forp &S.

Let G be the Galois group over K of its maximal p-extension K. We let D, be the
Galois group of the maximal p-extension ﬁp of K,.Let Ns » be the closed normal subgroup

of G generated by all higher ramification groups D;"’, as p runs over all places of K.
Definition 5.3. Let Bs ., = ker(H?(Gs ~,F,) — H?(G,Fp)).

The exact sequence
1—Nsyv—G— Gsv —1 (5.6)

gives, via Hochschild-Serre, the exact sequence

NS,’V L 9
NEYV[S)NS‘W/] 919[9)9])

«
11— Bg, —

allowing us to identify ker(«) with Bg ., the dual of Bs .
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Proposition 5.4. (1) There is a natural injection
H?(S,Fp) & @, H*(Dy, Fy), (5.8)

where the sum extends over all primes p of K. Moreover, if K contains ¢,, we can omit
an arbitrary prime p in the sum.

(2) The group D, is free (one-relator) if K, does not (does) contain (,. In other
words, p-tkH?(D,, Fp,) = 5.

(3) In the composite map
H?(Gs,v,Fp) — H*(G,F) — ®pH?(Dy, Fy) (5.9)

the image of H?(Gs +,Fyp) in @,¢sH?(Dy, Fy) is trivial. O

Proof. This is proved in [18]. For part (3), Koch treats only Gs but the same argument
applies to Gs . See also [11, Appendix, pages 89-126] and [31, 33]. [ |

We have therefore proved the following theorem.

Theorem 5.5. For a finite set S of places of K and an arbitrary indexing function v of S,

one has

TS v = p-rkHZ(GSN,Fp) < p-I‘kBsN +0s — ok + Z 5p. (5.10)
peS O

Thus, in order to complete the proof of Theorem 5.2, (or to answer Question 5.1),
it suffices to bound p-rkBs ., from above. We attempt to follow the proof given by

Shafarevich and Koch for bounding Bs by relating it to the kernel of the natural map
n:Us v /US , — T /K. (5.11)

We observe, first of all, that ker(n) is under control for arbitrary -v.

Lemma 5.6. One has

p-rkker(n) < p-rkEx + ds v + Z {[Kp : Qp] +8(p,vp)}

peSNSy
Vp #00
e (5.12)
P
— Z op — Z p-rkTp),
pesS—S, peSNS, Uy

where 6(p,v,) is 1if ¢, € Ug"’) and is 0 otherwise. O
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Proof. There is an exact sequence

— ker(n) % Ay — 1, (5.13)

where ¢ is defined as follows. We have

o uS,V N KX]?

ker(n) = (5.14)
Us

Let u € Us NK*J}; write u = x - j® with x € K*, j € Jx. We let ¢(u) be the image of
x in Ag . The kernel of ¢ is easily seen to be (Us N ug)/ugv, which is trivial when

v(S) € {0, 00}, and whose p-rank in general is bounded by

p-rkker(¢p) = Z ‘p—rk(Uf,VF) mupp>

peESNS,
N (5.15)
< Z ‘p—I‘kugJ ») = Z {[Kp :Qp] +6(p»‘vp)}'
pPESNSp PESNSp
VpF#0o Vp F#00
We now only need to apply the formula of Theorem 3.7. |
There are natural surjections
I, e» D, B D,’ A Nsy
Us ~ — — . (5.16)
1:[ Dy, Dyl N D,? 1:[ Dy, D,"] [9,Ns +]

Note that 8 is “pointing the wrong way.” In the classical case (where v, is either 0 or

00), B is an isomorphism ([D,, D,] = [D,, Dy]), so we can define a surjective global map
Us —= Ns/NE[G, Ns]. (5.17)

We then have a commutative diagram

Ns o S
B% C
N NE[G, Ns] $v[S, 9]
Jp”’ p p’ (518)
ker(n) ¢ Us . I
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where p is as defined above. As p’ is injective, there is a natural surjection p” :
ker(n) — B%. Putting this together with Theorem 5.5 and Lemma 5.6, we have proved
Theorem 5.2.

To summarize, in the general case, what is lacking is a bound for the dimen-
sion of Bs ~, for which it would suffice to have a natural map p’ : us‘v/ug‘v — Ns~/
N¢ ,[9, Ns ] with finite cokernel. The classical approach sketched above does not imme-
diately generalize because the map (3 (an isomorphism in the classical case) has infinite

kernel in general, by the following remarkable theorem of Gordeev [9].

Theorem 5.7 (see Gordeev [9]). Let K, be a finite extension of Q. Let ﬁp be the maximal
p-extension of K, and put D, = Gal(K,/K,). For finite v, > 1,

7(Dy/D,*) = dimg, H*(D,/D,"*,Fp) = oo. (5.19)

Corollary 5.8. For each K-prime p, put

D,” D,*
£ £ (5.20)

Xp=—2>* _— Yy=— P
" D, Dy’ ’ Dy, DN Dy

Let B : J[, Xy — [, Yy be the natural map appearing in (5.16). Suppose v, > 1 is finite
for some p € SN S,,. Then ker(B) is infinite. Indeed, with hypotheses as in Theorem 5.7,

p-rkX, =00,  p-rkY, < [K,: Qp] +1. (5.21)
0

Proof. Take the exact sequence
1—D,” — D, — D,/D,” — 1. (5.22)
Applying the Hochschild-Serre sequence, we get an injection

, * Dy’
(ker (HZ(DP/DPP’FP) - HZ(DP‘FP))) ¢ [Dp’D;’b](D;’p)p .

(5.23)

But D, is a p-group with p-rkH?(D,,,F,,) = 0 or 1, whereas by Theorem 5.7, Dp/D;/” has
infinite relation-rank. Thus, the p-rank of D,”/[D,, D;*](D,")" is infinite. On the other
hand, the quotient D,”/([D,, D,] N D,*(Dy*)") is the restriction of D,” to the maximal

elementary abelian p-extension of K, and so has p-rank at most [K, : Q,] + 1. |
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Remark 5.9. Note that this approach can be salvaged and a relation-rank bound can
be obtained if ker(3) and ker(A\) are commensurable. For instance, when do we have
ker(p) C ker(A)?

5.2 Not all Gs  are finitely presentable

The groups Gs - are finitely generated, so they are finitely presentable in the category
of pro-p groups if and only if they have finite Euler characteristic x,(Gs ) =Ts v —ds .
Note that, for finitely indexed (S,v), X2(Gs~) > 0 since Gs - has finite abelianization in
that case.

The main result of this part gives infinitely many examples (with p = 2, v, finite

for some p but infinite for others) for which rs , = x2(Gs ~) = 0.

Theorem 5.10. Suppose p = 2, and { is a prime with { =7 (mod 16). Put K = Q(v/—{), in
which 2 splits: 20x = pq. Choose i > 1, and definev : S = {p, q} — [0, 00] by v, =1i,vq = c0.
Then 7(Gs ) = oc0. O

Remark 5.11. (1) If we take { = 7 and v, = v, = 2, then G¢?, has order 2 hence so does
Gs; that Gs - is finite in this case can be deduced from Theorem 4.2 and discriminant
bounds as well [22]. Assuming the generalized Riemann hypothesis, the latter method
also gives the finiteness of Gs , for v, = v, = 3 (here GgybV is (2,2,2)). For v, = vq =4,
Gg}; is (4,4,2), and we do not know whether Gs - is infinite or not.

(2) Note that Gs» (with (S,v) as in Theorem 5.10) has G4, as a quotient, which

in turn has Z, as a quotient.
To prove Theorem 5.10 we have to recall a result of Wingberg [37].

Definition 5.12. Recall that D, = Gal(ﬁp/Kp) where Ep is the maximal p-extension of K,.
For a number field K, a p-extension L/K is called local (maximal local) at p if the natural

composite map
Dp——> Gal (Ly/K,) & Gal(L/K) (5.24)

is surjective (an isomorphism).

Note that if L/K is local, then for every tower L/F/K, where F/K is Galois, F/K is local.
We introduce a little more notation. For a finite set S of primes of K, let Sbe S if p > 2
and the union of S with the real infinite places of K if p = 2. Then Kg/K is the maximal

p-extension of K unramified outside S (the real infinite places are allowed to ramify in Kg
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when p = 2). Under the condition S;, C S, Wingberg characterizes those K5/K which are

of local or maximal local type (see [37, Corollary 1.5 and Theorem 1.6]).

Theorem 5.13 (see Wingberg [37]). Let S,S be as above. Let t, denote the number of
imaginary places of K. Then, K5/K is local at p € S, if and only if

{p} .
D S —dk+prkA 1= (K, Q). (5.25)
q€S—{p}

Moreover, Kg/K is maximal local at p € S, if and only if the following conditions are
satisfied:
(1)
(2) 2_qes\ip) 8 = Ok,
(3) A, =01,
(4) 2 =K, : Qp). O

If p = 2, K is totally imaginary,

Corollary 5.14. With notation as above, and p = 2, K5/K is maximal local at p € S, if
and only if
(1) Kis totally imaginary,
(2) S ={p, q} where 20k = pq, and p # q,
(3) there does not exist a quadratic extension of K unramified outside p in which
q splits,
(4) 2 =[K, : Qpl. O

Proof. Since —1 = {; € K, S —{p} must be a singleton. Moreover, by Proposition 1.1, a
quadratic extension of K, g-decomposed and unramified outside p, exists if and only if
AP #0) [ ]

We need to verify condition (3) of the above corollary for the fields appearing in
Theorem 5.10. We do so in the following proposition, which can be proved directly via
a long calculation; we will instead derive it more easily by making use of a result in a

forthcoming book of Gras [10].

Proposition 5.15. Let K = Q(v/—{) where { = 7mod 8 is a prime, 20k = pq. There exists a
quadratic extension of K, unramified outside p, in which q splits completely if and only
if { =15mod16. O

Proof. Let n be the order of p in Clk: by genus theory, n is odd. A generator o € Ok of
p" is of the form « = (a + bv/—{)/2, where a and b are odd integers. Call the nontrivial
element of Gal(K/Q) T, so that &™ = (a —bv/—{)/2, and q™ = («"). The case { =7 is easily
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checked by hand. Now suppose { > 7; then 2 is not a norm in K/Q, so n > 3. We find

a sequence of equivalent conditions as follows. [ |

Claim 5.16. For { > 7, the following are equivalent:

(1) there exists a quadratic extension of K, unramified outside p, in which g splits

completely,
(2) [Kp(vV=T, V) : K] =2,
(3) 2,a%), =1,
(4) o« = +1modp3,
(5) a? =1mod16,
(6) ¢ =15mod16. O

Proof of Claim. The equivalence of (1) and (2) is from Gras’ book (Chapter V). The Con-
ditions (3) and (4) are equivalent to o™ € K,(v/—T1), because «* is a local unit at p
(see [30] for example). Since n > 3, condition (4) is equivalent to o = 0 (mod p>) and
o+ o = +1 (modp?), that is, to a = +1 (mod8) or a> = 1mod 16. For the final step,
we want to show that this is equivalent to £ = 15mod 16. When we take the norm of 2o
4N« = a? +b%( = 2"*2 we see that 2"*? is a square mod b, and as n is odd, 2 is a square
modb. Now by the quadratic reciprocity law, 2 is a square mod b implies b = +1mod 8.
We again use the fact that n > 3: a? + b?{ = 2"*? gives a? + b?{ = 0 (mod16) or
a? + (=0 (mod 16). This concludes the proof of the claim, and of Proposition 5.15. M

Proof of Theorem 5.10. With S = {p, q}, Ks/K is maximal local at q by Proposition 5.15
and Corollary 5.14. Thus, the global Galois group Gs - is isomorphic to the local group

appearing in Gordeev's Theorem 5.7, which has infinite relation rank. [ |

5.3 Variation of rs -, for fixed S

Consider what happens as we vary v for K = Q(v—{), { =7mod 16,p=2,S =S, ={p,q}
as above. We introduce some notation. For integers i,j > 1,letvi; : S ={p,q} — [0, 00) be

defined by vi j(p) =1, vi,;(q) =j. To simplify, we write
Gij = GS,VH' (5.26)

Corollary 5.17. For fixed i, one has sup; 1(Gi ;) = sup; x2(Gi,j) = oo. O

Proof. Fix i. We have Gi . =lim Gi;. Consequently,
j

H?(Gio0, Fp) = imH?(Gy 5, Fyp). (5.27)

)
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If for some j, 1(Gi ;) = oo, then there is nothing to prove. Now suppose 1(Gi ;) < M < oo
for all j. Then H?(G; o, F}) is a direct limit of abelian groups of cardinality at most M,
hence is finite. This contradicts Theorem 5.10 (1(Gi ) = 00). The claim for sup; x2(Gi,j)
follows since p-rkG; ; < p-1kGj oo < p-tkGs < oo0. [ |

Remark 5.18. Consider Gs, the Galois group over K = Q(v/—{) (with prime { = 7mod 16)

of the maximal 2-extension unramified outside 2. Then Ggs is not analytic, since it has

nonanalytic quotients G; . Note that we have Gs = lign Gi,c0, With X2(Gi,e0) = 00, but
i

x2(Gs) = —(r2 + 1) = —2 is finite.

Part 3. The Fontaine-Mazur conjecture and p-adic representations of Gs -
6 Theorems of Sen and Coates-Greenberg

Suppose that F is a complete local field of characteristic zero with valuation v¢ and
residue field of characteristic p. Let E/F be a totally ramified Galois extension such that
G = Gal(E/F) is an infinite p-adic analytic group. The group G has two natural filtrations
given by its p-central series (G1 = G, Gj;1 = GY[G, Gj]), and the higher ramification
groups D'(E/F). It was conjectured by Serre and proven by Sen [28] that these filtrations

are closely related as follows.

Theorem 6.1 (see Sen [28]). Let F be a complete local field of characteristic zero with
residue field of characteristic p and ramification index e = v¢(p). Suppose that E/F is
a totally ramified p-extension with p-adic analytic Galois group G. Then there exists a

constant c, such that for all n > 0,

D"t (E/F) C G, C D™ ¢(E/F). (6.1)
O

The following corollary appears in the paper [5] of Coates and Greenberg
(Theorem 2.13) and was pointed out to us by Schmidt [27]. In an earlier version of this
paper, we used a slightly weaker statement along these lines to prove a weaker version

of Theorem 7.3. We reproduce the proof, since it is not long.

Corollary 6.2 (see Coates and Greenberg [5]). Suppose that Fy is a finite extension of Q,
and E/F, is a p-extension with p-adic analytic Galois group. Let F be the maximal un-
ramified p-extension of Fy contained in E/Fy. Assume that the ramification in E/Fj is of
bounded depth, that is, there exists i > 0 such that D'(E/Fy) = {1}. Then E/F is finite. In

other words, the inertia group of E/F is finite. O
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Proof. The group G = Gal(E/F) is a closed subgroup of a p-adic analytic group, hence p-
adic analytic. First note that F is a characteristic zero local field with a discrete valuation
v and a (possibly infinite) perfect residue field of characteristic p. Let F be the completion
of F at v. By restriction, Gal(Ef/?) (resp., D"(E?//F\)) is isomorphic to Gal(E/F) (resp.,
D(E/F)). As F/F, is unramified, the groups D'(E/Fy) and D'(E/F) are the same, and by
assumption, they vanish. By Theorem 6.1 applied to the totally ramified extension Ef/?,

there exists a constant ¢ such that
D"e+¢(EF/F) C Gal(EF/F), C D™ °(EF/F). (6.2)

Put m = [(i+c)/e] and j = me — c. Then j > i, so DI(EF/F) is trivial, hence G,, (the
mth term of the central p-series of G ~ Gal(E?/f)) is trivial as well. Thus, Gal(E/F) is
finite. [ |

7 The Fontaine-Mazur conjecture

We call a finitely generated pro-p group G p-adically finite if it has no infinite p-adic
analytic quotients. In other words, all p-adic representations of G into GL,(Q,) have

finite image. Recall the Fontaine-Mazur conjecture.

Conjecture 7.1 (see [8, Conjecture 5a]). Let K be a number field, S a finite set of places

of K disjoint from S,,. Then Gg is p-adically finite. O

For partial corroboration of this conjecture, see Boston [2, 3, 4] and Hajir [12].
Conjecture 7.1 comes about as a consequence of Fontaine and Mazur's vast program
for characterizing the p-adic Galois representations which “come from algebraic geom-
etry,” meaning those isomorphic to a subquotient of the action of Gal(K/K) on an étale
cohomology group HZ (X, Q@ (7)), where X is a smooth projective variety over K. They
call an irreducible p-adic representation of Gal(K/K) “geometric” if it satisfies two con-
ditions: (1) it is unramified outside a finite set of places of K, and (2) its restriction
to every decomposition group is potentially semistable. Their main conjecture, then,
is that an irreducible p-adic representation is geometric if and only if it comes from
algebraic geometry. One direction of this conjecture (“algebro-geometric representations
are potentially semistable”) has a much longer history, and is now established (see, for
example, Tsuji [36]).

By a theorem of Grothendieck (cf. appendix of [32]), a tamely ramified p-adic
representation is always potentially semistable. Thus, when SN S, = @, every p-adic

representation p of Gs should come from algebraic geometry; algebro-geometric
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considerations (see [8, 29]) then imply that p has finite image. This is equivalent to
the tamely ramified Fontaine-Mazur Conjecture, that is, Conjecture 7.1.
Following the philosophy outlined in the introduction, we can formulate the

following extension of that conjecture to the case of wild ramification of finite depth.
Conjecture 7.2. If (S,v) is a finitely indexed set, then Gs - is p-adically finite. O

As was pointed out to us by Schmidt, the Coates-Greenberg corollary to Sen's

theorem has the following consequence.

Theorem 7.3. Suppose that (S,v) is a finitely indexed set for K. Let L/K be a Galois
subextension of Ks /K such that the Galois group Gal(L/K) is p-adic analytic. Then L/K
is potentially tamely ramified. O

Proof. By Corollary 6.2, for all places ‘B of L dividing p € SN S,, the inertia group
DO(L/K,*B) is finite. Hence L/K is potentially tamely ramified: there exists a number
field K’ in L/K such that L /K’ is unramified at all places above p. [ |

We have three immediate corollaries.

Corollary 7.4. If v is finite, every p-adic representation of Gal(K/K) factoring through

Gs v is potentially semistable. O

Proof. Via a finite base change, we pass to a tamely ramified extension and apply
Grothendieck’s theorem. |

As a consequence, p-adic representations of Gal(K/K) factoring through Gs - (when v is

finite) should come from algebraic geometry.
Corollary 7.5. Conjecture 7.1 implies Conjecture 7.2. O

Proof. Let L/K be a Galois subextension of Ks /K such that the Galois group Gal(L/K)
is p-adic analytic. There exists a number field K’ in L /K such that L /K’ is unramified at
all places above p. Moreover Gal(L/K’) is p-adic analytic and so Conjecture 7.1 implies
the finiteness of L/K’, and thus of L/K. [ |

Corollary 7.6. Assume Conjecture 7.1. If L /K is an infinite Galois extension with p-adic
analytic Galois group Gal(L/K), then either infinitely many primes of K ramify in L, or

L/K is deeply ramified at some prime p € S,. d

Proof. If L /K were ramified at only a finite set of places S of K, and the ramification were
of bounded depth, then [/K is finite by Corollary 7.5. |

Thus, the Fontaine-Mazur conjecture implies that infinite p-adic analytic extensions
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of number fields are infinitely ramified, either horizontally or vertically, so to speak.
Only recently have p-adic Lie extensions with infinitely many ramified primes been
constructed: see the work of Ramakrishna, Khare, and Rajan [16, 17, 24]. Recalling

Theorem 4.4, we can reformulate The Fontaine-Mazur Conjecture as follows.

Corollary 7.7. Conjecture 7.1 is equivalent to the following statement: an infinite p-adic

analytic extension of a number field is asymptotically bad. O

Proof. Suppose K is a number field and L/K is an infinite p-adic analytic extension;
if we admit Fontaine-Mazur, then, by Corollary 7.6, L/K is either ramified at infinitely
many primes (in which case it is easy to see that it is asymptotically bad) or it is
deeply ramified (in which case it is asymptotically bad by Theorem 4.4). On the other
hand, supposing that every p-adic analytic extension of K is asymptotically bad, and
knowing (Theorem 4.2) that an infinite tame extension unramified outside a finite set of
primes is asymptotically good, we would conclude that K admits no infinite analytic tame

extensions unramified outside a finite set of primes. |

In the remainder of this section, we give a criterion for (S,v) to satisfy
Conjecture 7.2, and provide two kinds of unconditional examples where this criterion,
and therefore Conjecture 7.2, hold. The main tool, once again, is Wingberg's study of

local and global groups.

Theorem 7.8. If Ks /K is of local type at some p € SN S,,, and v is finite, then Gs - is
p-adically finite. O

Proof. Consider a Galois extension F of K contained in Ks., such that Gal(F/K) is
p-adic analytic. By the remark following Definition 5.12, one has Gal(F/K) ~ Gal(Fy/K,).
By Corollary 6.2, the inertia group D°(F/K,P) is finite. Letting M be the subfield of F/K

fixed by D°(F/K, ), the Galois group Gal(M/K) is isomorphic to Gal(Fy/K,)/D°(F/K,B),

ab
S,v»

conductor, hence of finite degree over K. Therefore, M /K is finite, and so is F/K. |

which is abelian. In particular, M is a subfield of K which is a ray class field of finite

Now we will give two immediate applications of Theorem 7.8 and Wingberg's
Theorem 5.13, which provide examples where Conjecture 7.2 holds. Note that we do not
use Conjecture 7.1 in these examples, but by the same token, we do not know whether
the groups Gs - in question are infinite; thus, it is not yet clear whether these examples

represent nontrivial evidence for Conjecture 7.2.

Corollary 7.9. Consider the situation of Theorem 5.10: p = 2, K = Q(v/—{), { = 7mod 16
is prime, 20k = pq. Take 0 < i,j < o0, S = {p,q}, and put v; ;(p) = i, vij(q) = j. Then
Gs,v, ; is 2-adically finite. (For large i,j, Gs v, ; is a group with three generators). O
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Corollary 7.10. Let p be an odd regular prime, and put K = Q(¢,). One has the factor-
ization: pOx = pP~'. Let 0 < i < 0o, S = {p} and v; defined by v;(p) = i. Then the group
Gs,v; is p-adically finite. (For large i, Gs v, is a group with (p + 1)/2 generators). O

Remark 7.11. The group-theoretical method of Boston [2, 3] generalizes from the tame
case to the case of bounded-depth wild ramification to provide further evidence for
Conjecture 7.2.
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