* ON THE MODULI SPACE OF BUNDLES
ON K3 SURFACES, 1

By 8. MUKAI

IN [12], WE have shown that the moduli space M s of stable
sheaves on a K3 or abelian surface S is smooth and has a natural
symplectic structure. In this article, we shall study M g more
precisely in the case S is of type K3. We shall show that every
compact 2 dimensional component of M s is a K3 surfaca
isogenous, to S (Definition 1.7 and 1.8) and describe its period
explicitly (Theorem 1.4). As an application of this result, we
shall show that certain Hodge cycles on a product of two K3

h;ﬁaces are algebraic (Theorem 1.9). As a corollary, we have
" that two K3 surfaces with Picard number 2 11 are isogeneous in
our sense if and only if their transcendental Hodge structures

T and Ts' are isogenous, i.e., isomorphic over @ (Corollary
v 1.10).

*) This work was done during the author's stay at the Institute for
Advanced Study In 1981-2, at the Max Planck Institut fur Mathematik
first in 1982 and later in 1983 and at the Mathematics Institute in
University of Warwick in 1982-3. The stay at MPI was partially supported
by SFB 40 and others by Educational Projects for Japanese Mathematical
Scientists.
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§1. 1 ntroduction i

Let S be an algebraic K3 surface over the complex number -
field 4. The cohomology group H? (S, Z) with the cup product
pairing is an even unimodular lattice and isomorphic to |
A=yt | E[* which we call a K3 lattice, where U is the

hyperbolic lattice |0 1] and E, is an eéven unimodul
Y [1 0 * N

negative definite lattice of rank 8, We define a bilinear form and
a Hodge structure of weight 2 on the cohomology ring IH*(S, Z).
The integral bilinear form ( . ) on H* (S, Z) is defined by

(1.1) (a.f)=—a® p* +a? g2 —o# g0 e yi(5,2) =2

for every a =(a® ,a?,a*) and g=(g°,p2,8%)in H*(S,Z),
where we identify H4(S, Z) with Z by the fundamental
cocycle w € H4(S,Z). The Hodge decomposition of I7* (S, €)=
H* (S, Z)® ¢ is defined by

(1.2) H+ 2008 €)= J12. (g, T),
H*0 25 €)= [10.2(8, €) -~
and R
H:11 (8,€)=H(S,€)o H"1 (S, C)o H* (5, T).
H¥*(S, Z) with the bilingfar form (1.1) and the Hodge .

st‘ructure‘(l.2) is denoted by,\,II (S.Z). H* (S, Z) is a sublattice
and a Hodge substructure of H (S, Z).

Let E be a sheaf on S. Since H(S, Z) is an even lattice, the
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Chern character ch(E) of E belongs to H*(S, Z). We denote
ch(E)* W € H¥ (S, Z) = II(S Z) by v(E) (Definition 2.1)
The H°(S)~component of v(E) is the rank r(E) of E (at the
generic point) and H? (S)-component is the 1st Chern class
¢, (E). The H*(S)-component of v(E) is denoted by s(E). By
the Riemann-Roch theorem, we have s(E) = r(E) + ch? (E) =
X(E) — r(E). v(E) is of type (1,1) with respect to the Hodge
structure defined in (1.2). For sheaves E and F on S, X(E, F)
denotes the alternating sum 2 (—1)f dim Ext - 0’ (E, F).By the
Riemann-Roch theorem, we have (see Proposition 2.2).

X(E, F) = —(v(E) * v(F)).

Let v be a vector of i’\II(S, Z) of Hodge type (1, 1), and let
M, (v) be the moduli space of stable sheaves £ on S with
v(E) = v which are stable with respect to A in the sense of [2].
Then M ,(v) is smooth and each component has dimension
(v?)+2. Assume that v is isotropic, i.e., (v?) = 0 and that v is
primitive, i.e., not divisible by any integer 2 2 Then M (v) is
2-dimensional. The orthogonal complement v! of v in II (S Z)
contains v and the quotient v 1/Zv is a free Z -module of rank
22. The quadratic form on I’\{'(S Z) defined in (1.1) induces a
quadratic form on v'/Zv with s1gnature (3, 19). Smce v is of

type (1.1), the Hodge decomposition of H S, C) mduces that of
(v/2Zv) ® €. Hence v!/Zv carries the polarized Hodge structure
of the same kind as 12 (S, Z).

THEOREM 1.4, Let S be “i{, algebraic K3 surface and v a
primitive isotropic vector of H(S,Z). Assume that the moduli
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space M, (v) is nonempty and compact. Then ‘M A (v) is
irreducible and is a (minimal) K 3 surface. Moreover, there is an
isqmorphism of Hodge structures between H*(M 4 (), Z) and
vi/Zv which is compatible with the cup product pairing on
1'\{" M A (v)) and the bilinear form on v'/Zv induced by that on
H(S,Z).

.

The above theorem and the Torelli theorem for K3 surfaces ~

([7], [20]) determine the isomorphism class of M 4 (V) uniquely
There are many pairs of v and A for which the moduli spaces
M , (v) are compact (Proposition 4.1 and 4.3).

REMARK. Even if M 4 () is not compact, every component
of M, (v) is birationally equivalent to a K3 surface M and the
period of M is isomorphic to vi/Zv.

Now we show how the isomorphism between H? (M AW),2Z)

and v'/Zy is obtained. The isomorphism is induced by a natural
algebraic cycle on SxM 4 (). There exists a sheaf & on SxM 4
which we call a quasi-universal sheaf (Definition A.4 and

Theorem A.5). & is flat over M 4 (V) and the restriction to “%

Sxm is isomorphic to .l'f?"" for every point m € M , (v), where

E, is a stable sheaf in M 4 (V) corresponding to m. The integer
o = 0(&) does not depend on m and is called the similitude of E.
Let ch(&) € H*(SxM , (v), @) be the Chern character of &, Put
Zyg = (% V) * ch(&) * (nk Vid, /0(&), where td is the

Todd classs of S and M =M A (v). Zg, is an algebraic cycle o1
SxM , (v) (with ©-coefficient) and induces the homomorphism
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, N ~
fzg, : H(S,Q) » HM , (), Q)

. |

H¥(S,Q) > H*(M , (v), Q).
W w

¢ ——+ LIV (Zg‘ﬂ‘S t)

~

f,, isa homomorphism of Hodge structures. f, sends v to
the fundamental cocycle w € H4(M , (v),Z) (Lemma 4:11) and
maps v’ into HO(M ,(v), ©) @ H*(M,(v), @). Hence [,

* induces the homomorphism ¢ ¢ = (v'eQ)/Qv->H* (M, (v), O).

THEOREM 1.5. Assume that v is an isotropic vector and that

M , (v) is nonempty and compact. Then we have

1) Yo does not depend on the choice of a quasi-universal
family&on Sx M , (v),

2) 2N is an isomorphism of.Hodge structures and compatible
¢ sith the bilinear forms on (v'® ©)/Quand H? (M , (v), @), and

3) vg isdefined over Z, ie., vo(v'/2Zv) = H* (M, (), Z).

» If & is a universal family (i.e., a(@) = 1), then Zg. is integral
~
and f zg gives an Hodge isometry of between H (S, Z) and

H(M, Z) (Theorem 4.9).
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REMARK 1.6. The relation between the periods of a variety
X and the moduli space of bundles on X was studied in the case
X is a curve in [16] : Let M be the moduli space of stable rank
2 bundles with a fixed determinant £. If deg £ is odd, then M is
compact and the two polarized Hodge structures H! (C, Z Jand -
H3(M, Z) are isomorphic and the isomorphism is given by using
the Chern class of a universal family on C x M, (Since the
weights are odd, in this case, the polarization is not symmetri(q
but skew symmetric).

The following is a natural analogue of the notion of isogeny
of abelian surfaces.

DEFINITION 1.7. An algebraic cycle Z € fi4 (S x 8, ®) on
a product of two K3 surfaces S and S’ is an isogeny, if the
homomorphism f, :H¥(S, )~ H’(S',Q),t-»ns., . (Z. n; t),
is an isometry, ie. an isomorphism compatible with cup
product pairings.

f, is an isometry if and only if so is the homomorphism
f, tH*(S', Q) H?(s, Q), t' ~» T (Z, n;‘,t') because f,
and f°, are adjoint to each other with respect to the cup product ’\
pairings. In fact, we have (I fz (t)) = (n;", t'- 7 X t) =
(f () t) for every t € 2 (8, O)and t’' € H2(S', V).

DEFINITION 1.8. Two K3 surfaces S and S’ are isogenous
if there exists an isogeny Z e I (Sx8', ®)onsx s

Let N, be the Neron-Severi Agroup of S. N is canoni.
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cally isomorphic to H»! (S, Z) and is a primitive sub-
lattice of H2(S, Z). The orthogonal complement T of N is
called the transcendental lattice of S. Every cohomology class in
Ng is of type (1,1) and any cohomology class in T'g is not so.
H?(S, Z) contains N s 1 Tsasa sublattice of a finite index and
H?(S, @) is isomorphic to (Ng ®®) L (T, @ @). Hence the
cohomology group H4(S *x §', Q) is the direct sum of 4 vector
spaces N ® N, ®jQ, N @ T, 8Q, T ®Ng.8Qand T 8T .8 Q.
Neither N ® T @ Onor T ® Ng® © containsa cohomology

class of type (2, 2). Hence if Z € H%(S x §’, @) is a Hodge

cycle, then Z is the sum of Z, E N;® Ng,@0and Z, € T ®

T, Q. Z, isalways an algebraic cycle. Hence a Hodge cycle Z
is algebraic if and only if so is Z,. Z, induces the homomorphism
f5, : Tg ®Q » Tg, © Q. In particular, S and S’ are isogeneous
if and only if there exists an algebraic cycle Z on § x S’ such
that f7, : Tg ® © > T, @ Q isan isometry. By Theorem 1.5,
Zg, is an isometry and S and M, (v) are isogeneous. As an
application of this fact, we have

THEOREM 1.9. Let S and S' be algebraic K3 surfaces and
Z € HA(S x 8’, @) a Hodge cycle on S x S'. Assume that
f, T Q> T, ® 0 is an isometry and that the lattice
T=Tg N (f'z) -1 T, can be primitively embedded into a K3
lattice A. Then Z is an algebraic cycle.

If p(S) 2 11, thenrank T £ 11 and T can be primitively
embedded into A by Corollary 1.12.3 in [17]. Hence we have

COROLLARY 1.10. Ifp(S) = 11 andif f : T, ® ©~
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T.. © isan isorhetry. then the Hodge cycle Z is algebraic.

REMARK 1.11. By the corollary, two K 8 surfaces S and S’
with p 2 11 are isogenous if and only if the Hodge structures
T and T,. are so. This partially answers to the question posed
in [21).For K3 surfaces with p = 20, this has been proved by
Shioda-Inose [22). Morecover, Inose (4] has proved that if T
and T are isogenous for such two K3 surfaces S and S', then
there exist rational maps of finite degree from S to §' and from
S'toS.

In [10], Morrison has proved that if T has a primitive
embedding T, U ! » then there exist an abelian surface A and
a certain algebraic correspondence on S x A which induces
T, = T,. By this result and the above corollary, we have

THEOREM 1.12. Let S be an algebraic K 3 surface. If T, @
can be embedded into (U @ <D)1 3 as a lattice, then there exists
an algebraic cycle on S x A which induces an isometry between
Ty Qand T, 8 ©

. This was conjectured in [10] by modifying Oda’s conjecture
in [19].

NOTATION 4 K3 surface always means a minimal algebraic
K 3 surface over €, throughout this article. For a complex mani-

fold X over €, H¥(X, Z ) is the cohomology ring of X. The even



MODULI OF BUNDLES ON K3 SURFACES 349

(vesp. odd) part of H*(X,Z) is denoted by H®’ (X, Z) (resp.
H°d4(X, Z). * is the involution of H®(X, Z) which is +1
on @ H* (X)and —1on @ H42(X),

A sheaf on X is a choerent ¢, -module. hi (E) is the
dimension of the cohomology group Hi(X, E) and X(E) is the
~ alternating sum 2 (=1)ihi(E). For an ample line bundle A
and a nontorsion sheaf E, the rational number
(¢y (E) + A X~ 1)/r (E) is called the slope of E with respect to
A and denoted by p, (E). A torsion free sheaf E is u-stable
(resp. up-semi-stable) with respect ot A, it u, (F) > n, (E)
(resp. p, (F) 2 u, (E)) for every proper nontorsion quotient
sheaf F of E. The set of isomorphism classes of all p-stable
(resp. p -semi-stable) sheaves on X is denoted by M, B (resp.
SM“ ). M% is an open subset of the moduli space M of
stable (in Gxeseker s sense) sheaves on X. For a sheaf E on X EY
denotes the dual sheaf #om Oy (E, (7X) ch(E)€ H®® (X, Q) is
the Chern character of E. If E is locally free, then we have
| ch(E”) = ch(E)*.
@ A lattice over aring R is a free R-module L with a symmetric
bilinear form ( * ) : L x L - R and a lattice means a lattice over
Z. A sublattice L, of L is primitive if L/L, has no torsion and
a vector v of L is primitive if Z v is a primitive sublattice. An
- isomorphism f : L ¥ L’ between two lattices L and L’ is an.
isometry if f is compatible with the bilinear forms on L and L
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For an algebraic variety X, the Néron-Severi group N o is the

Picard group Pic (X) modulo algebraic equivalence. The Picard ;
number p(X) is the rank of N, . If S is a K3 surface, theh the
natural map Pic (S) » N is a bijection. For 2€ N, we denote

by ﬁs (2) the line bundle corresponding to . .

.§ 2. Generalities ' ~
In this section, we assume that S is an abelian or K 3 surface.
The Todd class td; of Sis equaltol +2ew, wherel€ H °@S,2Z)
~is the unit element of the cohomology ring H*(S, Z),
w € H%(S, Z) is the fundamental cocycle of S and ¢ is equal to 0
or 1 according as S in abelian or of type K 3. The positive square
root/ td =1 +ew lies in the even part H*” (S, Z) of H¥(S, Z).

Let E be a sheaf on S. Then the Chern character ch (E) belongs
to HV (S, Z).

DEFINITION 2.1. For a sheaf E, we put v(E) = ch(E)-
Jtd ¢ € H(S,Z) and call it the vector associated to E.

We define a symmetric integral bilinecar form ( , ) on ﬂ
H®(S,Z) by '

wu)y=a’a'—r¥ s —sYr € HYS,Z)=2Z

for every u =(r,a,s8) andu’ = (r',.a " §')EHYS,Z)o H*(S,Z)®
H*(S, Z). We denote H*" (S, Z) with this inner product (. ) by



MODULI OF BUNDLES ON K3 SURFACES 351

Il\i(s, zZ). ﬁ(s, Z) is an even lattice of rank 8(1+2€). and
* jsomorphic to U4 1 Es“e as an abstract lattice. The inner

product (u .u') is equal to.the H*(S, Z )-component of

—u*eu € H(S, Z). Hence, for sheaves Eand Fon S, (W(E)+v(F))
* is equal to the H*(S)-component of —ch(E)*+ch(F)std.

Therefore, by the Riemann-Roch theorem, we have

p PROPOSITION 2.2. Let E and F be sheaves on S and put
X(E, F)=32(—1)i dimExt', (E, F). Then we have X (E, F) =
i s

—((E) . v (F)).

PROOF. If E is locally free, then Extj, (E, F) is canonically
isomorphic to H' (S, E* ® F) forevery iand —ch(E)*+ ch (Fytdg
is equal to —ch(E @ F)std. Hence our assertion follows
from the usual Riemann-Roch theorem. If0-» E* > E-> E”" >0
is an exact sequence, then X(E, F) and (v (E).v(F)) are equal
to X(E', F) + X(E", F) and (v(E")+v(F)) + (v(E")ev(F)),
respectively. Since E has a resolution by locally free sheaves, we
have our assertion for every sheaves E and F. q.ed.

r The dualizing sheaf wg of S is trivial, Hence the Serre duality

is simple in form and is a very effective tool of our study.

* PROPOSITION 2.3, Let E and F be sheaves on S. Then the
pairing Exu'ﬂs (E, F)x Ext;;‘(F, E)— H*(&;), (a, B) — tr? (aop)
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is nondegenerate for every i, where tr? Ext/ F, F) »
H? (ﬂ ) is the trace homomorphism of Ext? 7 (F, F‘i In parti- °

cular we have dim Ext? S(E F) = dim Hom/ (F, E) and
dim Ext!(E, F) = dim Ext‘/ (F, E).

PROOF The usual Serre duality says that the natural
pamngH (S, G)x Ext”2 WG, w,) - H? (S, wg )wnondegenerateﬁ
for every sheaf G on S In the case where E is locally free,
applying this Serre duality for G = E¥ @ F, we have our pro-
position. In the general case, take locally free resolutions
0> E" > E"! 5,  >E>E>0and0~>F' > F'l 5
> F® > F > 0 of E and F, and apply the Serre duality for -
tHomy¢ (E, F) in the derived category D(S) of S([3)), where

=[0->E" >E"! 5 5> E°>0)and F' = [0~ F" »
F''1 5 > F° - 0]. Then we have our proposition. q.e.d.

In the special case where E = F, the Serre pairing is a nonde-
generate bilinear form on Ext!/ s (B, E) which we call the
Serre bilinear form. This form is skew symmetric. -

q

By Proposition 2.2 and 2.3, we have

PROPOSITION 2.4, (v(E). u(F)) = dim Ext'y S(E, F)
dim Hom/ys (E, F) - dim Homy s(F' E).
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COROLLARY 2.6.dim Extﬂ (E, E)=(v(E)? )+ 2dimEnd, (E)
for every sheaf Eon S. In parl:cular dim Ext(s (E, E) is always
an even integer. If E is simple,then dim Ext/ s (E,E)= (V(E)® +2
and hence (V(E)?) 2 —2.

The tangent space of Splg (or M) at the point [E] € Spl
is canonically isomorphic to Ext(, (E E). Since Spl is smooth
({12]), we have

N
COROLLARY 2.6. Let v be a vector of H(S, Z). Then every
component of Spls (v) is smooth and has dimension (v?) + 2,

Next we prove some inequalities for (v(E)?) and dim Extﬂ's

(E, E) which play an important role for our study of sheaves on
S.

PROPOSITION 2.7.Let X : 0 > F A E% G - 0 be an exact
sequence of sheaves on S such that Hom O (F, G) = 0. Define

Extﬂs(G F) - Dxt” (E, F)andj: hxtﬂ (£, E)-*Ext(/ (F,G)

by i(a) = foaog and ](ﬁ) 8gofof. Let I be the image of iand J
the kernel of j. Then we have

(1) I C Jand the quotient J/I is isomorphic to bxt” (F,E)e
Ext /S(G QG),

(2) Let e € Ext }/s (G, F) be the extension class of X and
define the homomorphism h : End, (F) @ End, (G)~
‘S s

End %(G, F) by h(eF, e, )= e oe—eoe, Then the sequence
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2.1. 1) 0~ End(; (E) -» End” (F) QEndﬂ (G)
Ext(} ta F)..Ext, (E. E)

is exact (Since Hom( {F, G) = 0, every endomorphism of E
preserves X and induces endomorphisms of F and G.), and

(3) J is the orthogonal complement I' of I with respect to
the Serre bilinear form on Ext‘”s (E, E) and 1 is totally isotropic.

PROOF. (1) since gof = 0, }oi = 0 and J contains . We show
that J/I is isomorphic to Exty (F, F) © Ext,( (G, G). If
a € EXt/’s (E, Ii)) belongs to J, ihen (goa)of = 0, lIence there
exists a, € Extﬂ (G, G) such that goa =q,° g Since
Hom (F G)= 0 such an a; is unique. In a similar way, there
exnsts a umquea € Ext! /s (F, F)suchthataof=foa g Itiseasy
to see that the map ¢ : J - Ext”!s (F, F) ® Ext&'»s (G, G),

a» (a,,a;)is a homomorphism,
CLAIM: Kerp =1,

If « € I, then goa = aof = 0. Hence ap=aqg = 0 and [ is
contained in Kery. Assume that a belongs to Ker . Then we
have aof = goax = 0, Hence there exists § € Ext&a (E, F)such
that o= fof. Since fo (Bof) = acf = 0 and since Ext (F, F)
o3 D"t'ds, (F, E) is injective, we have fof =0. Hence B =g
for some g € Exté (F, G). Therefore, a is equal to foyog and

belongs to I s

CLAIM : v issurjective.
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1
By the Serre duality and by our assumption, we have
: Ext?_ (G, F) = 0. Hence the homomorphism Ext! (E, F) 2of

Ext! , (F, F) is surjective. Therefore, for every o, €
O¢ \" F

Extﬁ',s (F, F), there existsp € Ext‘ﬁs (E, F)suchthata,=fof. Put
¢ a=ppe E"tlﬂs (E, E). Then it is easy to see thatw(®)= (a ., 0). _
In a similar way, for every a, € Ext' o (G, @), we obtain
(\ a € Ext! O (E, E)such that ¢ (a) =(0,a ).Hence p is surjective.

(2) If h(e, e;) =0,thenece= ece, which means that
two endomorphisms e, and e, of F and G are compatible with
respect to the extension class of X. Hence there exists an

>

endomorphism of E which induces e, and e . Therefore, the
sequence (2.7.1) is exact at End()s (F) ® End(/s (G). Since
fee = eog = 0, we have hoi = 0, Assume that a € EXtI0’§ (G, F)
and i(ax) = 0, i. e., fo(xog) = 0. Then there exists § € Homa
(E, G)»guch that acg = eof3. Since Hom”s (F, G) = 0, there exists’
an .endomorphism vy, of G such that B = v5° 8. Since
(a-eoy; )og = 0, there exists an endomorphism vy, of F such thal
a-geoy, = vy °e Therefore, a lies in the image of h and the

(‘ sequence (2.7.1) is exact at Ext‘ds (G, F).

(3) Since wg is trivial, the homomorphisms i and j are dual tc

cach other by the Serre duality. Hence I and Ext‘ﬂs (E, E)J .

. are dual to each other. If « € I and § € J, then aog
€ Ext; (E, E) is zero. Henée I and F are perpendicular with

respectsto the Serre bilinear form on Ext! (E, E). Since the
Serre bilinear form is nondegenerate, J f:oincides with 2 q.ed.
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COROLLARY 2, 8. ([11]) Let X be same as above. Then we
have dim Ext&s (F, F)+dim Ethﬂé (G, G) sdim Ext'”s (E, E).

REMARK 2.9. If S is a surface and I-.Kslfﬁ ¢, then s
'Homﬂ (F, G) = 0 implies Ext}/; (G, F) =0.Hence(1)and (2) of
s s
the proposition and the corollary are trie for such surfaces (1) of

the proposition says that every infinitesimal deformation of F

and G can be lifted to an infinitesimal deformation of E.

The following proposition and its proof are quite similar to -
above ones. In fact, these propositions are equivalent if one

consider them in the derived category D(S) of S,

PROPOSITION 2. 10. Let X : 0> E& G% F~ 0 be an exact
sequence of sheaves on S such that Ext' (F, G).= 0. Let f
€ Ext! (, (F. E) be the extension class of X, gDefmei Hom,)
(G, F) » Ext' (E E) andj: LXUJ (E,E)~ Ext’/, (F, G)
by i(a) = foaog and J(B) =gofof. Let Ibe theimage ofmndJ the
‘kernel of j. Then we have (1) and (3) in Proposition 2.7 and

(2) define the homomorphism h : Fnd/, (F)® hndﬂ (G)~»

Homﬂ (G, F) by hfe, e J)=e, ce.- eoe,. fore € Lnd(} (F)
and e, € End 7 (G). Every endomorphism of E is induced by

that of G and the sequence

-
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. 0 = End, (B) > Indy (F)eEndg (G) h

Extk (G, F) - Ext! (E E)

isexact, In particular, if I = 0, then h is surjective.

PROOF. By the Serre duality, we have Ext ‘s (G, F) =0
(1) and (38) can be proved in a similar way to Proposition 2.1.
FSmce Ext/ (F, G) =0, the map End( (G) » Hom, (E, G)
is sur]ectlve Hence every endomorphlsm ofEisa restnctxon of
an endomorphism of G. Hence the homomorphism End{/ (E)
- End, (F)e End, (G) is well defined. The exactness of the

sequence can be proved in a gimilar way to Proposition 2.7. q.e. d.
COROLLARY 2. 11. Let X be same as above. Then we have
dim Ext', (F F) +dim Ext‘ﬂ (G, G) s dim Ext‘” (E, E).

Let E be a torsion free sheaf and E the double dual of E.
N
Then the natural homomorphism E - E is injective and the

cokernel M-is of finite length. We have the exact sequence

N
~ 0->E->E%M-0,

. N,
Since I\'f is locally free, we have Ext‘ﬂ (M, E) =
. Ext/‘ (E M)* = 0. Since (v(M)?) =0.dim Ex (E E)is equal
to 2 dim End/ (E) by Corollary 2.6. llence we have
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COROLLARY 2. 12, Let E be a torsion free sheaf on S and E ’

and M be as above., Then we have
NN
dim Ext',,vs (E, E) + 2 dim End(,s (M) s dim Ext! 2 (E, E).

If equality holds in the above relation, then the natural
homomorphism End(/é (E)Q End(é (M) » Hom,,s (’1:3'. M), "\
(a, B)+ eca - foe, is surjective.

LEMMA 2.13. Let (R, W) be a local ring and M an artinian
R-module, Then we have length (End, (M)) 2 length (M). If
equality holds, then M is isomorphic to R/I for an ideal I of R.

PROOF. We prove by induction on length. (M). Let M, be
the submodule {x € M; Mx = 0} of M. Every endomorphism of
M maps M, into itself. Hence we have the exact sequence

0 > Hom, (M, M) » End, (M) - End, (M/M,) - 0.

Since M is artinian, M, is nonzero. Hence by induction
hypothesis, we have length (End, (M/M,)) 2 length(M/Mo).q
Since m M, = 0, every homomorphism fromAf to M, factors
through M/mM. Hence Hom, (M, M,) is isomorphic to the
vector space llomR /m (M/MM, M, ). Therefore, we have

length (End, (M)) =
length (End,, (M/M,)) + length (Hom, (3, M,))



MODULI OF BUNDLES ON K3 SURFACES 359

w

length (M/M, ) + length (M/MM) length (Mo)

nw

length (M)

which shows the first half of the lemma. If equalities hold in
the above relations, then we have length (End, (M/M,)) =
length(M/M, ) and length(M/mM)=1. By the latter equality and
the Nakayama’s lemma, M is generated by one element. Hence
M is isomorphic to R/I for an ideal L. . q.ed.

By Corollary 2. 12 and the above lemma, we have

PROPOSITION 2.14. Let E be a torsion free sheaf on S,E the
double dual of E and M = E/E Then we have

NN
dim Ext}, (E, E) + 2length (M) = dim Ext',, (E, E).

If equality holds then the natural map End ,; (E) ® End/, (M)
- Hon*(, (E M) is surjective and M is isomorphic to 0’ /f
for an ldealfof I.

A

REMARK 2.15. Smce E is locally free, Exté (E, M) =
S

Ext.} O (M, E) 0 for any surface S. Hence Corollary 2.12 and

the above proposition are true for any (smooth) surface.

Let 0 » F- E - G - 0be an exact sequence of nontor-
sion sheaves on S. Since v(E) = u(F) + v(G) and r(E) =
r(¥) + r(G), we have
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@F)?) | (E?) WEY) (PG (vF) w@)\
F)  nG)  HE) T HE) \rF) T(@G) '

Since UF) @_5(0, alf) _ a(G) s(F) s(G))’
B rG) r(F rG) e TG

the right hand side of the above equality is equal to
r(F)r(G) ( ci(F) _ ¢(G)
r(E) rF r(G)

PROPOSITION 2.16. Let 0 > F » E = G - 0 be an
exact sequence of nontorsion sheaves. Then we have

©E?) | @@ _ @E?) _ r®)r©) (c,m_'c,(a))’

q

2
) . Hence we have

r(F) r(G) r(E) rE) \r(F) r@G)

If p(S) = 1, then the right hand side is always nonnegative
because we are assuming that S is algebraic, Hence we have

COROLLARY 2.17. If (S is algebraic and) p(S) = 1, then

WR?) + w(@?) z (U(E)j)- Here equality holds if and only
r(F) rG) r(E)

if e, (F)IN(F) = ¢, (Q)fr(G).

I F and G have the same slope with respect to an ample line
bundle 4, i.e., n, (F)=npn 4 (G), then we have

A. c'(F')— ¢1(G) = 0. Hence, by the Hodge index theorem

r(F) r(G)
i (F) ¢, (G)

2
—) is always nonpositive and is equal to zero if and
r(F) r(G)

onlyife, (F)/r(F) = ¢, (G)/r(G). Hence we have
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COROLLARY 2.18. Assume that F and G have the same

* slope with respect to an ample line bundle, Then we have

@E?) , @Y  @E?Y),
r(F) r(G) "~ r(E)

and equality holds if and only if ¢, (F)[r(F) = ¢, (G)/r(G).
r

Let E be a p-semi-stable sheaf, Then there is a filtration

E* H 0=Eo CElc e CEn=E

such that every successive quotient F;, = E,/E, | is p-stable and
has the same slope as E. Such a filtration E 4 is called a pu-JHS.
filtration of E. Applying the above corollary repeatedly for this
filtration, we have the following:

PROPOSITION 2.19. Let E be a pu -semi-stable sheaf and F,
(1 2 i 2 n)the successive quotients of a u-JHS filtration of E.
Then we have

-~ . @EP)  (ER)

H

2 TR r(E)

Equality holds if and only if ¢ (F,.)/r(Fl.) is equal to
c,(E)Jr(E) foreveryl1s isn,

REMARK 2.20 If E is a semi-stable sheaf. Then there is a
+ filtration
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0=E,CE C....C i;, =K

such that F, is stable, has the same slope as E and s(F,.)/r(F'.) =
8(E)/r(E) forevery i=1, ... » 1. Such a filtration is called a JHS
filtration of E. The above propsotion is also true for a semi- )
stable sheaf E and its JHS filtration.

Now we assume that S is a K3 surface and prove a resul
which we shall need in §56. Let F be a sheaf on § which satisfies

(2.21) the canonical homomorphism [:H°(S, F)el; » F
is injective and H* (S, F) =0.

We construct a sheaf E on S from F, which we call the
reflection of E (from the left), such that r(E) = -s(F), e, (E) = ¢
¢, (F) and s(E) = -r(F). We show that E is simple if and only if

F is so. This result is a very special case of the theory of the
reflection functor of S, which we will discuss systematically in -
[14].

Let F be the cokernel of the canonical homomorphism f ;
H (S F)® ﬂis > F. We have the exact sequence )

(2.22) 0> (S, F)edh F- Fo,
g

Since H' (S, ds) = IP(S, F) = 0, the above sequence induces
the exact sequence
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(2.23)0 - H' (S, F) 3 H (S, F)—>H°(S F)QH’(S 0)-»0
HO (S, F)
Construct an exact sequence

@224) 0~ F- E- H\S, F)y»>H'(S, els-0

so that the coboundary map 8 : H'(S, F) & H® (S, O5)
H' (S, F) is equal to a. We call this extension E of H' (S, F)®

™ 0 by F the reflection of F (from the left). Since H* (S, F) =
0 by our assumption, X (F) is equal to h° (F) —h' (F). Hence we
have.

u

v(B) = u(F)+h'(F)(dy) |
. v(F) —h® (F)v(fg) + h'(F)vM’)
v(F) — X(F)v(fs).

n

> .Since X(F) = r(F) + s(F) and v((/'s) = (1, 0, 1), we have r(E) =
- §(F), ¢, (E) = ¢, (F) and s(E) = - r(F). (By our assumption,
"X(F) sh° (F) s r(F). Hence s(F) is nonpositive.)

~ PROPOSITION 2.25. Assume that F sitisfies (2.21)and let E
be the reflection of F. Then we have End(/g (E) = End.(,-s (F).

ﬁ PROOF. We have constructed E canonically from F. It is
almost clear that every endomorphism of F induces an

endomorphism of E. Let y be an endomorphism of E. We show
that ¢ is induced by an endomorphism of F. Since

l'lom” (F, ¢75) = 0 by our assumption and the Serre duality, we
have Hom(j (F, d¢) = 0. Hence p preserves the exact sequence

(2.24) and mduces an endomorphism 5!/ of Fandf, of H' (S, F).
Since ¥ and f, are induced by ¢, the following diagram
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(S, F) ® HO(S, ) L=,V (8, F)

/ H')
H'(S, F) ® H'(S, 7)) o H'(S, F) p

.is commutative, Hence f1 preserves the exact sequence (2,23).
and induces an endomorphism fo of H° (S, F), From the longq
exact sequence Ext*'(/s ((2.22),, (), we obtain the exact
sequence
5 . _
0~ H° (S, F)" - Ext! o J(F, (5) > Ext! oF. ()~ 0.

r
This sequence is the dual of the exact sequence (2.22) via the

Serre duality, Hence we have the following commutative
diagram: (
HO(S, F ‘l»Ext,'”s (F, ﬁs)
v A} 1 g .
|7 bty (7, 0)

HO(S, F)y~2sExt b,s (F, %)

Therefore, there exists an endomorphism ¢ of F which “~N
Preserves the exact sequenee (2.22) and induces g'j on F and
fo on H° (S, F), By our construction, this ¥ induces .

For our requirements in §4, we show a vanishing of higher !

direct image sheaf Rif*lf‘, which was essentially proved in [15],

PROPOSITION 2.26 Let f: X~ Ybeaproper morphism of
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noetherian schemes and F a Y-flat coherent /’;( -module. Let Z
* be a closed subscheme which is locally complete intersection in
Y. For y € Y, let Fy be the restriction of F to the fibre
Xy = f~Y(y). Assume that H'(Xy, Fy) vanishes for every
i < codim Zand y € Y-Z. Then R’ f4«F =0 for every i < codim
Z,
P

PROOF. We may assume that Y = Spec A is affine and Z
is defined by a regular sequence x,,..., X, € A, n =codim Z,
By the theorem in §5 [15], there exists a finite complex K*
of finitely generated projective A-modules such that
HI(K®) = Ié‘f*F. By the base change theorem and by our assum-
ption Rf,F has a support on Z for every i < n. Hence there
exists an integer N such that a¥ H' (K') = 0 for every i < N,
where 4 = (x, , ey x") A. Our proposition follows from the

following:

LEMMA. Let K, be a finite complex of finitely generated

projective A-module and " an ideal of A generated by a regular
(*equence Xiy oo o s X, of A. If aNH'(K') =0 for every i < n,

then H'(K') = O for every i < n,

This can be proved in the same way as thelemmain ([15]

p.127) by using induction on n. q.e. d.

§3. Semi.rigid sheaf

R In this section, we shall study sheaves E on a K3 surface S
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with small Ext'(/s(E, E).

DEFINITION 3.1. A sheaf E on S is rigid if
Ext! d ¢(E, E) = 0. By Proposition 2.5, we have

PROPOSITION 3.2. If E is si’mple, then the following are
equivalent: "\

(1) Eis rigid,
(2) (AE)*)=-2,and
(3) (UE)*) <,

By Proposition 2,14, we have

PROPOSITION 3.3. If E is rigid and tofs:'on free, then E
is locally free,

If E is a rigid sheaf and if v(F) = av(E) for a rational number
a, then X(E, F) is equal to aX(E, E) and is positive, Hence we

have . ﬁ

PROPOSITION 3.4, Let E be a rigid sheaf and F a sheaf with
AF) =auE), a€Q. Then either Hom, SEF)#0 or
Homa's,_(F, E) # 0,

It E.is stable and F is semi-stable and if v(E) = u(F), then
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every nonzero homomorphism between E and F is an

't jsomorphism. Hence we have

COROLLARY 3.5. Let E be a stable rigid bundle. If F is
+ semi-stable and v(F)=v(E), then F is isomorphic to E,

- Y
COROLLARY 3.6. Let v be a vector of H'*'(S, Z) with
(v?) = —2. Then the moduli space M P (v) is empty or a reduced

one point,

PROOF. By Corollary 3.5, if M . (v) is nonempty, then
M A (v) is one point. The tangent space of M A (v) at the point
(E} € M, (v) is canonically isomorphic to Ext‘(/s (E, E) =0,
Hence M A (v) is reduced, q.ed. .

dim Ex't‘ﬂs (E, E) is always an even integer (Corollary 2.5).
Hence if Ext! O (E, E) # 0, then dim Ext"p‘s (E, E) & 2,

(\ DEFINITION 3.7. A simple sheaf E on S is semi-rigid if £

satisfies the following equivalent conditions:

(1) dim Ext' (,‘S(E, E) =2, and

. (2) v(E)e H'A(S, Z)is isotropic, i.e. (WE)) = 0.

Proposition 3.3 is not true for semi-rigid sheaf. In fact,
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there -is a semi-rigid torsion free sheaf which is not locally
free. The simplest example is a maximal ideal M of /s, We can
construct many such semi-rigid sheaves from a rigid bundle.
Let F be a simple rigid vector bundle of rank r. Take a point
s € Sand put V F ®k(s) and F= Fe v, Fis a rigid bundle of °
rank r? and Fe k(s) is lsomorphlc to End(V). Let E be the
kernel of the homomorphism f: F F & k(s) = End(V) % k(s)'\
where fr is the trace map of End(V). Every endomorphism of
E is induced by an endomorphisn « of ﬁ Since o preserves
[, « is a constant multiplication and hence E is simple. It is
easy to check that v(E) is isotropic; We call this E the semi-

rigid sheaf associated to F. We have proved the following:

PROPOSITION 3.8. Let F be a simple rigid bundle of rank r,
Then, for every point s € S, there exists a semi-rigid sheaf

E of rank r* and an exact sequence
0-E-F® > k(s) - 0,

q

The above examples of semi-rigid torsion free sheaves are
locally free except at one point. This is true in general. In

fact, by Proposition 2.14, we have

PROPOSITION 3.9. Let E be a torsion free sheaf with dim
. ~
Eth(s (E, E) =2, Let E be the double dual of E and assume
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that E is not locally free. Then the quotient E/E is isomorphic
to k(s) for a point s € S. Moreover, E is a rtg:d vector bundle
and the natural homomorphism o : End/ (E) - Hom/»S(F

k(s)) induced by the exact sequence 0-»>E- E - Rk(s) > O is

-

surjective.

P COROLLARY 38.10. Let E be a u-stable semi-rigid sheaf. If
E is not locally free, then r(E) = 1 and E is isomorphic to L am

for a line bundle L and a maximal ideal W of Ks‘

PROOF. Since E is p-stable, so is E. Hence E is simple, Since

a is surjective and dim End(s (E) 1, we have

~N

dim Hom /g (E k(s) s 1. Therefore, E is a line bundle.  q.e.d.

REMARK 3.11.1f F is a stable rigid bundle, then the semi-
rigid sheaf F associated to F is stable. Hence the above corollary

is not true for stable semi-rigid sheaves,

(A If E is semi-rigid and v(F) = u(E), then X(E, F) = -‘,(v(E).
v(F)) = 0. Hence, if'l'lomﬂS(E, F) = Hom(s(F. E) = 0, then
we have Ext' 7 ((E, F) =0 T

PROPOSITION 3.12. Let E be astable semi-rigid sheaf and Fa
semi-stable sheaf with v(F) =(v(E).If E is not isomorphic to F,
then Ext"(is(E, F) and Ext,"//s (F, E) vanish for every i.
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PROOF. By the assumption of (semi-) stability of E and F,
every homo;norphism between E and F is either zero or an
isomorphism, Hence, if £ ¥ F, then Hom s (E, F) =
Hom//S (F, E) = 0. Since X(E, F) = X(F, E) = 0, we have our
assertion by Proposition 2.4 q.e.d.

If MA (v) # ¢, then MA (av) is empty for every a # 1, In
fact, we have

PROPOSITION 3,13. Let E be a stable semi-rigid sheaf and
F a simple semi-itable sheaf with v(F) = av(E), a € Q. Then
every nonzero homomorphism between E and F is an

isomorphism.

PROOF. Let f: E~ F be a nonzero homomorphism, Then f is
injective and the cokernel of F is semi-stable by our assumption

on (semi-)stability of E and F.

CLAIM: F is E-potent, i.e., has a filtration 0 =F,CF C...C
F = F such that F',/F,._l > FEforeveryi=1,....,n.

We define F, = Im(f) and F, inductively fori z 2, Assume
that F, has been defined and F,# F. Let G'. be the quotient
F[F,, Since E is simple, lHomg; (G'., E) =0, Since G'. #0and F
is simple, the exact sequence 0 - F'. -+ F- G0 does not split.
Hence Ext' ¢ (G, F;) # 0. Since F; is E-potent and Ext'y s

ﬂ

ﬂ
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is an additive functor, we have Ext' (G, E) # 0. Since
X(G, E) = — (u(G,). v(E)) = (i — ) (u(E)?) = 0, we have dim
Homgy (E, G,) = dim Ext! g (G, E) — dim Homy (G, E)> 0.
Hence there exists a nonzero homomorphism f; : E - G;. Let
F,, , be the pull-back of Im(f;) by F - G,. Since G‘. is semi-

stable, f; is injective and F, , IF,is isomorphic to E. So F;

s well defined.

.

If g : F - E is a nonzero homomorphism, then g is surjegtive.
By the same argument, we have our claim in this case, Since Fis’
simple, F is isomorphic to E by the above and f and g are

isomorphisms, q.ed.

Next we investigate the stability of semi-rigid sheaves.

PROPOSITION 3.14. Let S be an algebraic K3 surface with
Picard number 1 and E a simple torsion free sheaf on S. Assume
that E is rigid or semi-rigid and that v(E) is primitive in
H'1 (S, Z). Then E is stable.

PROOF. Since p(S) = 1 and v = v(E) is primitive, every semi-
_stable sheaf E’ with v(E') = v is stable. Hence it suffices to
show that E is semi-stable. Assume that E is not so. Let F; be

the p-subsheaf of E, ie, F, maximizes the polynomial
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X(F (n))/r(F,) among all subsheaves of E and then maximizes
r(F,) among such-subsheaves. The quotient F, = E/F, is
torsion free and Homgg (Fy, F;) = 0 by our choice of F,.
Hence, by Corollary 2.8, we have

(*) dim Ext! Os (Fy, Fy) + dim Ext'g)’s (F;, F;) s dim
Ext! s (E, E).

q

Since dim Ext! Os (E, E) = (v(E)*) +2 5 2,

we have dim Ext! o5 (F;, F;) -5 2 for both i = 1 and 2. Hence
(v(F, )’) = dim Ext! g (F, F;) — 2 dim End g (F,) 50 for
both { =1 and 2, Since r(F;) < r(E), we have, by Corollary 2.17,

(U(F1)?) + (u(F3)?) 2 (W(E)?).
Hence we have

dim Ext! 7¢ (F\, F\) +dim Ext! 7 (Fy, F,)

2 dim Ext' g (E, E)+2dim End g (F,)
+2dim End g, (F,) — 2
> dim Ex g (K, E), “~N

which contradicts (*). : q.e.d.

REMARK 3.15. If Fis a rigid bundle of rank 2 2, then the

semi-rigid sheaf E associated to F is not u-stable, Hence, even
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if p(S) = 1, it is not always true that simple semi-rigid torsion

free sheaf is u-stable,

In the following two propositions, we consider the case
where ¢, (E) is ample and study the stability of E with respect
toc, (E).

P PROPOSITION 3.16. Let E be a semi-rigid sheaf with v(E) =
(r, %, ). Assume that R is ample and E is stable with respect to
Q- If 8 is divisible by r and v(E) is primitive, then E is p-stable

with respect to £,

PROOF. Assume that E is not u-stable. Then E has a proper
quotient sheaf E, with u(E,) = p(E). We choose E, so that
r(E, ) is minimum among such quotients. Put v(&,)=(ry, £,, 81 ).

" Since p(E,) = p(E), we have (2. &, — r,2/r) = 0. Since E is

semi-rigid, we have ¢? = 2rs. Therefore, we have

ﬁ(U(El ) =((% “'"19/"7)"”'1 o/r)* —2rs,

= (&, —r WP +(ry W) — 2118,

=(Ry —ry &/r)} +2r, (ris/r—s).

Since v(E) is primitive, r and £ are coprime, Hence 2, —r, &/r is

not zero. Since (2, —r, £/r.2) = 0 and ¢ is ample, (2, —r; 2/r)?
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is negative by the Hodge index theorem. On the other hand,
since E is stable, the integer r,s/r — s, is negative. Therefore,
we have (v(E;)?) < — 2r;, $ — 2, which contradicts

Corollary 2.5 because E, is p-stable and simple by our choice.

q.e.d.
PROPOSITION 3.17 Let v = (r, 2, 8) be a primitive isotropic
N
vector of H'*! (S, Z)and E a sheaf with v(E) = v. Assume that
2 is ample and E is semi-stable but not stable with respect to

Q. Let

0=E0CE.C...CE”=E,né2

be a JHS-filtration of E. Then the successive quotients

F,=E/E, | arerigid foreveryi=1,...,n.

PROOF. By Proposition 2,19 and Remark 2.20, we have
(u(F,.)’) £ O for every i. Since v is primitive, equality is not
attained for any i. Hence F', is rigid by Proposition 3.2. q.e.d."\

COROLLARY 3.18, Let v be as above. Then the complement
of My (v) in the mod‘uli space ﬁQ (v) of semi-stable sheaves E

with v(E) = v is a 0-dimensional set.
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§4. Surface components of the moduli space

Let v = (r,  s) be an isotropic vector of PII' »1(S,Z’) and A an
ample line bundle. Then each component of M A (b) has
dimension 2. In this section, we study M, (v) in the case it is
compact and we prove Theorem 1.4 and Theorem 1.5. By
Langton’s result [6] (sce also [9] §5), the moduli space of semi-

stable sheaves on S is compact. Hence we have

PROPOSITION 4.1. M, (v) is compact if and only if every
semi-stable sheaf E with v(E) = v is stable. This is the case,

e.g., if the greatest commoh divisor of r, (LA) and s is equal
to 1.

The above is true for every vector v, Using this proposition,
we give some further sufficient conditions for M A (v) to be
compact for given primitive isotropic vector v. Let ¢ be the
greatest common divisor of r, (2.m) and s, where m runs over
all divisor class of S. Then there exists an ample line bundle A
such that the greatest common divisor of r, (/}'.Q) and s is equal
to ¢. Hence if ¢ = 1, then M A (v) is compact for such an ample
line bundle A. For an application in §6, we consider the case
¢ 2 2. We show that M, (v) is compact for an ample line bundle
A in this case, too. Let Ng be the Néron-Severi group of S.
Ng is a sublattice of H* (S, Z). Let N be the submodule
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generated by N and 2/c in Ng ® Q. Since (2?) = 2rs,(2?) is
divisible by 2¢?. By the definition of ¢, the bilinear fo;m Qn
Ny © @ is integral and even on N, Hence N is an even lattice
wiich contains N ¢ 88 a sublattice of index ¢, .

PROPOSITION 4.2. Let A be an ample line bundle on
S such that G.C.D. (r, (A.2), 8) = ¢, If there are no (—2) -vectors
a in N with (A.a) = 0, then M 4 (v) is compact,

PROOF. Let E be a semi-stable sheaf with UE) = v and

Esy:0=E,CE C...CE =E

be a JHS-filtration of E We show that n = 1, Put F'. = Ei/E'. -
and u(F)) = (ry %, §;) for every t =1, ..., n. Since Eyisa
JHS-filtration, we have ri(A) 18 =T: (A 0) : g for every
1. There exists an integer a; such that r; = a;r/e, (A.2)/c and
8 = a'.s/c. Put m, = 2’, -a,2/c € N, Then we have (A. m;) = 0 and

(U(E".)’) = (maf/c)* — rs, = (m'.’) + 2a,(m.2)/c. Since

z m; = 0, there exists an { such that (m'..Q) s 0. For this i,

i=1
we have (m ?) z (v(F,)?) 2 —2, Since (Am) =0, (m;?)is non-
positive by the Hodge index theorem. Hence by our assumption,
we have (m,.z) =0 and m i = 0 by the Hodge index theorem,

,



MODULI OF BUNDLES ON K3 SURFACES 371

Therefore, we have v(F‘.) = a,v/e. Since v is primitive, v(F,;) is
v equal to v. Hence E is stable, q.e.d.

As an application of the above, we have the following
proposition:
ﬁ PROPOSITION 4.3. Assume that there exists a semi-rigid
sheaf E with v(E) = v which is p-stable with respect to an
ample line bundle A'. Then there exists an ample line bundle A
such that

)

(1) E is p-stable with respect to A, and

(2)M A (v) is nonempty and compact.

PROOF. There exists a neighbourhood U of A’ in IP( Nsem)

such that E is p-stable with respect to A for every ample line
bundle A € U. Let LR be all the ( — 2)-vectors in N

pwhlch are perpendicular to A*. If A, is an ample line bundle in
U- Ua and if A, is sufficiently near A*, then (A. a) # 0 for
any ( - 2) vector a in N. Take such A; from U - U a and take
an ample line bundle A, such that G.C.D. (r, (A, Q), 8) = ¢
« If n is sufficiently large, then A = ncA, + A; belongs to U and
satisfies the last assumption of the preceding proposition.

There are infinitely many n’s such that G.C.D. (r, (A.?), 8)
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= ¢. Hence there exists an integer n such that A \ (v) is compact

and nonempty, q.c.d

IfM A (v) is compact, then M A (v) is irreducible. In fact, we hav '

PROPOSITION 4.4. Assume that M 4 (v) contains a‘ﬂ

connected component M which is compact and every member
of M is locally free. Then we have
)M A (v) is irreducible, and

(2) every semi-stable sheaf E with v(E) = v is stable,

PROOF. Since M P (v) is smooth, M is irreducible, We show
that every semi-stable sheaf F with v(F) = v belongs to M.
Let & be the restriction to S x M of a quasi-universal family
on S x M, (v) (see Appendix 2). We consider the functor
®(F) =R'n, . (8" enyF), i=0,1 and 2, of &,-module F
into the category of ‘yy-modules, If F is semi-stable, then,
for every stable sheaf E with v(E) = v(F), I (S, EYo F) # 0
is equivalent to F = E. Hence if F is semi-stable and v(¥) = v,
then O (F) is supported at most one point. Therefore, by
Proposition 2,26, we have 4° (F) = ¢! (F) = 0, Since dim S = 2,
@? (F) is canonically isomorphic to H? (S, E¥ @ F) at the poi
[E] of M, that is, ®* (F) ® k ([E]) = H? (S, E¥ @ F), Hence
¢? (F) is nonzero if and only if F is stable and belongs to M.
On the other hand, the cohomology class « (F) = ch(b° (F)) —

.
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ch (9 (F)) + ch (P (F)) € H* (M, @) does not depend on F
but depends only on v(F) by the Grothendieck-Riemann-
Roch theorem. If F belongs to M, the a (F) is nonzero. Hence
a (F) is nonzero for every sheaf F with Jv (F) = v. Therefore

every semi-stable sheaf F with v(F) = v is stable and belongs to »

M, which proves (1) and (2). q.e.d.

REMARK 4.5, In the above proposition, the assumption that

every member of M is locally free is superfluous. The proof

; works without this assumption, if one defines that functor &'

by & (F) = 7, - Ext (& n} F), where n_-Ext(*, *) is the
sheaf associated to the presheaf assigning
Ext s xu Flgxu’ *loxu) for every open subset U of M.

COROLLARY 4.6, If every semi-stable sheaf k- with b(E)‘=' v

is stable, the M A (v) is compact and irreducibie.

We assume that the moduli space M = M, (v) is compact.
Since the canonical bundle of M is trivial, ({12], Corollary
0.2), MA (v) is abelian or of type K3. We first consider the

case where a universal family exists on S x M.

LEMMA 4.7 For every sheaf &on S x M, the Chern character
ch(&) of E is integral, i.e., belongs to H* (S x M, Z).

Iy
PROOF. Put ch(&) = ;: chi(&)€E '6’011"'(8 x M, Q). ch! (&)
i=0 i=
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is the first Chern class ¢,(&) of &and is integral, Since H! (S)=

0, H*(S x M) is the direct sum of I*(S) and H?(M). Hence

¢, (@) is equal to ¢1,s(&) + ¢, A (&) € H*(S, Z)o

II’(M,Z ). Since both S and M have trivial canonical bundles,
both ¢,. s (&) and ¢, a (@) are even. lence ch?(&)
=% ¢, (&) — c, (&) is integral. By the Grothendieck-Riemann-
Roci theorem, the H*(S) @ H*(M).component of ch(g)-th
is equal to ('Il? (1) ch (Rins.. %) ® w, where w € H'(M)

is the fundamental cocycle of M. Hence ch?*(Z) and the
H?(S) ® H*(M)-coraponent of ch (%) are integral. Interchanging
S and M, we have that the H*(S) ® H?(M)-.component of
ch3(&) is also integral. Since H5(S x M) is the direct sum of
H*(S) @ H4(M), ch* (&) is integral. q.e.d,

Let & be a universal family on S x M, Put Z=
ﬂé’w/rds ch(&)*. & Vtd, . By the lemma, Z belongs to
H¥S x M, Z). Z defines a homomorphism

f:H¥S, Z)—— H*M, Z).
w w
(4.8) a —— nM'.(Zoné‘a)

THEOREM 4.9, Under the above situation, we have

(1) M is a K3 surface,

q
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~
(2) f is an isometry from ﬁ(S, Z) onto H(M, Z) with respect
to the quadratic forms defined in(1.1), and

v

(3) the inverse of f is equal to the homomorphism

f i H¥M,Z) —— H*(S, Z)
W W
(5 Br—— ng J(Z e u}B)

defined by Z' = n ¥ Vtdg+ ch(&) - ni Vid, .
For the proof, the following is essential.

PROPOSITION 4.10. Let & be a universal family on S x M,
Let n, and m; be the two projections of S x M x M onto
S x M. Then n, ., —Exti(n &, 7%, &) is zero if i #+ 2and
Mo xar — EXt? (7 1%, ¥ &) is supported on the diagonal
subscheme A of M x M and is a line bundle on A

PROOF. If E, F € M, (v) and E % F, then Ext’, (E, F)=0

for every i by Proposition 3.8. Hence the relative Ext-sheaf

P"MXM_' Exti(n%&, n* ,&) has a support on A. Since Ais

locally complete intersection, the relative Ext-sheaf is zero for

both i = 1 and 2, by Proposition 2.26. By the base change
theorem, m,, ., — Ext? (n%,&, n¥&) is canonically-

*  isomorphic to the 1-dimensional vector space Ext? 0 (E,E)=
Fnda (E)¥ at the point ([E], [E])€ A. Since M is a moduli
space and & is a universal family, the sheaf = A XA

., Ext*(n*,2& n*,,8&) is annihilated by the 1dealJ’A of A.
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'I‘herefore,nMxM — Ext?(n*, ,E,g* 13 E)is a line bundle on A.
qed.

PROOF OF THEOREM 4.9. : The following is the key to our
proof, 1

CLAIM : The endomorphism f o f of H¥M, Z) is the

identity. : “~N

The homorﬁorphisms f and f’ are given by cycles Z and Z* on
S x M. Using the projection formula, it can be easily shown that
f o [’ is given by the cycle % = ".ux,;t, o (n¥ 2 Zn*,,2"), where
my2 and 7,3 are same as in the above proposition. Precisely
speaking, (f o ) (B) = m, ., (Z-n*,8) for every f & H*(M, Z),
where n, and n, are two projections of M x M onto M, By the
definition of Z and Z’, we have :Z = (m* \/@‘—). (m* JEI;)

Tarxar,, (U where U = (n¥, ch(&Y*) n*td. (n¥, ch(&)). By
the Grothendieck-Riemann-Roch theorem, the cycle n MXAL,® U)
is rationally equivalent to 2{3(-—12:" ch(my ya -Exti(n*,, 8
m3* &)). By the above proposition, Z is rationally equivalent to
m*Vtd, .ch(8,L).m, *'\/td_M' where L .is a line bundle M and
6 : M- M xMisthe diagonal embedding. Therefore, f o f’ is q
the multiplication by ch(L) € H¥(M), i.e., (fo ') (B) =B-ch(L)
for every € H¥(M,Z). Let p be the factor change of M x M,
Then (1 x p)*U is equal to U*, Hence, we have p*(nMxM' . U)
= (7erM' +U)*. On the other hand, since A x, U has a
support on A, we have p¥(m,, XM, * U) = LTI U. Hence we
have ch(84L)* = ch(84L). Since S is a K3 surface, the line
bundle L is trivial. Therefore, f o f’is the identity.



~

\

MODULI OF BUNDLES ON K3 SURFACES 383

By the claim, II*(M,Z) is a direct summand of H*(S, Z).
Since Z and Z' belong to H¥(Sx M,Z).f and f’ preserve the
~ decompositions II* = H'" ® H°¥  of the cohomology groups

H¥M, Z) and H*(S, Z). Hence HoM (M, Z) is a direct

summand of H%¥ (S, Z) which is zero, since S is a K3 surface.
Since M has a trivial canonical bundle, we have, (1). 3y

1), H¥(M, Z) and H*(S, Z) have the same rank ( = 24).

(‘ Therefore, f is an isomorphismn, which shows (3). Let ¥ = 74
S:-» Spec € be the structure morphism of S. Then our inner
product (a. «’) on H(S Z) = H*(S, Z) is equal to rala* a').
Hence, by the projection formula, we have

~*

(. f'@B)= g  (a¥mg (1% JtdSech (&)omt, J I, «n% B)

(% a* S LAY tdS «ch(&)sn*, J td o 1%, B)

75- ¢ "so .

]

Vs xat, o (n*ga *.-n’l',:' Boch(g’)-{/ tds“, ).

]
for every « € H¥((S, Z) and B€ H*(M,Z). Ina similar way,

(mre have

B. (@) = Ygypy,o (T4 BFemEasch(§)*ed tdg, )-

Therefore (a.f'(8)) = (f(a). B) for every o € H*(S. Z) and
H*(M, Z), that is, f and [’ are adjoint to each other with respect
to the inner products ( . ) on H*(S,Z) and H*(M,Z). By (3),
f' o fis the identity. Hence we have (f(«). f(a')) = (a. f(f(a))) =
¢ (a.a’) forevery a, o' € H¥(S, Z), which proves (2). q.e.d.



384 8. MUKAL

Now we assume only that M = M 4 (V) is compact and thatg p
is a quasi-universal family on S x A and prove Theorem 1.4 and
1. 5. Let o(&) be the similitude of & and put Z =
n* Vid,. ch@)a* Vidy/o@) € H*(S x M, Q). z
induces a homomorphism '

f:H¥S, Q) — H°(M, @)
w w q

ar—— m, «(Z n¥%a).

The H°(M, ®')-component of f(a) is equal to (v.a). Hence the
orthogonal complement v! of v in H*(S, Q) is sent into
H' (M, ©) @ HY(M, ©) by .

LEMMA 4.11. f() is equal to the fundamental cocycle
we H (M, Z).

. PROOF. Let F be a member of M = M, (v) and let D2 (F) be
same as in the proof of Proposition 4.4 and Remark 4.5. By the
Grothendieck-Riemann-Roch theorem, we have ch(d? (F)) =
Ty (ch(g’)*on*s(ch(F)'tds)) = o(&) JtTM“'-f(ch(F).JuTs =
o(é‘)\/@"f(v). Now & (F) has a support at the point x € M"Y
corresponding to F and 4?(F) @ k(x) is canonically isomorphic
to Ext’(/s (g]s «x F). Since &is a quasi-universal family, 8’|s X x.

is isomorphic to F**® | Hence P}(F) ® k(x) is a o(&)

-dimensional vector space. On the other hand, since A is the
moduli space and ¥ is a quasi-universal family, $?(F) is
annihilated by the maximal ideal at X, Hence d*(F) is
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isomorphic to R(x)*°D and ch(P*(F )= o(&)w, which proves
our lemma. q.e.d.

By this lemma, we see that f induces a homomorphism

Yo (v! in HX(S, ©))/Qv -~ HY(M, ©).

(‘ Proof of Theorem 1.4 and 1.6 : If & is a quasi-universal

family on S-x M, then so is &e n%, V for every vector bundle
V on M. We first show that the two homomorphisms ¢g and
Yo, v for &and e n*, V aresame, The similitude o(@e ¥,

is equal to o(&) r (V). Hence ch(& @ ¥, V)/o(& @ n#, V) is equal
to (ch(@)/o&))n*,(ch(V)] r(V)). Therefore, we have

fow (@) =fo @) {(ch(V)/(V)) for every a € H*(S, ©).If (v.a) =
0, then H°(M)-component of fO («) is zero. Hence the
H*(M) -component of fQ'V(a) is same as that of fo(a).
Therefore, ¢q , and ¢q are same. If & and ¥ are
quasi-universal families on S x M, then there exist vector
bundles U and V on M such that Fe a* U ¢ Fe ¥V
(Definition A.4). Ilence, by what we have shown, the two
homomorphisms y ¢ 8 for & andf are same, which shows (1)

f of Theorem 1.5.

)

We prove (2) and (3) of Theorem 1.6 by a deformation
argument. Both are reduced to the case where a universal family
exists on S x M. Let T be the moduli space of K3 surfaces S’
with isometric markings i’ : H? (S‘Z)—* H*(S',Z). Let Ty be
the subspace of T consisting of (S, i')'s for which i'(¢, (A)) and
2 = i'(2) lie in H'»'(S’) and i'(c,(A)) is positive. To contains
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(S, id) and has dimension 18 or 19 according as ¢, (A) and £ are
linearly independent or not. Let A’ be an ample divisor on S’ *
such that ¢, (A*) = i* (¢, (A)) and put v* = (r, £, 8). The family of
moduli spaces M 4(v") is smooth over an etale covering of T,
([12]) Theorem 1.17), There exists a family of quasi-universal
families & on §, x M, (v), t € T,, which is flat over an etale
covering of T, By Proposition 4.1, the compactness of M 4(V)

is an open conaition : There exists an open neighbourhood U of ~% .
(S, id) such that M, .(v') is compact for every (S, i') € U. On

the other hand the set of (S', i’) which satisfy

(*) there exists a divisor class m € H'" (S; Z) such that
G.C.D.(r, (8.m),8) =1

is dense in To. By Theorem A. 6 and Remark A. 7, for such S’,
there exists a universal family on S x M , +(V’). Hence there exists a
pair (S’, i’) for which M’ = M .(v’) iscompact and a universal
family &" exists on $ x M’, By Theorem 4.9, M’ is a K3 surface
and (2) and (3) of Theorem 1.6 are true for this $' and &,
Hence M is a K3 surface and (2) and (3) of Theorem 1.5 are
true for this S* and for every quasi-universal family % on S x A,
Since (S, id) and ¥ is a flat deformation of (S, i')y and F, (2)
and (3) are also true for S. The second half of Theorem 1.4
follows from (2) and (3) of Theorem 1.5. q.e.d.

v

§6. Existence of simple u-semi-stable semi-rigid sheaves

_In this section, we show the existence of simple pu-semi-
stable’\ls sheaves E with v(E) = v for primitive isotropic vectors
vof H''\(S, Z), _ '



yMODULI OF BUNDLES ON K3 SURFACES 387

THEOREM 6.1, Let v = (r, %, 8) be a primitive isotropic
vector of H 1.1(S, Z) of rank r 2. 1 and A an arbitrary ample
divisor, Then there exists a simple p-semi-stable sheaf E with
v(E) = v, i.e. SM , (v) is nonempty.

<

By virtue of Theorem A.1, this theorem is equivalent to the
following stronger version :

F
THEOREM 6.2, Let m be a divisor class of S. Then the
simple p-semi-stable sheaf E can be chosen so that E satisfies
the following condition :
(*) (cy (F).m)/r(F) 2 (c,(E).m)/r(E) holds for every non-
torsion quotient sheaf F of E with u (F) = u(E).

. In fact, if n >> 0, then nA + m is ample, By Theorem 6.1,
there exists a simple sheaf E with v(E ) = v and which is

p-semi-stable with respect to A + 1 =-m, By Theorem A,1, there
exists a simple sheaf E which is p-seml-stable with respect to
infinitely many A + % m. It is easy to see that this £ satisfies
(*) in Theorem b5.2. We prove these theorems by induction on
. In the case r = 1, E = () ® m satisfies our requirement
for a maximal ideal M of &, In fact, v (E) = » and E is p-stable
with respect to any ample line bundle. Assume that Theorem
6.2 is true in the case of rank < r, Under this assumption, we
= shall show that Theorem 5.1 is true for every v of rank r.

Step 1. Assume that -r <8 < 0 and (2.A) = 0. Then there
exists a simple p-semi-stable sheaf E with v (E) = v.

tn
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PROOF. By the induction hypothesis, there exists a simple
k-semi-stable sheaf F with v(F) = (-s, ¢, -r). Since u(F) =0, )
the canonical homomorphism f : H® (S, F) @ ﬂ; - F is injective
and for every nonzero homomorphism g : F -» (9;, the cokernel
of g is of finite length, Here we apply Theorem 5.2, putting .
*m =—R, Then we can take F so that

- (¢1(G). R)/(G) 2 - (82)/r (F) ~

holds for every nontorsion quotient G of F with M(G) = u(F).

Since (2%) = 2rs < 0, (¢,(G). £) is negative. Hence, for this

F, we have Hom, (F, ;) = 0. Therefore, by the Serre
s

duality, H*(S, F) = 0 and F satisfies (2.21). Let E be the
reflection of F (see §2). Then v(E) = v and there is an exact
.sequence

0~ 1S, NS Ik ks H(S FYed, -0,

Since F is p-semi-stable and u (F) = u (&), the cokemel of f is

torsion free and p-semi-stable, Hence E is torsion free and

u-semi-stable, By Proposition 2,25, E is simple. ﬂ
, q.e.d.
We do not use the full strength of the above step but only

the existence of simple torsion free sheaves on monogonal K3
surfaces, A quasi-polarized K3 surface (S,A) is called monogonal

- if there exists a smooth elliptic curve C on S with (A.C) =1,
Put g =3 (A?) + 1. Then (A — £C)* =2 and (C. A. —gC) = 1.
Hence there exists an effective divisor D such that D ~ A —gC.
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If p (S) = 2, then Pic S is generated by C and D and D is a
smooth rational curve, S is a double cover of the P!-bundle
F, = P (ed(2)) over IP!. A divisor aC + b(C + D) on S is
ample if and only ifa > b >0, ‘ ’

Step. II. Assume that S is monogonal and p(S) = 2. Then-
there exists a simple torsion free sheaf E on S with v(E) = v.

PROOF. ¢ is equal to aC + b(C + D) for some integers a and ~
b. Take an integer b’ so that b’ = b mod r and | b’ | £ r/2.
Then take an integer a' congruent to a modulo r so that r/2 <
[a | 5 8r/2 and a'b’ < O if b’ # 0 and so that -r <a’ 2 0 if
b’ = 0. Put & =a’C + b’ (C + D). & is congruent to £ modulo
r and s' = (2°2)/2r is an integer. We show the existence of a
simple torsion free sheaf E’' on S with v(E’) = (r, &, 8'). Then
E=FE ® ﬂ;((ﬁ — ¢')/r) is a simple torsion free sheaf and
satisfies v(E) = v. If b’ # 0, then .3rt/4 s a'b’ < 0 by our
choice of a’ and b'. Since (2'2) = 2a'b’, we have -3r/4 £ s’ <O,
Put H = a'C — b(C + D), If b’ # 0, then H or —H is
ample. Since {(H.2') = 0, there exists a simple torsion free sheaf
E’ with v(E’) = (r, £, §') by Step . If b' =0, thens' = 0. Since
v' is primitive, r and @’ are coprime. Hence there exists a simple
vector bundle £ on the elliptic curve C of rank -a’ and degree r
by [1] (see also §2 [18]). & is generated by global sections and
HY(C, £) = 0 (see Lemma 5.3 below). We regard {asa sheaf on
S supported by C. Let E' be the kernel of the natural
homomorphism ¢ : H%S, §)® J; > £. Thengpis surjective and

E' is a vector bundle, Since dim H°(S, ) = dim HO(C, &) =T,
the rank of E’ is equal to r. Since £ is a simple sheaf and since
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H\(S, £) = 0, E' is simple, (Every endomorphism of E comes
from that of £.) qged.

LEMMA 5.3. Let E be an indecomposable vector bundle of
rank r and degree d on an elliptic curve C. If d > r, then Eis
generated by global sections and H'(C, E) = 0,

N

PROOF,. Let th be the greatest common divisor of r and d.
Then E has a filtration

0=E,CE,C...CE, =E

such that E'./E,..‘ is indecomposable and has rank r/h and
degree d/h forevery i=1,2,...,h Hence we may assume that
rand d arecoprime. Then, by Lemma 2.2 [1] , E is simple. Letd/r’ !

be the greatest irreducible fraction with d'/r’ <d/r and 0 <r’
< r. There exists a simple vector bundle E’ on C with rank r’

and degree d'. Since rd — rd’ = 1, we have X(£’, E) = 1 by the
Riemann-Roch theorem. Applying Part II [1] for E'Y @ E,
we have Ethﬂc (E', E) = 0 and dim Hom”c(E' E) =

Since E' and E are stable, the canonical homomorphism‘\
v:E’' ® Hom O (E’, E) > E is injective and the cokernel E’’ has -
no torsion. Smce HompC(E“ , E) =0, we have Ext'a (E', E")

= 0 by the Serre duality. Hence every endomorphism Cof E is
induced by that of E. Therefore, E' is simple, So we have
obtained an exact sequence of simple vector bundles
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O->E->E-+E"->0

Case for which d'/r' > 1 : By the induction hypothesis, our
assertion is true for E’ and E*', Hence so is for E.

Case for which d'/r' = 1: By our choice of d'/r', we have
r=d =1and d =r+ 1, E'is aline bundle of degree 1 and

(N isomorphic to (70 (p) for a point p on C. By the induction

i

hypothesis, E’’ is generated by global sections. Hence E is
generated by global sections except at p. Let L be the kernel of
the canonical homomorphism ¢ : H%(C, E) @ t7c - E, Since
V is generically surjective and since h°(C, E) =r(E) + 1, L is
a line bundle, If dim Hom,, (I, 7.) <h°(C, E), then E would
be decomposable, Hence we have h°(C L')y2d=r+1 By
the Riemann-Roch theorem we have deg L s - d and
deg (Image V) 2 d. Hence y is surjective.

q.e.d.

Next we study the case where A is primitive and 2 is a
multiple of A, say # = kA for an integer k. In this case, the
moduli space Mg , (v) is defined for every polarized K3 surface

(A(S A)of a flxed degree, say d = (A?). Let F (resp. F ) be the

moduli space of polarized (resp. quasi- polanzed) K3 surfaces
(S, A) of degree d. By the Torelli theorem([7], [20]), F dand
F, are irreducible.

Step I1I. There is a nonempty open subset U of F y such that

M is nonempty for every polarized K38 surface (S, A) € U,

S.A

PROOF. If (S, A) is monogonal and p(S) = 2, then there
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exists simple torsion free sheaf E with v(E) = v Since
{Spl s (V) }(s, Aery is a smooth family over an etale
‘covering of Fd (Theorem 1.17 [12]), there_ exists a simple
torsion free sheaf E' on S’ with v(E’) = (r, kA", s) for every
small deformation (S} A’) of (S, A). The polarized K3 surfaces «
(S} A’) with p(S") = 1 form a dense subset in F e Hence there
exists a polarized K3 surface (S, A’) with p(S8’) =1 and a
simple torsion free sheaf E’ on S’ with v(E') =(r, kA", s). Sinceq
(v(E')*) = 0 and p(S') = 1, E’is stable, by virtue of Proposition
3.14, Since {MS'A (V) (s ayer, i8 a smooth family over an
etale covering of F ,, there exists an open neighbourhood U of
(S} A’) which satisfies our requirement. g.e.d,

Step IV.If 2 is a multiple of A, then there exists a sheaf E
with v(E) = v and which is stable with respect to 4, i.e. Mg 4 )
is nonempty for every (S, A).

PROOF. By Langton’s theorem ([6] sce also (9] §5), the
family { M s, 4 Whs pe F, of the moduEspaces of semi-stable
sheaves is proper over F 4+ By Step III, Ms_,_ 4V) is nonemptyq
over a dense open subset of F 4+ Therefore Ms. A (v) is nonempty
for every (S, A) € F, Letn 1> Fbea family of polarized K3
surfaces. Then, by Maruyama [9) § 4, the (coarse) moduli
space I] : A_l-y;,,. = F of semi-stable sheaves on./7F exists and
each fibre of Il is canonically isomorphic to the moduli space of
semi-stable sheaves on the corresponding fibre of n. In particular,

the function F, 3 (S,A) w» dim ﬁsa (v) is upper
semi-continuous. Since dim A A ) % dim Mg, (v) = 2 for
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every member (S, A) of U in Step II, we have dim HS.A )22
for every polarized K3 surface (S, A). By Proposition 3.14, the
complement of Ms. 4 ) in IWS' 4 @ is discrete. Hence
Ms, A V) is nonempty for every (S, A) € F,. q.e.d.

Now we return to the general case.

P Step V. There exists a simple sheaf E with v(E) = v and which
is p-semi-stable with respect to A .

PROOF. If a sheaf E is stable with respect to A, then E® L is
simple and p-stable with respect to A for every line bundle L.
Hence, by Step 1V, our assextionistrueif ¢ = kA mod r for an
integer k. In particular, SM“m Ate (1 29) is nonempty for
every n >>0. Since the sequence {A + 2/rn} of Q-divisors
converges to A, we have, by Theorem A. 1, SM # L, &, 8) is
nonempty. ’ q.ed.

We have completed the proof of Theorem 5.1 and Theorem
6.2. By Step 1V, we have also proved the following,

(AI‘H'I'\JIOREM 5.4. Let v = (r, 8, s) be a primitive isotropic vector
of H"'' (S, Z) and assume that ¢ is ample. Then there exists a
sheaf E with v(E) = v and stable with respect to %, i.e.,
Mo(r, 8, 8) #¢.

§6. Application to the lodge conjecture

In this section, we apply the results in § § 4 and 5 to show
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that certain Hodge cycles Z on a product S x S’ of two alge-
braic K3 surfaces Sand S’ are algebraic (Theorem 1.9). We first +
consider the special case for which T, = (T ), where p = f; as

in Theorem 1.9.

Step I. Let ¢ : T 3 Ty . be a Hodge isometry between the
transcendental lattices of S and S". Then there exists an algebraic
cycle We H* (Sx S, Q)on S xS such that ¢(a) = ~

Tg',* (Wem*a) for every a € Tg.

We remark that there exists an isomorphism f : ' =+ S such
that f* = ¢ on T if p(S) > 11 (proposition 6.2). But this is not .
true in general if p(S) s 11. In fact, there is a pair of K3
surfaces S and S’ such that T 2 T¢, but N $ , a8 lattlcés.
We note that two lattices H‘ ‘(S Z) and H ‘(S’ Z) :
isomorphic to each other, whlch is the key of our proof of
Step 1. More strongly, by Theorem 1.14.2 and 1.14.4 in [17],
we have

PROPOSITION 6.1 Let ¢,, ¢, : T -» H be two primitive
embeddings of a lattice T into an even unimodular lattice Hq
Assume that the orthogonal complement N of ¢,(T) in L

satisfies one of the following :

01
(1) N contains the hyperbolic lattice U = [1 0] as a sublattice .
or

(2) N is indefinite and rank N 2 rank T + 2,
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Then g, and ¢, are equivalent, i.e., there exists an isometry y

* of Hsuch that ¢, =v° ¢,.

We give a proof of the fact remarked above, which is a
prototype of our proof of Step I.

(A PROPOSITION 6.2. Let S and S’ be algebraic K3 surfaces

_'9

and ¢ : T¢ ~ Tg. be a Hodge isometry. If p (S)> 11, then there
exists an isomorphism f : S - 8 such that f* =pon Ts.

For the proof, we need a version of Torelli theorem of K3

surfaces :

PROPOSITION 3.3, Let S and S’ be K3 surfaces and
Vs H¥S, Z)~> H*(S', Z) be a Hodge isometry. Then there
exists an isomorphism f : S' - S such that f* =y on Tg.

PROOF, By the strong Torelli theorem ([7]), the_re exists an

1,...,n)by

- 2)- curves C; = P' on S such that \l/-f*or,o---or".

isomorphism f : S’ = S and reflections r, (i =

Since [C'.] is perpendicular to T, r; is identity on T for every

i=1,....,n Hence we have our proposition, g.ed,

Proof of Proposition 6.2 : Apply (2) of Proposition 6.1 to
two primitive embeddings ¢ HX(S, Z) and T, < HX (S Z).
Smce H*(S, Z) and H*(S', Z) are isomorphic to each other
as lattices, we obtam an isometry \o H*(S, Z) » HYS', Z)
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such that ?ﬁ ITg = ¢. By the above proposition, there exists an

isomorphism f : §' - § such that f* = @ which proves our *

proposition, q.e.d.

Proof of Step I : The orthogonal complement of T in the
extended K3 lattice H (S, Z ) is isomorphic to Ng L U. Applying

(1) of Proposntlon 61 to the embedding of T’j

and T into H(S Z) and H (S Z), we see that there exists
an isometry & : H(S , Z) > H(S, Z) such that &) Tg = ¢
Put v = (0, 0, 1) = (1, & s) and u = P(1, 0,0) =(p, k, q).

® maps I’\Ill.'l (S’) onto H ''(S). Hence both £ and k are
divisor classes on S, Let m be a divisor class on S. The Chern
character €™ of the line bundle &, (m) is a unit of the

cohomology ring H* (S, Z). Hence the multiplication by e
induces a Hodges isometry ‘I’ (bm(r 2, 8) = (r, R+rm, s+(m.Q)+

I(m?) of the extended K3 lattico s, z) = uxs, z).
Replacing ¢ by ¢, © & for a sufficiently ample divisor m, we

can choose ® so that s is positive. Since the change of r and s is
an Hodge isometry, we choose & so that r is positive, Since

(wv) = - 1, the greatest common divisor r, (%) and s is equah

tol.

CLAIM: There exists an integer n such that rand s + n(Q.k)are
coprime,

Let d be the greatest common divisor of s and (2.%). Since
s/d and (2.k)/d are coprime, there exists an integer n such that
r and s/d + n(%.k)/d are coprime. Since r and d are coprime, so
are rand s + n(R.k).

-

.
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Take n as in the claim and replace ¢ by ‘bn X ° &, Then, by

' the claim, r and s are coprime. Replace ¢ by (br A° ¢ again for
a sufficiently ample divisor A, Then r and s are still coprime and

2 become ample. Let M be the moduli space M (v) of

. sheaves E with v(E) = v which is stable with respect to £.
By Theorem 5.4. M is nonempty. Since r and s are coprime,
every semi-stable sheaf is stable. Hence M is compact
(‘md hence 1rreduc1ble by Corollary 4.6. By Theorem A.6 and
Remark A.7, there exists a universal family & on S x M, By

Theorem 4.9, the cycle Z = *\/ td- ch (&) n:; v td,,

induces a Hodge isometry \l/ II (M Z) -~ - K (S, Z), with
¥(8) = v, where § =(0,0,1). dr! o ¥ is an isometry and sends
8 to 8 Hence &r'oW¥ induces a Hodge isometry from
HYM, Z) = ¥'(v* [ Zv) onto H?(S", Z) = & (v}] Zv).

By Proposition 6.3, there exists an 1somorphlsm f: S' - M
such that f* : H* (M, Z) » H*(S', Z) coincides with & ' o W
on TM . Then the Chern character ch ((1 x )*&) € '\fl *(S xS,
%) of (1 x f)* E induces a Hodge isometry ¥ ': H(S", Z) ~
H(S, Z) which coincides with ¢ (or equivalently ) on T.. The
H*(S x 8’)-component W of Z induces a homomorphism 7 of
the Hodge structure H?*(S, Z) to H*(S' Z). r maps T. onto

(‘ .“S and coincides with ¢ on Ts" q.e.d.

Let v = (r, 2, s) be a primitive isotropic vector of ;I" 1 (8! Z)
and assume that the moduli space M =M ,(v) of stable sheaves
E with v(E) = v is nonempty and compact. Then, by Theorem
1.5, there exists an algebraic cycle Zon S x M defined by using
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the Chern character of a qpasi-universal family and Z induces a
Hodge isometry ¢ : V'/Zv - 1? (M, , Z). The transcendental ‘
lattice T, (regarded as a sublattice of H (S, Z)) is perpendicular
tov and To 0 Zv = 0. Hence v Yyzv contams a sublattice
isomorphic to T and ¢ induces a Hodge isometry ¢ : Ts -
T,,. ¢ is injective but not surjective in general.

.8

PROPOSITION 6.4, Let v = (r, 8, 8), M and o be as above. Le:ﬂ
n=n(v) be the minimum of |(wv)|, where u runs over all
vectors of i (S, Z) with (u.v) # 0. Then we have

(1) the cokernel of v is a cyclic group of order n,

(2) there exists a transcendental cycle \ € T such that 2 + e« -
H*(S, Z)is divisible by n, and

(3)if X satisfies (2), then p(\) € T,, isdivisible by nand p(\)/n
generates the cokernel of .

PROOF. For every v € H!:! (S, 2 ), (u.v)/n is an integer,
Since H S 2Z)is ummodular and 1.1 (S, Z) is a primitive
sublattice, there exists w € H(S Z) such that (u.v)/n = (w.v)
for every ve Hl 'S, Z).A=nw—uce II\I'(S Z) is perpendi
cular to H‘ 1'(S, Z) and hence lies in T. It is clear that A
satisfies (2). Assume that X\ satisfies (2). Then w = (A+v)/n
lies in v! and nw is congruent to A modulo Zv, Hence v(A)/n
lies in T, . We show that ¢(A)/n generates the cokernel gf "3
The transcendental lattice T, is isg\’morphic to (v! n H'?
S, Z)'/zv= Quve T sa)) N H(S, Z)/Zv. Leta bea
vector of (Qu @ T, @ Q)N H(S, Z). Thena=av+vfora€ @ o

2
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and v € T, ® Q. Take a vector u € i’}'"'(S. Z) such that .
'* (u.v) = n. Then we have an =a(u.v) =(a.V) € Z. Sincev=nw—A\,
we have a = (an)w + (¥-al). Since an is an integer, v - al lies in
TS and « is congruent to (an)w modulo Tg. Hence e(A)/n
generates the cokernel of ¢, which shows (3). If mp(A)/n lies
in T, then mw lies in T + ZV and is equal to A’ t+ bu for
N € T and b € Z. We have m(A+v) = n(\'+bv). Since
ﬂs N Zy = 0, m is equal to nb and divisible by n. Hence ¢{A)/n
has order n in Coke ¢, which shows (1). q.e.d,

We have thus proved the following

COROLLARY 6.56. Let M be a compact surface compoenet
of the moduli space of stable sheaves on S. Then there exists an
‘. algebraic cycle on S x M which induces a homomorphism ¢ :
Ty~ TA . such that ¢ ® Q is an isometry and the cokernel of ¢ is
a finite cyclic group.

Conversely, we have

p PROPOSITION 6.6. Let S be an algebraic K3 surface and
¥ :Tg > Thean embedding of the transcendental lattice T'g of
S into an even lattice T. Assume that the cokernel of WV isa
cyclic group of order r < co. Then there exists a compact
* component M of the moduli space of stable sheaves of rank r on:

S which satisfies the following :

» (1) there isan isometry i : T3 T, and
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(2) there is an algebraic cycle on S x M which induces i o y.

PROOF. Take a transcendental cycle 7 € T¢ ® © so that
(¥ ® @) (1) belongs to T and generates 7' modulo ¥ (T5). By
our assumption, X = rr belongs to 'I‘s. Since ‘Y © @ is an
isometry, (7,) is equal to (¥ © Q) (r)* ¢ (8)) and is an
integer for every g € 7. Since 113(S, Z) is a unimodular lattice
and since T isa primitiye sublattice of H*(S, Z ), there existsﬁ
cycle « € HY( S, Z) such that (« ., f8) = (7. B) for every transcen-

dental cycle g8 € T;. Then, the cycle € = r(a — 1) belongs to '
H*(S, Z) and perpendicular to T. Hence ® is a divisor class of
S. Moreover, £ + X is equal to ra and divisible by rin H*(S, Z).
Replacing a by a + (a sufficiently ample divisor), we can choose
a so that ¢ becomes an ample divi&or class. We put s = (2*)/2r=
r(a —7)*/2and v = (r, £, s) € H'"''(S, Z) and consider the
moduli space M = M A (v) of stable sheaves E with v(E) = v.
 Since (%) is an even integer, so is (a —7)?. Hence s is divisible

by r. Since 7 is transcendental, (2 . m) is equal to r(a . m) and
hence divisible by r for every divisor class m of S. Hence the
number n(v) (see Proposition 6.4) is equal to r. M (V) is
nonempty, by Theorem 5.4 and M: (v) is nonempty, by
Proposition 3.16, Hence by Proposition 4.3, there exists aﬁ
ample line bundle A such that M = M 4 (V) is nonempty and
compact and irreducible. By Proposition 6.4, there exists an
isometry i : T » T,, such that 9 =i~ W and y is induced by an
algebraic cycle on S x M. ged ¢«

Step II. Let ¢ : Tg > T. be a homomorphism of Hodge
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structures and assume that ¢ @ @ is an isometry. Then there
exists an algebraic cycle W € H4S x S', Q|) on S x S’ which
induces y.

PROOF. We prove our assertion by induction on the length £
of the cokernel of y. In the case ¢ =1, our assertion was proved
in Step I. Hence we assume that ¢ > 1. Take a sublattice T of
T such that ¢(T') g T and T/¢(T) is a cyclic group. Then,

by Proposition 6.6, there exists a K3 surface M which is a
compact component of the moduli space of stable sheaves such
that 7 e T and there exists an algebraic cycle W, on S x M
which induces T¢ ~» T = T,, - By induction hypothesis, there
exists an algebraic cycle W, on M x S8 which induces

T, =T - Tg. Then, the cycle Z = Moy *(T

%*
M sxmW,

n,‘,xs-* W) on Sx S’ is algebraic and induces p on T. q.e.d.

PROOF OF THEOREM 1.9 : By our assumption, there exists
a_primitive embedding T < A of T into a K3 lattice A. Since
Te® =T, 8Q the Hodge decomposition of T @ € induces
that of T @ € Weregard T as a polarized Hodge structure by
this Hodge decomposition. The orthogonal complement of T in
A is a hyperbolic lattice, i.e., has signature (1, *). By virtue of
the surjectivity theorem of the period map for K 3 surfaces [23],
there exists a K3 surface S and an isometry i : A > H¥( S$",Z)

such that i(T) = T, and i|T is a homomorphism of Hodge

structures, Both T¢ and Ts' contain T.. as a sublattice of
finite index, By Step II, there exist algebraic cycles on S x S

and on §" x S’ which induce the isometries T's,, & T and
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Ts.. < Tey respectively, Therefore, the composition of the
two algebraic cycles induces the Hodge isometry between 7' ® Q
and T¢.® Q. . q.e.d.

»

AP?ENDIX 1. Boundedness and existence of y-semi-stable 2
sheaves,

In this section, S is an arbitrary complete algebraic surface q :
over €. We study the behaviour of moduli spaces of p-semi-
stable sheaves with respect to An yn=1,2,3,..., when ample
Q-divisors A, converge to an ample divisor A,

THEOREM A. 1. Let {A } be a sequence of ample Q-divisors
which converges to an ample divisor A. Let ¢, be a numerical
equivalence class of divisors and ¢, an integer. Assume that,
for every n, there exists a sheaf E_ on S with Chern classes
¢, and ¢, (modulo numerical equivalence) and which is p-semi-
stable with respect to A,. Then there exists a sheaf E on S
which satisfies the following :

1) "there exists an infinite subsequence { A, k) of {A}

-

such that E is p-semi-stable with respect to every A"k’ and

(2) L is p-semi-stable with respect to A. q

Let P be a Zariski-open condition for sheaves on 8 which is “
independent of A, eg., simpleness or local freeness, If the'
open condition P holds for every En, then E can be chosen so
that E satisfies P. s
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For the proof of the above theorem, a certain bounded-
. ness of p-semi-stable sheaves is essential. Let S be the ample
conein H' ! (S, R) and.% its closure.

THEOREM A. 2. Let H be an ample divisor and B a
bounded subset of SN H? (S, @). Let S; (¢, ¢;) denote the
sel of isomorphic classes of rank r sheaves with Chern classes
, ¢, and c¢; modulo numerical equivalence and which are

(Nu-slable with respect to an ample Q-divisor A. Then the union

blgB‘S;, +p(€1, C2) is bounded.

In the case B ={0},this was proved by Maruyama in [8]
and our proof of Theorem A.2 is quite parallel to his proof in
§2 [8]. Let ay, ..., a, _, be a sequence of r—1 rational
) numbers and let S7 (a, s e a4 i ey, ) be the set of‘
= isomorphism classes of rank r torsion free sheaves of type

ay ,...,a , withrespect to H +b for some b € B (see p. 28
[8]) and with Chern classes ¢, and ¢, modulo numerical equi-
valence. Our Theorem A. 2 is a special case of the bounded-
ness of S, (ay , ..., @, _y L ¢, ) which follows from

Theorem A. 3 below and Theorem 1.14 in [8].

P THEOREM A.3. Let a be an integer and let S'B' a
(«y,...,a,_, :cy)betheunionof S}, (@y,enva, 1€,,€3)
for all ¢, = a. Then there are two constants by and b, (inde-

» pendent of each c¢,) such that for any member E of

Shoalar ..., «,_, i¢1), dimHO(S, E) S by and

dim H°(C, E © 0;,) 5 b, for any curve C in an open set

U(E) of |H), where U(E) may depend on E,
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PROOF. Our proof is quite similar to that of Theorem 2.5
in [8]). We only indicate the parts to be modified. It suffices to
show the theorem for the subset VS'B.a @y, ...y a,_,:ey)of
S'B,a (@y,...,a, _, :ecy) consisting of vector bundles in

Q:

Sp,(ay,..., a,_, :c¢;). We prove our theorem by induction
on r, Assume that the theorem is true in the case rank r — 1.
Under this assumption, we shall show that our theorem holds
for VS'B' @i, .., a _ :ep) Since B is bounded, thereq .

r

exists an integer n such that H(S, E(n)) # 0 for every member

E of VS’B'a(a, soes 0, o iey) (cf. Lemma 2.1 in [8]), where
E(n) is the abbreviation of E ® ;7 ®", Hence, for every member

E of VS'B' a(a. v+« . @, icy), there exists an exact
sequence : s

0->7s(D)eH® "™ S Es Fao

where D is an effective divisor and F is a torsion free sheaf of
rank r—1. Let L be the set of effective divisors D such that
o, (D) e H® ™ s contained in some member E of
VS;I,G (01 oo ,a’_l :cl);

CLAIM: L is bounded,

q

r—1

‘A O (D) is a subsheaf of E(n) and E(n)isoftypea, ,...,«
with respect to H + b for some b € B, Hence we have

(D.H+b) s p,  (EM)) +a,_, N(r—1) !
= (Cy . H¥b)r +n(H  H+b) +a,_, /r—1)
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x ' = (e H)r + n(H) + (c\Jr + nH  b) +

a,_,lr—1).

* Since B is bounded, R = sup (¢, /r + nH , b) < =, Since b
beB
belongs to o"and D is effective, (b . D) is nonnegative. Hence,

, (we have
(D.H) s (D.H+b) s (¢, . H)/r+n(H?) +fz +a, _ M(r—1).
Therefore, L is bounded,
Let G be a rank 8 quotient sheaf of F. Since G is a quotient

of £ and since E is of type &, , ..., a _, with respect to
v H+Db, we have

Byop (B —a, s py , (G).

Put a, ,, , = a, +{n(H.H+b) + (¢, [r — D .H+b)}/(x—1).

F'I‘hen we have By (B) —a, =, (F) A Put al =
Dei‘,lfeu OGQpop Then we obtain By (F)—-a‘ S, ,,0G).

Hence Fis of type oy ,.. ., a__, with respect to H + b, Let

' Q be the set of isomorphic classes of F’s which are obtained
from some E in VS'&,a @y ..., «__, ‘c¢y)asabove, Then,
by the above result, Q is a subset of

U I S, ey —hne, (H), ¢1)
AaA. . 1fa+p
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where A = L/(numeriéal equivalence) and f# = max {—(¢, —
DeL
D+nH « D—nH)}. By induction hypothesis, our theorem is true

for any member F of @ and our proof can be completed in the
same way as Theorem 2.6 in [8]. q.ed,

PROOF OF THEOREM A.1: Take an integer N so that
NA, —A is ample for every n. Applying Theorem A.2 for H= Aﬂ ~
andB= { NA — A}, weseethat the set & of isomorphic
classes of sheaves on S which are p-semi-stable with respect to
A, for some n is bounded. All E, s belong to & and hence there
exists a subfamily { F, : t €V} of & parametrized by a variety -
V which contains E_ for infinitely many n, say, forn=n,,n,
y « « « » Since p-semi-stability is an open condition, for each n K
thete exists a Zariski open set U x Of V such that F_ is p-semi-
stable with respect to A,,k (and satisfies the property P) for °*

every u € U,. V is a variety over € and is a Baire space. Hence

" the intersection of all U & § is nonempty. Theiefore, we have

(1). ‘(2) follows immediately from (1), because p A (F) =
lim pu A, (F) for every sheaf F on S, q.e. d.
k

ke
q

APPENDIX 2. Existence of a (quasi-) universal family

Let X be a scheme and A a connected component of the
moduli functorYp! x of simple sheaves on S.

DEFINITION A.4. (1) Let T be ascheme. A sheaf &on X x T'
is a quasi-family of sheaves in / if & is T-flat and if, for every
t € T, there exist an integer 0 and a member E of .#'such that
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lyxr =E ®0 If T is connected, then the positive integer o
does not depend on t € T and called the similitude of &

(2) Two quasi-families &, &’ of sheaves in.# on X x T are
equwalent if there exist vector bundles Vand V' on T such that
Gontv=&o ntv:

(3) Asheaf &on X x M is a quasi-universal family of sheaves

in A if & is a quasi-family and, for every scheme T and quasi-
family % on X X T, there exists a unique morphism f : T +' M
such that f*& and Fare equivalent.

By definition, if &on X x M and & on X x M'are quasi-
universal families, then M and M’ are isomorphic to each other
and & and &are equivalent.

THEOREM A.5. Assume that 4 is representable by a scheme
M of finite type in the usual topology (if k =) or in the etale
topology. Then there exists a quasi-universal family on X x M,

PROOF, For simplicity, we assume that # = € and M is
representable in the usyal topology. There exists an open
covering M = U U‘ (in the usual topology) and a universal family

B . R | ’ ’

& ; on U; x X for every i. Take a sufficiently ample line bundle
L such'that all higher ¢ohomology groups Hi (X, E @ L) vanish
for every member E of M. By the base change theorem, the
direct image V, =w_ , ( g: ® L) is a vector bundle on U ;» Where
m; is thé projection of X x U, onto U,. Shrink the covering
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U‘ U_ so that Pic (U N U.) =0 for every i #j. Then there exists

N
an isomorphism f;; : (flxx(u nuy ¥ &l xxw, n'ui)' ”

induces an isomorphism f . (f ® L): V 3 V on
U,n U wheren . lstheprOJecuonofXx(U NnU, )ontoU ﬂ U
We put«b(f) f ey (f ) g entvy

i 'xx(unu 3
8’®Jr*.v
it

i)
IXX(U nU )’

CLAIM: & (f'.}) o (l»(f’.k) ° (P(f“) is identity over
Xx(U;n Ui N Uk)forevery i, jand k.

By the functoriality of @, ‘I)(f )o (I)(f Yod(f ;) 18 equal to
(g;;, ), where Bijp =fij° i f,“ ik 1s an automorphism of
g,l,(xw nu.n u,overy,n U nu,. Smceg"isslmple

" over U,, the a(ltomorphlsm 31 x Of 8’- over U, N U; N U, is
multlpllcatlon by an mvertlble element of ﬁ L NUj N,

Hence @ (8',-,-,,) is identity.

By the claim, 6" @ mXV" can be glued together by o(f, )'

We obtain a sheaf & on X x M whose restriction to U, x X is
isomorphic to &; ® w*V for every I. We show that Z’ isa 7Y
quasi-universal famlly Let Fbe a quasi-family of sheaves in M

on X x. T. Since 3 ; are universal families, there exist a unique
morphism f : T -+ M, a vector bundle F,on f~ (U ) and an
isomorphism h, fix,(f L) 3 ((le)*‘Z’) @y, K, forevery s
i. We show that two quaspfamllies.%nd qo-— (1x f)*g onXxT

are equivalent. Define the homomorphism ¢ : C e T*my

%omﬂ'xxr (%5 "%omﬂx,(r(n*w.*g’ndﬂxXT(?'). 9 by .
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- p(@® [ (e) =fle(g)) for every g €, fE "*"*%omﬂ}(xf.

' ©.9)and e € n¥nx¥nd 7 (%), where = is the projection of
x .

X x T onto T. By using t)f\e 1Tsomorphisms h,, it can be easily

checked that this ¢ is an isomorphism. Since 7 x¥om Ovur

»

(Z.F)and 14&nd Oyix T(g) are vector bundles on T, two quasi-

families F and G are equivalent. q.ed.

-~

A quasi-universal family of similitudes 1 is nothing but a
universal family. On the existence of a universal family, we have
the following by an argument similar to the above and by an

, idea in [16] (and its improvement Theorem 6.11 in [9]).

THEOREM A.6. Let the assumption be same as in above
w~ theorem, Let p be the greatest common divisor of X (E ® N),
where E is a member of, / and N runs over all vector bundles on

X. If u =1, then there exists a universal on X x M.

PROOF, Let u, be the greatest common divisor of X (E ®N),
where N runs over all vector bundles on X which satisfy .
(*) all higher cohomology groups Hi(X. E @ N) vanish for
ﬁ,very member E of M.
We show that po = 1, Let &, (1) be an ample line bundle on
X. Then there exists an integer m, such that N(m) satisfies
(*) for every m 2 mgy. X(E ® N(m)) is divisible by y, for every
¢ m 2 my by definition. Since :X(E ® N(m)) is a numerical
polynomial on m, X(E © N) is divisible by po. Since N is an
arbitrary vector bundle, p, divides p and hence po = 1 by our
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assumption, Therefore, there exist vector bundles Ni with the ‘
property (*) and integers a, (1 £ v = n) such that ¥
v§1 a X(E © N) = —1. Let M = v, u, 8’; and
fii ¢ 28 xxw, U 3 Z; Xx(W;nU)) be same as in the proof .
of Theorem A b. By the property (¥), n (8’ em, *N )isa ,
vector bundle of rank X (E ®N ) on U for every i and v Put

= ®det (11' . (8’ em, °N L)) @“V , Where det denotes the highest
nonzero exterior power of a vector bundle The 1somorph1srq
f induces the isomorphism P 1L unu, 3L 'u ny. for every
i,} By the same argument as m Theorem A.b, we canlshow that
8’ & m; L on X x U, can be glued together by the isomorphisms
f Py and we obtam a sheaf & on X x M whose restriction to
X X U'. is isomorphic to Z’. ® 1rL for every i. Since 81 are
universal families, & is a umversal famlly

q.e.d.

REMARK A.7. If X is smooth, then every sheaf on X has a
resolution by a locally free sheaves, Hence it in the theorem is
equal to the greatest common divisor of "X (E ® N‘) where
E € .#and N’ runs over all sheaves on X, If X is smooth and
dim X = 2, then pu is equal to the greatest common divisor
of r(E), (e, (F) D) and X (E), where D runs over all divisors

of X, , ﬂ
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