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Curves, K3 Surfaces and Fano 3-folds of Genus <10

Shigeru Mukar*

A pair (S, L) of a K3 surface S and a pseudo-ample line bundle I, on S with
(L) = 29 — 2 is called a (polarized) K3 surface of genus g. Over the complex
number field, the moduli space F; of those (S, LY’s is irreducible by the Torelli
type theorem for K3 surfaces [12]. If L is very ample, the image S2g_2 of @z
is a surface of degree 29 — 2 in P9 and called the projective model of (S,L),
(13]. If g = 3,4,5 and (5,L)1is general, then the projective model is a complete
intersection of g — 2 hypersurfaces in P9. This fact enables us to give an explicit
description of the birational type of F, for g <5. But the projective model is no
more complete intersection in P9 when g >6. In this article, we shall show that

X is the quotient of a simply connected semi-simple complex Lie group G by a
maximal parabolic subgroup P. For the positive generator Ox (1) of PicX = Z,
the natural map X — P(H(X,0x(1)) is a G-equivariant embedding and the
image coincides with the G-orbit G -7, where v is a highest weight vector of the
irreducible representation HO(X, Ox(1))Y of G. For each 6 <9 <10, G and
the representation U = g0 (X, 0x(1)) are given as follows:

g 6 7 8 9 10

G SL(5) Spin(10) SL(6) Sp(3) exceptional

of type G,
dimG | 24 45 35 21 14

(0.1) U | A2VS  halr spinor  APVE ABYE/5 A 6 adjoint
representation representation

dim U 10 16 15 14 14
dim X 6 10 8 6 5

where V* denotes an i-dimensional vector space and o € A%V® i5 4 none
degenerate 2-vector of V6.

*Partically supported by SFB 40 Theoretische Mathematik at Bonn and Educational
Projects for Japanese Mathematical Scientists,
Received April 7, 1987.




358 S. Mukai

In the case 7 < g <10, dim U is e

qual to g+ n ~ 1, n = dimx, X is of
degree 29 — 2 in P(U) = potn-2

and the anticanonical (or 1st Chern) clasg

(This has been known classically in the cage g=
Borcea [1] in the case g =10.)

Theorem 0.2, If two K3 surfaces S and §' are intersections of Xag.s (7 <
9 £10) and g-dimensional linear subspaces P and P, respectively, and if S c p
and §' C P’ qre projectively equivalent, then, P and P' are equivalent under the
action of G on P(U), where G is the quotient of G by its center.

By the theorem there exists a nonempty open subset = of the Grassmann
variety G(n — 2,U Jofn—2 dimensional subspaces of U such that the natura]

e 7 < g <10, it is easily checked that
dimZ/G = 19 = dim Fg. Hence the morphism is birational.
Corollary 0.3. The generic K3 surface of genu

intersection of X292 CP(U) and o g-dimensional linear subspace in a unigque

way up to the action G on PU). In particular, the moduli space Fq 1s bira-
tionally equivalent to the orbit space G(n — 2, U)/G.

S7T<9g<10isaqa complete

» Special vector bundles, instead of line

instance, the generic K3
surface (5, L) of genus 10 has a unique (up to isomorphism) stable rank two

vector bundle with ¢;(E) = ¢, (L) and cz(E) = 6 on it and the embedding of §
into X = G/Pis uniquely determined by this vector bundle E.
The following is the table of the birational type of F, for g < 10:

(0.4)

genus 2 3 4
birational type P(SBU3)/PGL(3) P(SZUZ)/PGL(ZI) P(U3U)/SO(5)
5 6 7
G(3,SZU5)/PGL(6) s G)Ug)/PGL(2) G(S,UIG)/PSO(lo)
8 9 10

G(6, A*V®)/PGL(6) G(4, U™)/PSp(3) G(3,9)/G,
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where U4 is a d-dimensional irreducible representation of the universal covering
group.

Corollary 0.5. Fq is unirational for every ¢ < 10.

By [5], there exists a Fano 3-fold V with the property PicV = Z(— Ky ) and
(—=Kv)® = 22. The moduli space of these Fano 3-folds are unirational by their
description in [5]. The generic K3 surface of genus 12 is an anticanonical divisor
of V and hence F, is also unirational.

Problem 0.6. Describe the birational types, e.g., the Kodaira dimensions, of
the 19-dimensional varieties Fgq for g > 0. Are they of general type?

If (S,L) is a K3 surface of genus g, then every smooth member of |L] is a
curve of genus g. Conversely if C is a smooth curve of genus g > 2 on a K3
surface, then O5(C) is pseudo-ample and (8,05(C)) is a K3 surface of the same
genus as C. In the case g < 9, the generic curve lies on a K3 surface, that is ,
the natural rational map

g 1Py = U |L| =~ M, = (the moduli space of curves of genus g)
(S,L)eF,

is generically surjective (§6). The inequality dim Mgy < dim P, = 19 + ¢ holds
if and only if g < 11 and vy, is generically surjective ([10]). But in spite of
dim Mjo = 27 < dim P10 = 29, we have

Theorem 0.7. The generic curve of genus 10 cannot lic on a K3 surface.

Proof. Let Fy, (resp. M3,) be the subset of Fio (resp. Miq) consisting of
K3 surfaces (resp. curves) of genus 10 obtained as a complete intersection in
the homogeneous space X§; c P( g). Mj, has a dominant morphism from a
Zariski open subset U of G(4, g)/G. Since the automorphism of a curve of genus
> 2 is finite, the stabilizer group is finite for every 4-dimensional subspace of g
which gives a smooth curve of genus 10. Hence we have dimM'm <dimU =
dim G(4,9) ~ dim G = 26 < dim Mjio. On the other hand Flo contains a dense
open subset of F;3 by Theorem 0.2. Hence the image of 19 is contained in the
closure of M} = ¢4(F’ 10) and 1)y is not generically surjective. q.e.d.

Remark 0.8. Every curve of genus 10 has gi,, a 4-dimensional linear system of
degree 12. If C is a general linear section of the homogeneous space X5 C P13
then every gi, of C embeds C into a quadric hypersurface in P%. But if C is
the generic curve of genus 10, then the image C;, C P* embedded by any g%, is
not contained in any quadratic hypersurface. This fact gives an alternate proof
of the theorem.
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In the case 7 < g9 < 10, a Fano 3-fold Vag—2 C P9t is obtained as a
complete intersection of the homogeneous space X3* . and
of codimension n — 3 in PU) = pr+o-2, By the Lefschetz t
3-fold V = Vag—2 has the property PiclV = Z(-
has been known classically but was shown by tot
Theorem 0.2 holds for Fano 3-folds, too.

a linear subspace
heorem, the Fano
v). The existence of such v
ally different construction ([6))

Theorem 0.9. et Vog—2 and V! (7 < g9 £10) be two Fano 3-folds which
g 2g-2

are complete intersections of the homogeneous space ing_z C P 9=2 gng linear

subspaces of codimension n—3. IfVag_s and Vz'g‘z are isomorphic to each other,
then they are equivalent under the action of G.

We note that, by [1], the
complete in the sense of [7].

The original version of this article was written d
the Max-Planck Institiit fiir Mathematik in Bonn 19
Institute in University of Warwick 1982-3. He exp

both institutions for their hospitality. He also th
typing into BATRX.

families of Fano 3-folds in the theorem is locally

Conventions. Varieties and vector Spaces are considered over the complex
number field C. For 5 vector space or a vector bundle E, its dual is denoted by
EY. For a vector space V, G(r, V) (resp. G(V,r)) is the Grassmann variety of

r-dimensional subspaces (resp. quotient spaces) of V. G(1, V) and G(V, 1) are
denoted by P, (V) and P(V), respectively.

§1. Preliminary

We study some properties of the Cayley algebra C over C.Ci
over C with a unit 1 and

cation is given by

(1.1) e’ = —1 and €iCita = —€i1qe; = €;,4,
) for every ¢ Z/7Z and a = 1,2,4.

The algebra C ig not associative but alternative, te., z(zy) = z?y and
(zy)y = zy? hold for every 2,y € C. Let Gy be the 7-dimensional subspace of C
generated by e;,i ¢ Z /7Z and U the subspace of spanned by @ = e; 4 V=Tes
and 8 = eg — /“ley. It is easily checked that o = g2 = afl = fa=0,ie, U
is totally isotropic with respect to the multiplication of . Moreover, U is max-
imally totally isotropic with respect to the multiplication of C,ie,ifalU =0 or
Uz =0, then 2 belongs to U. et q be the quadratic form 9(z) = 2% on ¢y and
b the associated symmetric bilinear form, b(z,y) is equal to Ty
andy € . Let V be the subspace of Cy of

to g (or &). Since U7 is totally isotropic with respect to ¢, V' contains U and the
quotient V/U carries the quadratic form §
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Lemma 1.2. z'(zy) = b(z,y)z’ — bz',y)x + y(z'z) for every z,z' and y € C,.

Proof. By the alternativity of C, we have u(vw) + v{uw) = (wv + vu)w.
Hence, if u and v belongs to Co, then we have u(vw) +v(uw) = b(u, v)w. So we
have

!

z'(b(z, y) ~ yz) = b, y)o' — ' (yz)
bz, y)e’ - (b(z', y)z ~ y(z'z))
b(z,y)a' ~b(z', y)z + y(a'z).

z'(zy)

i

i

g.e.d.

Ifz € Uand y € V, then U(zy) = 0 by the above lemma and hence zy
belongs to /. Hence the right multiplication homomorphism R(y), z v zy, by
¥ € V maps U into itself. Since R(z) is zero on U if and only if z € U, R gives
an injective homomorphism £ : V/U — End(U).

Proposition 1.3. (1) R(z)* = 3(Z)-id  for every i e V/U, and

(2) Risan 1somorphism onto sl(U), the vector space consisting of trace zero
endomorphisms of U.

Proof. (1) follows immediately from the alternativity of C. It is easy to
check the following fact: if r is an endomorphism of a 2-dimensional vector
space and if 7? is a constant multiplication, then either r itself is a constant
multiplication or the trace of ris equal to zero. Hence by (1), R(z) is a con-
stant multiplication or belongs to si(U), for every z € V/U. Therefore, R(V/U)
is contained in the 1-dimensional vector space consisting of constant multipli-
cations of U or contained in the 3-dimensional vector space sl(U). Since the
quadratic form ¢ is nondegenerate on V/U, the former is impossible and R(V/U )
coincides with si(U). g.ed.

Let G be the automorphism group of the Cayley algebra C. It is known that
G is a simple algebraic group of type G;. The automorphisms which map U
onto itself form a maximal parabolic subgroup P of G. The subspace spanned
by e1,e; and e4 (resp. by e3 —v/~Tes and e + v—Te7) can be identified with
sl(U) (resp. UV) by R (resp. b). C is isomorphic to C @ U @sl(U)oUY and if
f € GL(U), then 1o f ®ad(f)® tfisan automorphism of the Cayley algebra C.
Hence the maximal parabolic subgroup P contains GL(U )and X = G/P can
be identified with the set of 2-dimensional subspaces of Co which are equivalent
to U under the action of G = AutC.

Let U be the maximally totally isotropic universal subbundle of Cy ® Ox:
the fibre U, C C; at z is the 2-dimensional subspace corresponding to z € X,
Let ¥ be the subsheaf of Co ® Ox consisting of the germs of sections which are
orthogonal to I/ with respect to the bilinear form b®1 on Co®0x. Vis arank
5 subbundle of ¢, ® @ x and contains U/ as a subbundle. The quotient bundle
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(Co®0Ox)/V is isomorphic to &Y by b® 1 and V/U has a quadratic form q®1
induced by ¢ ® 1 on Co® Ox. By Proposition 1.3, we have

Proposition 1.4. The right multiplication induces an isomorphism R from
V/U onto the vector bundie sl(U) of trace zero endomorphisms of U and R(z)?
i equal to (g @ 1)(z) - id Jor every z c V/u.

Next we shall compute the anticanonical class of X and the degree of Ox( 1),
the ample generator of PicX » and show some vanishings of the cohomology
groups of homogeneous vector bundles U(i) and (S2U)(3) etc.

Let Gbea simply connected semi-simple algebraic group and P a maximal
parabolic subgroup of G. Fixing a Borel subgroup B in P, the Lie algebra g of
G is the direct sum of b and 1-dimensional eigenspaces g°, where B runs over all
negative roots. If we choose a suitable root basis A, then there exists a positive
root & € A such that p is equal to the direct sum of €D 9" and b, where 7 runs
over all positive roots which are linear combinations of the roots in A \ {a}

Proposition 1.5, (Borel-Hirzebruch [2]) Let G, P, A and a be as above and
L the positive generator of Pic(G/P). Then we have

(1) the quotient 8/p is isomorphic to @ﬁERP 9P, where Rp is the set of pos-
itive complementary roots. In particular, dim(G/P) is equal to the cardi-
nality n of Rp,

2) (™) =n! HﬁERP %%}, where w is the fundamental weight corresponding
toa (or L) and p is a half of the sum of all Dpositive roots, and

(3) the sum of allB € Rp isr times p for some positive integer r and cy(G/P)
(or the anticanonical class of G/P) is equal to r times ¢, (L).

A homogeneous vector bundle on G/P is obtained from a representation of

P and hence from that of reductive part Gy of P. Note that the weight spaces
of G and Gy are naturally identified.

Theorem 1.6. (Bott [8]) Let E be a homogeneous vector bundie over G/P
induced by an irreducible representation of the reductive part of P. Let v be the

kighest weight of the representation and o a half of the sum of all positive roots
of G. Then we have

(1) i (Y+0,8)=0 fora positive root 3, then H{(G/P, E) vanishes for every
i, and

(2) let iy be the number of positive roots A with (v + p,8) negative (3o is
called the index of E). Then H{G/P, E) =0 for all i except for iy and
H*(G/P,E) is an irreducible G-module.
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Returning to our first situation, our variety X is the quotient of the excep-
tional Lie group G of type G, by a maximal parabolic subgroup P. The root
system G, has two root basis a; and a3 with different lengths and the root
corresponding to P in the above manner is the longer one, say ;. The line bun-
dle L = Ox(1) and the vector bundle UY(1) on X come from the representation
with the highest weights wy = 3a; +2a; and wy = 2a1 + gz, respectively, which
are the fundamental weights of G. Since U is of rank 2 and A2l = Ox(1),uv
is isomorphic to U(1). pis equal to wy + w; and the inner products of p, w;, w,
and the 6 positive roots are as follows:

o 3a1+a; 200 +ar Bai 42 ot o

p | 1 6 5 9 ] 3
wy | 0 3 3 6 3 3
wy | 1 3 2 3 1 0

By (1.5), X has dimension 5, ¢; (X) =3c;1(L) and has degree

3:3-6-3-3

5 = —_—e———————— =
(L)‘5'6-5-9~4-3

18

in P'3. The homogeneous vector bundles (S™U)(n) comes from the irreducible
representation with the highest weight mw, + (n — m)wz. Applying (1.6), we
have

Proposition 1.7. The cohomology groups of U(n),(S*U)(n) and (S*U)(n) are
zero except for the following cases:

(1) H*(X,U(n)) for n > 1, H*(X,(S*U)(n)) for n > 2 and HY(X, (S*U)(n))
forn >3,

(2) HY(X,(8*u)(1)) and HA(X,(S*U)(-1)), and
(3) H3(X,U(n)), H3(X, (S2U)(n)) and HYX,(S*U)(n)) for n < —3.

Let S be a smooth K3 surface which is a complete intersection of 3 members
of |Ox(1)|. By using the Koszul complex

(1.8) 0 — Ox(-3) — Ox(-2)® — Ox(-1)® — 0x — 05 — 0,
we have

Lemma 1.9. If E is a vector bundle on X and if Hi+j(X,E(—j)) =0 for
every 0 < j <3, then H'(S, E|s) = 0.

Since U is of rank 2, sl(/) is isomorphic to S ® (det U)~* = (S?u)(1). By
Proposition 1.7 and Lemma 1.9, we have
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Proposition 1.10. Let
4 HI(S, (sitd)(n)]5)
global sections.

S be as above. Then Hi(S, sl(U)|s) vanishes

Jor every
vanishes for every n and Uls or (Su)(

1)|s has no nonzery

$2. Proof of Theorem 0.2 in the case g = 10

Let A4 be a 3-dimensional subspace of H(X, L)and §
X = X135 and the linear subspace P(HO(X, L)/A) of P(HO
U4 be the restrictions of I and / to S4,
Grassmann variety G(3, H(X, L)) cons
K3 surfaces and that the vector bundles
line bundles Ly.

4 the intersection of
(X,L)). Let L4 and
respectively. Let = be the subset of the
isting of A’s such that S, are smooth
U4 are stable with respect to the ample

Proposition 2.1. = 4 @ nonempty open subset of G(3, H( X, L)).

Proof. U, is a rank 2 bundle and det Uy = ;11. By Moishezon’s theorem

[9], Pic S, is generated by L, if 4 is general. Since HO(S,, Ua)=0hby Propo-

sition 1.10, Uy is stable if A is general. Since the stableness is an open condition
[8], we have our pProposition. q.e.d.

In this section we shall prove the following:

(2.2) If two S-dimensional subspaces A and B belong to = and if the polarized
K3 surfaces (S4, Ly4) and (SB,LB) are isomorphic to each other, then S, and
SB, and hence A and B, are equivalent under the action of G.

Let p: 5, =, Sp be an isomorphism such that *Lp = Ly,
Step I. There is an isomorphism g Ua 5 o*Usp.

Proof.  Since ca(Ua) = ~¢1(La) and ¢;(Up
classes of U, and ©*Up are same. Since (SB,Ug
Up and U, have the same second Chern
Homos(UA,go*UB) and Endog(Uy) ha
same second Chern number. Therefor
Proposition 1.10, we have

) = —c1(Lp), the first Chern
) is a deformation of (S4,U4),
number. Hence the two vector bundleg
ve the same first Chern class and the
e, by the Riemann-Roch theorem and

X(Homos (UA> (p*UB))

It

x(Endog(Uy))
X(Os,) + x(sl(Uy)) = 2.

I

By the Serre duality, we have

dim Homos (UA, gD*UB) + dim Homos(lp*UB, UA)
2 xX(Homog (Uy, p*Ug)) = 2.
zero homomorphism from Uy to o

Uy and o*U B are stable vector bundles and have the
homomorphism is an isomorphism.

*Usg or vice versa. Since
same slope, the nonzero
q.ed.
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that w*Lg = Ly.
p*Up.

3) = —~ci{Lg), the first Chern
3) is a deformation of (S4,Us),
. Hence the two vector bundles
iame first Chern class and the
e Riemann-Roch theorem and

Ds (UA))
)+ x(sU(U)) = 2.

Moy (w*UB7 UA)
OS(UAa W*UB)) = 2.
A to ©*Up or vice versa. Since

e the same slope, the nonzero
q.ed.
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Step II. There is an isomorphism vy : ¢; = ¢, (as C-vector spaces) such
that the following diagram is commutative:

Ua 2 ©*Up
n N

1
CG®0s, 5 €005, =p*(c ® Os,)

Proof. Let v, be the dual map of
Hom(,B, OSA) : Homos(go*UB,OgA) — HomOS(UA;OSA)-

Claim: The inclusion U, ¢ Co ® Og, induces an isomorphism Hom(C,, C)-=
Homos (UA, OSA )

Let K be the dual of the quotient bundle (Co ® Ox)/U on X. The natural
map from Hom(Cy, C) to Homo, (U, Ox) is an isomorphism because both are
irreducible G-modules. Hence both H°(X,K) and H(X, K) are zero. By the
exact sequence

0——>I€—ac3’®ox—%uv~>0

and Proposition 1.7, we have H{(X,K(-i)) = Hitl(x, K(~i)) =0fori =12
and 3. Hence by Lemma 1.9, both H°(S,K|s) and H'(S,K|s) are zero and we
have our claim.

By the claim and by applying the claim to ¢*Uy ©*(Co ® Og,), we have
a homomorphism 7 : Co — Cp such that the following diagram

y
—3

Co G
L L
HomOs(UAa OSA)V i’ HOIHOS(QD*UB,OSA)V

Is commutative. Since B is an isomorphism, v, and 7 are isomorphisms and 04
enjoys our requirement. q.e.d.

Step III. There is an isomorphism « : ¢, % ¢, (as C-vector spaces) such
that (Y@ 1)(Ua) = *Up c €, & Ox and 2? = 4(z)? for every z € C,.

Proof. Take an isomorphism ~ which satisfies the requirement of Step II.
Put ¢(z) = 2? and ¢'(z) = 7(z)®. Then ¢ and ¢’ are quadratic forms on ¢,
and both ¢ ® 1 and ¢ ®1 are identically zero on U/ 4. Hence replacing v by

some multiple by a nonzero constant if necessary, we have our assertion by the
following:

Claim: The quadratic forms Q on Cy such that (@ ® 1)y, = 0 form at most
one dimensional vector space.
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Let A be the kernel of the homomorphism $%a : $2¢, g Ox — S2yv.
Since S2Cy is a sum of two irreducible G-modules of dimension 1 and 27 and
since H%(S%q) is a homomorphism of G-modules, we have dim HY(X,N) =
dim KerH($%q) = 1. By the exact sequence

H X, 8*UY (~n)) — H(X,N(~n)) — HY(X,5%, o Ox(-n))

and Proposition 1.7, H‘(X,/\/(—z')) is zero for every ; = 1,2 and 3. Hence by
the Koszul complex (1.8), the restriction map H%(X,N) — H(S,Ns) is

surjective and we have dim H°(S,M|5) < dim HYX,N)

=1, which shows our
claim.

q.e.d.

Step IV. There is an isomorphism v : ¢, -, Co such that (y ® 1)(Uy) =

¢'Up,z* = 7(z)? for every z € Cy and (re1)(zy) = (v ® D@)((y ® 1)(y))
for every z ¢ Ugandye Vy.

Proof. Take an isomorphism 7 which satisfies the requirements of Step III.
Then v ® 1 maps V4 onto ¢p*Vg ¢ Co ® Ox and induces an isomorphism T :

to S4. Consider the following diagram:

VA/UA -T—A> sl(UA)
Fl lad(“/@l)
¢*(Ve/Up) ©1f ©*sl(Ug)

The vector bundles sl(Ua) and sl(Ug) have the quadratic forms f s (trf2)/2
and all the homomorphisms in the above dia i

of Uy because H! (S$,Z/2Z) = 0. Since every endomorphism of U, is a constant
multiplication, g is equal to +id. Therefore, the above diagram is commutative
up to sign. Hence, for 7Y or —v, the above diagram is commutative, Since
2y = r4(§)(z) for everyz € Us and y € Vy, v or —7 satisfies our requirements,
where § € V4 /U, is the image of y € V,. q.ed.

We shall show that, for the isomorphism 7 in StepIV, 9y =1¢ vY:Cy— C®
satisfies §(zy) = ()% (y) for every z,y € Co. M 2,y € Cp, then 2y + yz is equal
to b(z,y), where b(z,y) is the inner product associated to the quadratic form gq.
Hence the realpart of zy is equal to b(z, y)/2, that is, zy—b(z,y)/2 belongs to Cj.
Since + preserves the quadratic form ¢, 4(z, y) and ¥(2)7(y) have the same real
part, that is, their difference belongs to Cy. Put §(z,y) = 5(x, ) — 3(z)5(y)for

very 2,y € Cp. 6:Co ®Cyp —> Co is skew-symmetric and §®1is identically
zero on U4 @ Va4 C Gy ® € ® Og,.

Step V. §®1 is identically zero on Va®VaCCy® Co®0g,.
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Proof.  Since §®1 is skew-symmetric and identically zero on U4 @ V4, §®1
induces a skew-symmetric form § on Va/Ua. Since V4 /Ua is isomorphic to
sl{Ua), A*(Va/U4)Y is also isomorphic to sli{U4) and has no nonzero global
sections. Hence & is zero and 6 ® 1 is identically zero on V4 @ V. g.e.d.

Step VI. Every homomorphism f from V4 to Uy, is zero.

Proof.  Since V4/U, is isomorphic to sl(Uy), there are no nonzero homo-
morphisms from V, /U4 to Os,. Hence V4 /U4 cannot be a subsheaf of Co®05, .
Therefore, the exact sequence 0 — Uy — Vy —o Va/Us — 0 does not
split. Hence the restriction flu, : Ug — Uy of ftoUy, is not an isomorphism.
Since every endomorphism of I/ 4 is a constant multiplication, f |v, is zero and
f induces a homomorphism f : Va/Ua — Uy, Since V4/U, = si(Uy), we
have

Homog(Va/Ua,Us) = H(Sa,sl(Us) @ Uy)
= HO(SA, Us® (SsUA) ® LA).
Hence by Proposition 1.10, f is zero and f is also zero. g.e.d.

Step VII.  § is zero.

Proof. Let T be the cokernel of the natural injection A2V, — ARGy ®
Os,. Since § ® 1 belongs to Home(T,Cy ® Og,), it suffices to show that
Homog (T, Og,) is zero. There is an exact sequence

2
0——>VA®EA——+T——->/\E’A—+O,

where E4 is the quotient bundle (Co® O5,)/Vy4 and isomorphic to UY by the
bilinear form b associated to g. By Step VI, we have Homo, (V4 ® E4, Og,) =
Homog(Va,Ua) = 0. Since A2E4 is an ample line bundle, Home, (A2Ey, O, )
is zero. Therefore, by the above exact sequence, Homeg (T, Os, ) is zero. g.e.d.

By Step VII, 1® ~ is an automorphism of the Cayley algebra C. The auto-
morphism of X5 = G/P induced by 1 @ v maps S4 onto Sp. Hence we have
(2.2) and, in particular, Theorem 0.2.

§3. Generic K3 surfaces of genus 7,8, and 9

The proof of Theorem 0.2 in the case 9 = 7,8, and 9 is very similar to
and rather easier than the case g = 10 dealt in the previous sections. The
(24 — 2g)-dimensional homogeneous spaces X = Xj, 3 C P?279 (g = 7.8 and
9) are also generalized Grassmann variety as in the case g = 10. In the case
9 =8, Xy4 C P is the Grassmann variety G(V,2) of 2-dimensional quotient
spaces of a 6-dimensional vector space V embedded into P(A?V) by the Pliicker
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coordinates. In the case 9=109, X C P is the Grassmann variety of 3.

dimensional totally isotropic quotient Spaces of a 6-dimensional vector space
V with a nondegenerate skew-symmetric tensor o ¢ ARV,
f:V Vs totally isotropic with Tespect to o if (f @ o) is zero in v SV,
The embedding X;5 ¢ P13 i the linear hull of the composite of the natura]
embedding X G(V,3) and the Pliicker embedding G(V, 3) C P(A*V). T
the case g = 7, x P s 5 10-dimensional spinor variety. Let V be a 1.
dimensional vector Space with a non
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of V has exactly two connected components
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Each homogeneoys Space X = X,
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(3.1) oﬂfﬁvggox—%fﬁo,

where & (resp. F) is the universal quotient

(resp. sub-) bundle and is of rank 2
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we have the exact sequence

(3.2) oﬂev—»V@)oxi»gﬂo,
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Proposition 3.4. Let S be a complete intersection of X = X2g9-2 C P29 4pq
& g-dimensional linear subspace and E the restriction of £ to S. Then

(1) HY(S,si(E)) =0 for every i,
(2) the homomorphism Ha): v HY(S,E) is an isomorphism,
(3) in the case 9 =7 (resp. 9), the kernel of the homomorphism HY(S%q)

Sty H°(S,8%E) (resp. HO(Aa) @ A2 HO(S,A’E)) 45 1.
dimensional and generated by o ® 1, and

(4) in the case 9 = 7 (resp. 8, resp. 9}, E(—l),(/\zE')(—l), (A*E)(=2) or

(A*E)(-2) (resp. E(-1), resp. E(~1) or (A E)(-1)) has no nonzero
global sections.

we have

We prove the proposition in the case 9 = 7. The other cages are similar.
According to [4], we take @i =€ —eiy1, 1 <4<4, and a5 = e4 +e5 as a
root basis of SO(10). The positive roots are e; + e;,4 < j and the conjugacy
class of the maximal parabolic subgroup P corresponds to as (or a4). The
homogeneous vector bundies Ox(1), A&, s1(€) and S2£ are induced by the ir-
reducible representations of the reductive part of P with the highest weights
%(61 +ooodes), ep +--- + €i, e1 — e5 and 2eq, respectively. The half p of the

sum of positive roots is equal to 4e; + 3e, + 2e3 + eq4. Applying Bott’s theorem,
we have

Lemma 3.5. (g = 7) The cohomology groups of S(n),(/\zé')(n),(slé')(n) and
(8°&)(n) vanish ezcept for the following cases:

(1) HY(X, &(n)), HO(X, (NE)(n)), B (X, (S2€)(n)) for n >0 and
HO(X,(slé')(n)) Sfor n>1,

(2) H%(X, (/\28)(—8)), and

(3) H‘O(X,é'(n)),Hm(X, (s1€)(n)) for n < —9 ang H(Xx, (A2E)(m)),
H°(X, (S2E)(m)) for m < -10.

Remark 3.6. In the above case g = 7, the 10 roots gite;, 1<icj< 5, are
complementary to P. Their sum is equal to 4(e; + ... 4 e5) and this is 8 times

-5, the self intersection number of

10! ] % =100 J] G+j)t =12
BERp V7 0<i<i<e

Hence X isa 10-dimensional variety of degree 12 in P15 and the anticanonical
class is 8 times the hyperplane section.

Proof of Proposition 3.4 (in the case g = 7): Sisa complete intersection of
8 members of |Ox(1)]. Hence, if Ais a vector bundle on X and Hite(x, A(—a))
vanishes for every 0 < ¢ < 8, then so0 does H'(S, Als).
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(1 and 4) (1) and the vanishings of HO(S, E(-1)) and HO(S, (A2E)(-1))
follow immediately from Lemma 3.5. Since A% is isomorphic to @ x(2), ARE is

isomorphic to (AS~k£)V g Ox(2). Hence by the Serre duality and Lemma 3.5,
we have

H(X, (A€)(~2 — 1))

IR

HOHX, (M%) V(2 +4 - 8))Y
HYH(X, (A26)( - 8)V =0

IR

and

HY(X, (A*€)(~2 - 1)) HOZ(X, (M) (2 +i - 8))v

H(X, £(i - 8)))" = o,

IR

for every 0 < i < 8, Therefore, (A*E)(~2) or
sections.

(2) By the Serre duality, (X, EY(-i)) and Hi+1(X,EV(~i)) are isomor-
phic to H'*~(X, £(i — 8))V and HP~H(X, £(i - 8))V, respectively and both are
zero for every 0 < i < 8§, by Lemma 3.5. Hence both H(S, EV) and H(S,EV)
vanish. Therefore, by the exact sequence (3.2), we have (2).

(3) Let K be the kernel of the homomorphism $%a : $2y g Ox — 5%£. We
have the exact sequence

(A*E)(~2) has no nonzero global

o—uc‘»sZV@oXﬁszg—»o.

The G-module 2V ig isomorphic to the direct sum of an irreducible G-module
of dimension 54 and a trivial G-module generated by . Hence the G-module
HY(X,K) = Ker H'(S%a) is 1-dimensional and generated by o. By Lemma 3.5
and the Kodaira vanishing theorem, H-Y(X, (8%€)(~i)) and HY(X, 0x(~i))
are zero. Hence by the above exact sequence, H(X, K(—%)) vanishes for every
1<i<as. By using the Koszul complex, we have that the restriction map

H(X,K) — H(S,K|s) is surjective. Therefore, the kernel of H(8%als)

is at
most 1-dimensional. Tt ig clear that the kernel contains o ® 1. Hence we have
(3).

q.e.d.

Proof of Theorem 3.3: Let § (resp. ') be a K3 surface which is a complete
intersection of X and a linear subspace P (resp. P') and E (resp. E') the
restriction of £ to § (resp. S'). If P is general, then Pic § is generated by
Os(1) and, by (4) of Proposition 3.4, E is stable. Hence we have i). Assume
that S and S’ are isomorphic to each other as polarized surfaces and that F
and E' are stable. By (1) of Proposition 3.4 and the same argument as Step
I'in §2, E and E’ are isomorphic to each other. By (2) of Proposition 3.4, we

FeoIn
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have an isomorphism 8 : V -, V7 ang a commutative diagram

Veos 5 g .,
1 | 1

Vieos s g,

Hence, in the case g = 8, S and S are equivalent under the action of GL(V). In
the case g = 7 or 9, by (3) of Proposition 3.4, %8 maps o to ac for a nonzero
constant a. Hence, replacing 4 by a'/23, we may assume that S%3 preserves o.
Hence S and §/ are equivalent under the action of SO(V, o) or Sp(V, o). qed.

§4. Generic K3 surface of genus 6

A K3 surface of genus 6 is obtained as a complete intersection in the
Grassmann variety G(2,V?) of 2-dimensional subspaces in a fixed 5-dimensional
vector space V. G(2,V?) is embedded into P° by Pliicker coordinates and
has degree 5. A smooth complete intersection X5 c P® of G(2,V?%) and 3
hyperplanes in P? is a Fano 3-fold of index 2 and degree 5. A smooth complete
intersection X and a quadratic hypersurface in P® is an anticanonical divisor
of X5 and is a K3 surface of genus 6. The isomorphism class of X5 does not

depend on the choice of 3 hyperplanes and X5 has an action of PGL(2) (see
below).

Theorem 4.1. Let § qnd §' be two general smooth complete intersections of
X5 and a quadratic hypersurface in PS. IfSCP® and $' P8 gre projectively
equivalent, then they are equivalent under the action of PGL(2) on X;.

All the Fano 3-folds of index 2 and degree 5 are unique up to isomorphism
[5]. There are several ways to describe the Fano 3-folds. The following is most
convenient for our purpose: Let V be a 2-dimensional vector space and f € SOV
an invariant polynomial of an octahedral subgroup of PGL(V). fis equal to
zy(z* — y*) for a suitable choice of a basis {z,y} of V. Then the closure X; of
the orbit PGL(V)- f in P.(8%) := ($%V — {0})/C* is a Fano 3-fold of index
2 and degree 5, [11]. H(X5,0x(2)) is generated by H'(X5,0x(1)) = S°V,
5], and has dimension $(=Kx)® +3 = 23. Hence the kernel 4 of the natural
map S*HO(X,0x(1)) — H'(X,0x(2)) is a 5-dimensional SL({V )-invariant
subspace. As an SL(V')-module, STHY(X,0x(1)) is isomorphic to S?(S%V) =
SV & S8V @ S*V ¢ 1. Hence we have

Proposition 4.2. (1) H(X5,0x(~Kx)) is tsomorphic to S12V @ $8V @ 1
as SL(V)-module, and

(2) the vector space A of quadratic forms which vanish on Xy C P is iso-
morphic to S*V as SL(V)-module.
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There is a non-empty open subset = of | — Kx| and a natural morphism
E/PGL(V) — F5. Both the target and the source are of dimension 19 and the
morphism is birational by the theorem. Hence by the proposition we have

Corollary 4.3. The generic K3 surface of genus 6 can be embedded into X5
as en anticanonical divisor in a unique way up to the action of PGL(V). In

particular, the moduli space Fe s birationally equivalent to the orbit space
(S%*v g SBV)/PGL(V).

First we need to show that PGL(V) is the full automorphism group of X :

Proposition 4.4. The automorphism group Aut X5 of X5 is connected and
the natural homomorphism PGL(V) — Aut X; is an isomorphism.

Proof. There is a 2-dimensional family of lines on X5 C P® and a 1.
dimensional subfamily of lines ¢ of special type, i.e., lines such that Nejx =
O(1) ® O(—1). The union of all lines of special type is a surface and has singu-
larities along a rational curve C. C is the image of the 6-th Veronese embedding
of P(V) = P! into P($°V). C is invariant under the action of Aut X5. Ev-
ery automorphism of X; induces an automorphism of C. Hence we have the
homomorphism « : Aut X5 — Aut C = PGL(V). Since alpar(vy is an isomor-
phism, Aut X; is isomorphic to PGL(V) x Kera. Let g be an automorphism of
X5 which commutes with every element of SL(V). Since S®V is an irreducible
SL{V)-module, g is the identity by Schur’s lemma. g.ed.

Next we construct an equivariant embedding of X; into the Grassmann
variety G(2,5%V). Let W be the 2-dimensional subspace of S*V generated
by z* + y* and 22y? for some basis {z,y} of V and Y the closure of the orbit
PGL(V)-[W]in G(2,5V). Consider the morphism J : G(2, $*V) — P, (S8V)
for which

_ 9x gy
J([Cg + Ch]) = det ( hx hy ) ,

where {X,Y} is the dual basis of {z,y}. Then J is a PGL(V)-equivariant
morphism and sends [W] to the point 7, f = zy(z* — y*). Hence J maps
Y onto X5 C P.(S°V). Define two GL(V)-homomorphisms ¢ : A254V —,
S’V @ (det V)3 and j : A284V —, §oy ®detV by

elgnn)= 3" 1jk(DiD;Dig)(D_iD_;D_1h) ® (X AY)™°
i,7,k=+1

and

ilgAh) = det( g;gg; gjggg ) ®(XAY),
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where D, are the derivations by X and ¥. The GL({V)-module A25%V is
decomposed into the direct sum of irreducible GL(V)-submodules Ker ¢ and
Kerj. Since o(A?W) = 0, the Pliicker coordinates of W lies in the linear
subspace P = P, (Ker ¢) of P.(A2S*V) and Y is contained in the intersection
G(2,5*V)NP. The morphism J is the composite of the Pliicker embedding
G(2,5*V) C P (A2S*V) and the projection P.(j) : P,(A25%V)... P.(S%V)
from the linear subspace P.(Kerj). Since the restriction of P.(j) to Pis an
isomorphism, J gives a PGL(V)-equivariant isomorphism from the projective
variety ¥ C P onto X C P.(5%V).

Lemma 4.5. Y coincides with the intersection of G(2,5%V) and P in
P.(A25%V).

Proof. Let Y' be the intersection of G(2,5*V) and P and B (resp. B')
the vector space consisting of quadratic forms on P which vanish on Y (resp.
Y’). Both Y and Y are intersections of quadratic hypersurfaces. Hence it
suffices to show that B = B’. Since G(2,5*V) does not contain P, B’ is not
zero. On the other hand, since ¥ c P is isomorphic to X; ¢ P® Bis an
irreducible SL(V')-module by Proposition 4.2. As we saw above, Y is contained

PGL(V')-equivariantly in Y’ and hence B’ is an SL(V)-submodule of B. Hence

B’ coincides with B. q.e.d.

So we have constructed a PGL(V)-equivariant embedding of X; into
G(2, S‘*V) and shown that X coincides with the intersection of its linear hull
and G(2, V).

Proof of Theorem 4.1.  There is a universal exact sequence
0-—E—85S*WeQOx — F——y

on G(2, 8%V), where &£ (resp. F) is the universal sub- (resp. quotient) bundle
and has rank 2 (resp. 3). Let S and S’ be two members of the anticanonical

linear system |~ Kx| on X;. By the same arguments as in Sections 2 and 3,
we have

(1) H(S,sl(€)]s) =0 for every i,

(i) If S is general, then the vector bundle £|s is stable with respect to 05(1),
and

(iif) If £|s and £|s are stable with respect to Og(1) and O (1), respectively,
and if § and S’ are isomorphic as polarized surfaces, then there are iso-
morphisms a : £|s — £|s and 4 ¢ GL(S5*V) such that the diagram

0 — E|s —>.S4V®Os
a 1 o1

0 — EIS’ — S4V®051
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is commutative. In particular, the automorphism B of G(2,5%V) induced
by B maps S onto S’ isomorphically.

Since Xj is the intersection of G(2, 5%V’ and the linear span of S (resp. §'),
the automorphism 3 maps Xj onto itself. Hence, by Proposition 4.4, S and &’
are equivalent under the action of PGL(V) on X;. q.e.d.

§5. Fano 3-folds of genus 10

In this section we shall prove Theorem 0.9 in the case g = 10. The other
cases ¢ = 7,8 and 9 are very similar.

Let V and V' be Fano 3-folds which are complete intersections of X153 C
P! and linear subspaces of codimension 2. By the Lefschetz theorem, both
PicV and Pic V' are generated by hyperplane sections. Let I/ be the universal

subbundle of C, @ © X;s @5 in Section 1 and F and F' the restrictions of I to V
and V', respectively.

Proposition 5.1. Let ¢ : V -4 V! pe an isomorphism. Then ©*(F') is iso-
morphic to F.

Proof. Let S be the generic member of | - Kv| and put §' = »(S). The
Picard group of § is generated by the hyperplane section. The restrictions
E = Fls and F' = F [s+ are stable vector bundles as we saw in the proof of
Proposition 2.1. Hence F and F' are also stable vector bundles. Put M =
Homeo, (F,p*F'). By Step I in Section 2, there is an isomorphism f : E -~
(¢ls)*E'. Hence the restriction of M to S is isomorphic to Endos(E). By
Proposition 1.10, we have

HY(S, M(n)s) = HY(S, Os(n)) @ H'(S, (sl E)(n)) = 0

for every integer n. Since I Nv,Mm (n)) is zero, if n is sufficiently negative,
we have by induction on n that H Y(V,M(n)) is zero for every n. In par-
ticular H'(V, M(~1)) vanishes and hence the restriction map HO(V, M ) —
HO(S, M[s) is surjective. It follows that there is a nonzero homomorphism
f: F — ¢*F' such that fls = f5. Since fo is an isomorphism, the cokernel
of f has a support on a finite set. Since the Hilbert polynomials x(F(n)) and
X((¢*F')(n)) are same, the cokernel of f is zero and f is an isomorphism.

qg.ed.

By Proposition 5.1 and similar arguments as Step II-VII in Section 2, we

have an isomorphism g : F -~ ¢*F'" and an isomorphism v : ¢, —» Cy such
that the diagram

rFo 4 p*(F')
n N

ooy X5 ¢ ® Oy = ¢*(Cy ® Oy)




srphism § of G(2, 5*V) induced

1 the linear span of S (resp. 5'),
se, by Proposition 4.4, S and §’
Xs. q.ed.

in the case ¢ = 10. The other

omplete intersections of X5 C
'y the Lefschetz theorem, both
ections. Let U be the universal
nd F' the restrictions of i to V

norphism. Then ¢*(F') is iso-

- Kv| and put 5’ = ¢(S). The
lane section. The restrictions
idles as we saw in the proof of
ble vector bundles. Put M =
2 i an isomorphism f; : E —»
isomorphic to £ndp, (E). By

(S, (sl E)(n)) =0

o, if n is sufficiently negative,
is zero for every n. In par-
restriction map H(V, M) —
: is a nonzero homomorphism
i an isomorphism, the cokernel
Ibert polynomials x(F(n)) and
and f is an isomorphism.
q.e.d.

s Step II-VII in Section 2, we
omorphism v : C5 — Cy such

F)

*(Co ® Oy)
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is commutative and such that 1 @ v is an automorphism of the Cayley algebra
C. Hence the automorphism of X5 = G/P induced by 1@ v maps V onto V',
which shows Theorem 0.9 in the case g = 10.

§6. Curves of genus < 9

In this section we shall show the following:
Theorem 6.1. The generic curve of genus < 9 lie on a K3 surface.

In the case g < 6, the generic curve is realized as a plane curve C of degree
d < 6 with only ordinary double points. Take a general plane curve D of degree
6—d and let S be the double covering of the plane with branch locus CUD. Then
the minimal resolution § of S is a K3 surface and contains a curve isomorphic
to C.

In the case 6 < g < 9, we shall show that the generic curve C of genus g
can be embedded into P® by the complete linear system of a line bundle L of
degree g + 4 and that there is a K3 surface S which is a complete intersection
of 3 quadratic hypersurfaces in P® and which contains the image of C.

Let C be a curve of genus 6 < g < 9 and D an effective divisor on C of
degree g — 6. Put L = we @ O¢(—D). Then L is a line bundle of degree g+ 4.
If D is general, then dim H°(C,L) = 6. Since deg L®? > degw¢, we have
dim HY(C,L®?) =2(g+4)+1~-g=g+9.

Proposition 6.2. If C and D are general, then we have
(1) L is very ample and dim H°(C, L) = 6,

(2) the natural map
S?H%(C,L) — H'(C,L®?)

1s surjective and tts kernel V is of dimension 12 — g, and

(3) there are 3 quadratic hypersurfaces Q1,Q2 and Q3 in P(H®(C, L)) which
contains the image of C by @1 and such that the intersection § = @1 N
Q2N Q3 is a K3 surface.

Proof. 1t suffices to show that there exists a pair of C and D which satisfies
the conditions (1), (2) and (3). Let R be a smooth rational curve of degree
g — 4 in P whose linear span < R > has dimension g — 4. Since R is an
intersection of quadratic hypersurfaces, the intersection of 3 general quadratic
hypersurfaces Q1,Q2 and Q3 which contain R is a smooth K3 surface. Let Cp
be the intersection of S and a general hyperplane H. We show that the pair
of the generic member C of the complete linear system |Cy + R| on S and the
divisor D = R|¢ satisfies the conditions (1), (2) and (3).

The intersection number (Cy - R) is equal to degR = g — 4 > 2. Hence the
linear system |Cp + R| has no base points. Therefore C is smooth and D is
effective. The genus of C is equal to (Co + R)?/2+1 = g and the degree of D is
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equal to (Cp + R.R) = g — 6. Sj
the line bundle 7 = we(—D)
tautological line bundle of P*

nce we is isomorphic to Oc(C) = 0c(Cy + R),
is isomorphic to Oc(Cy), the restriction of the
to C. There is a natural exact sequence

00— Os(~R) — Os(Co) — Oc(C'g) — 0.

Since H*(S, Os(~R)) =0 for i=g and 1, the restriction map HO(P®, 0p(1))
— HY(S, Os(Co)) — HO(C, Oc(Cy)) is an isomorphism. Hence the mor-
phism &1, is nothing but the inclusion map C — PS5 apq (1) and (3) are
obvious by our construction of C.

Claim. Let Vj

be the vector space of the quadratic forms on P’
identically zero

on Cy U R. Then the dimension of ¥V is at most 12
Let F; = 0 be the definin

which are
—-g.

g equation of the quadratic hypersurface Q; for
i=1,2and 3and G = ¢ that of the hyperplane H. Let F be any quadratic
form on P® which is identically zero on Co UR. Since F

is identically zero on
Co, F is equal to a1l +asF, + a3 F3 4+ GG’ for some constants a;,a; and as
and linear form G. Since F1,F, F; and F are identically zero on R, s0is GG'.
Hence G’ is identically zero on R. Therefore, the vector space V; is generated
by Fi, Fy, Fy and GG', G' being all linears fr i

dim<R>=g—4,wehavedimVo§3+5-(g—4):12—

Since C is a general deformation of ¢,

U R, we have, by the claim, that the
dimension of V is also at most 12 — g. Sin

ce
dim S?H°(C, L) - dim H(C,L®%) =91 _ (

g+9)=12- 4
HO(C,L®2

) is generated by H°(C, L) and V has exactly dimension 12 — g.

q.ed.
By the theorem and Corollaries 0.3 and 4.3, we have

Corollary 6.3. The generic

curve of genus 3 < 9 < 9 is a complete intersection
in a homogeneous space,
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