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V. A. ISKOVSKIH

Abstract. In this paper Fano 3-folds of the principal series Vjg—2 ' n P^ a r e studied.

A classification is given of trivial (i.e. containing a trigonal canonical curve) 3-folds of this

kind. Among all Fano 3-folds of the principal series these are distinguished by the property

that they are not the intersection of the quadrics containing them. It turns out that the ge-

nus g of such 3-folds does not exceed 10. Fano 3-folds of genus one (i.e. with Pic V ~ Z)

containing a line are described. It is proved that they exist for g < 10 and g = 12. Their

rationality for g = 1 and g > 9 is established by direct construction.

Bibliography: 21 titles.

Introduction

This is a continuation of our previous article, Part I [8]. In this part we will study

Fano 3-folds of the principal series (that is, smooth 3-folds V2g_2 C P ^ + 1 of degree 2g - 2)

such that the anticanonical class ~KV is the class of the hyperplane section. The ground

field k is algebraically closed, and although this hypothesis is not essential in this article, we

will assume that k has characteristic char k = 0; we mainly require this to be able to refer to

Part I.

In § 1 we give a new treatment of certain classical results relating to the elementary

properties of Fano 3-folds of the principal series. We present some examples, and give a cer-

tain characterization of such varieties in terms of the curve sections X = ?g~x Π V; we list

the Fano 3-folds which are complete intersections-these only occur for g = 3, 4 and 5.

From the classical Noether-Enriques-Petri theorem on canonical curves (1.6) we deduce that

a Fano 3-fold V2g_2 C P y + 1 for g > 5 is an intersection of quadrics (that is, the intersection

of all the quadrics containing it) provided that it is not trigonal (that is, if among its curve

sections X = Pg~l η V there are no trigonal curves).

In §2 we study trigonal Fano 3-folds; the main result is Theorem (2.5), which gives a

complete classification; trigonal Fano 3-folds only exist for g < 7 and g = 10.

In §3 we study the family of lines on a Fano 3-fold V 2 2 . The main result is Theo-

rem (3.4), which asserts that under the hypothesis Pic V2g_2 = Ζ the lines on V2g_2, pro-

vided that some exist, form a 1-dimensional family parametrized by a certain curve Γ with

only double points as singularities. For g > 4, Γ is reduced at the generic point of each

component; for g = 3 this is not always the case (see [14], and Remark (3.5), (ii)). We prove
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that for g > 4 and Pic V2g_2 ^ Ζ every line on V2g_2 meets only a finite number of other

lines. The results of § §3 and 4 are used in an essential way in §6 to prove the bound g <

12 (see (6.1)).

In §4 we study the family of conies on a Fano 3-fold of the principal series. The main

result is Theorem (4.4), in which it is proved that on a V2 2 satisfying Pic V2 2 ^ Ζ the

conies, provided that some exist, form a 2-dimensional family Δ, reduced at a general point

of each component, and such that through a general point υ & V2 2

 t n e r e pass a finite num-

ber of conies. The results of § §3 and 4 were known in the classical literature ([4], [12],

and also [15]) for varieties "in general position". However, even in this situation complete

proofs of these assertions were in fact lacking.

The most important results of the present article are contained in §§5 and 6, where

we study Fano 3-folds V with Pic V ^ Z. Following the classical terminology [4], we will

call these varieties of the first species.

The most interesting are the varieties of index 1; that is, Pic V = Ζ · Κγ. In [4] Fano

asserts that such varieties (when anticanonically embedded in P^ + 1 ) always contain lines.

This assertion—Fano's Conjecture I (see (3.6))—remains unproved.(') Based on this conjec-

ture, Roth asserts in [11] (see also [12]) that Fano varieties of the first species V2 2 of in-

dex 1 only exist for g < 10. It turns out that this is not quite true. In Theorem (6.1) we

prove that such varieties exist not only for g < 10, but also for g = 12. The proof is based

on the same method used by Fano [5] and Roth [11], the method of double projection

from a line. This method is entirely constructive, and on the way leads to a proof of Fano's

assertion [5] that for g = 7 and g > 9 these varieties are rational.

At the end of the article we give a table of all known types of Fano 3-folds of the first

species.

We note that one of the basic assertions of Fano's theory remains unproved^1)

Fano's conjecture II. The degree of a Fano 3-fold V2 2 C p # + 1 is bounded above by

the absolute constant 72; that is, for g > 37 there do not exist any such varieties.

The known varieties for which this bound is reached (see [4] and [12]) have singulari-

ties. It seems very plausible that for smooth Fano 3-folds the degree is bounded by 64 (the

degree of the Veronese image of P 3 under its anticanonical embedding).

Finally note that Bogomolov (see [10]) has proved the stability of the tangent bundle

to a Fano 3-fold of the first species with index 1, and for these obtains the bound deg V <

72 without assuming the existence of lines.

In referring to [8] we will indicate the section number, adding "Part I"; example:

(4.2, Part I).

EPILOGUE.* The two main conjectures on which the author's classification rests, name-

ly Hypothesis (1.14, Part I) and Fano's Conjecture I (3.6) on the existence of lines, have

been proved recently by V. V. Sokurov [19], [20]. In this translation references to these

conjectures have been replaced By references to [19] and [20] througout.

In [21] and in the forthcoming Part III the classification of Fano 3-folds in a rather

complete form is given; in particular the above conjecture -Kv < 64 is proved.

(!) See the end of this Introduction.
* Added in translation.
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§3 of Part I contains one error, leading to the omission of one class of variety, namely

the direct product Ρ 1 χ F of a del Pezzo surface F of degree 1 with P 1 . The mistake occurs

in step 5) of the proof of Theorem 3.3, where it is asserted that the normal bundle Λ ζ to

the smooth rational curve Z, which fits into an exact sequence

0 — 0z{-2) - * -Λ — 0z(m - 2) -> 0,

is necessarily of the form (a) 0Z(-1) θ 0z(m - 3) or (b) 0z(-2) Φ &z{m - 2). In

fact, a priori any possibility yVz = <^ z(dj) Φ 0z(d2) with - 2 < dt < d2 and dx + d2

= m - 4 can occur.

However, an argument identical to that of Lemma 3.4 proves that only two cases occur

(in the notation of this lemma): m = 3 and Z' = F t , or m = 4 and Z' = F o . The second

case leads to the omitted class of varieties Ρ 1 χ F, and there are no others.

§ 1. Fano 3-folds of the principal series

(1.1) DEFINITION. A smooth complete irreducible 3-fold Fover a field k will be

called a Fano 3-fold of the principal series if the antocanonical invertible sheaf J^"^ 1 is very

ample.

From results obtained in Part I and from [19] it follows that all Fano 3-folds (Defini-

tion 1.1, Part I) are Fano 3-folds of the principal series, with the exceptions of

a) 3-folds of type (3.1 (a) and (b), Part I), and

b) hyperelliptic Fano 3-folds (§7, Part I).

Fano 3-folds of the principal series have the following properties:

(i) Under the anticanonical embedding ψ^_κ ,: V^- P(H°(V,J^"^)) the image is a

variety V2g_2 C P ^ + 1 of degree 2g - 2, with g — g(V) > 3 being the genus of V.

(ii) Each nonsingular hyperplane section H22 of V2g_2 is a K3 surface.

(iii) Each nonsingular section X2g-2 °f ^2g-2 by a linear subspace of codimension 2

of Pg+1 is a canonical curve of genus g.

For the proofs, see 1.5, 1.6 and 1.7 in Part I.

(1.2) PROPOSITION. Each nonsingular 3-fold V C P ^ + 1 of degree 2g - 2 (not lying

in a hyperplane) satisfying the two following conditions* (i) and (ii) is a Fano 3-fold of the

principal series, embedded in Pg+1 by means of its anticanonical sheaf J&~^.

(i) The curve sections X2g_2 — V Π ρ # - 1 are canonical curves of genus g.

(ii) H2(H, @H) φ 0 and H2(V, 0V) = 0, where Η is a hyperplane section of V.

PROOF. It is enough to show that 0V(1) ^ J ^ 1 ; that is, &V(H + Kv) ^ @v.

Indeed, then by (1.6, Part I) h°( 0V(\)) = h°0>^^) = - K3

v/2 + 2 = g + 2; that is, Fis

embedded in Pg+1 by the complete linear system \-Kv\.

Using (i) and the adjunction formula Kx = (X · 2H + Kv) we get that (X • Η + Kv)

= 0. It is therefore enough to show that H°( 0V(H + Kyj) Φ 0. Then 0V(H + Kv) ^

0ν,ΐοτ otherwise D € \H + Kv\ would be an effective divisor with X · D = (X · Η + KV)

= 0; this is impossible, since the curves X sweep out the whole of V.

By duality h°(0V(H + Kv)) =h?(0V(-H)). From the cohomology long exact se-

quence associated to the short exact sequence of sheaves 0 —>· 0V(-W) —> 0 V —> 0H

* Translator's note. It is easy to see that (i) implies (ii).
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—> 0 and from (ii), we get 0 —*H2(H, 0H) —>H3( & V(-H)); hence by (ii) h3( & V(-H))

Φ 0, and hence A°( 0 V(H + Kv)) Φ 0. This proves the proposition.

Let us agree that in future by a variety V2g_2 C p # + 1 we will mean a Fano 3-fold of

the principal series in its anticanonical embedding.

(1.3) PROPOSITION. A Fano 3-fold V2 _ 2 C P ^ + 1 is a complete intersection only

for g = 3, 4 or 5, and we have that

V4 C P 4 is a quartic hypersurface,

V6 ~ V2.3 is an intersection of a quadric and a cubic in P 5 ,

F 8 = V2.2.2 is an intersection of 3 quadrics in P 6 .

Conversely, each smooth complete intersection of the types indicated is a Fano 3-fold

of the principal series.

PROOF. Let V2g_2 = Fn Π · · · η Fn C Pg+1 be a complete intersection of hyper-

surfaces Fn. for / = 1, . . . , g - 2, with deg Fn. = nt > 2, and η 1 > •··> ng_2. Then

2g-2=*]~[ nt>2g-\
1 = 1

Hence g = 3, 4 or 5, and if g = 3 then F 4 = F 4 ; if g = 4 then V6 = F2 Π F3; and if g = 5

then F 8 = F2 η F'2 Π F™. The converse assertion follows from the adjunction formula

Kv- S^-g-2

with // the hyperplane section of V, giving the canonical class of a complete intersection, and

from the equality h°( 0v(Xj) = g + 2, which is an easy consequence of the formulas for

the cohomology Η\0ν{η)) of complete intersections. The proposition is proved.

(1.4) EXAMPLES. Let us give some examples of Fano 3-folds V2 2 C P8+l which

are complete intersections inside some rather simple types of varieties.

(i) g = 6; V10 is a section of the Grassmannian G(l, 4) of lines in P 4 by two hyper-

planes and a quadric in the natural Pliicker embedding G(l, 4) C P 9 . Since Pic G(l, 4) ^

Z, with a generator provided by the hyperplane section, by Lefschetz' theorem Pic Vl0 =

Ζ · Η, with Η Κγ the class of a hyperplane section (see [15], Lecture 4).

Note that since the Grassmannian G(l, 3) of lines in P 3 in its natural projective embed-

ding is a quadric of P 5 , we can consider V6 C P s (with g = 4) as sections of G(l, 3) by

some cubic—in the classical terminology this is called a "cubic complex" of lines in P 3 .

(ii) g = 7; let W = Ρ2 χ P 2 , embedded in P 8 by the Segre embedding, and let β be a

sufficiently general quadric of P 8 . Then V12 = W Π Q is a Fano 3-fold of index 1 with

Pic Vl2 ί : Ζ Φ Ζ . Indeed, since y£w =z 0W(~3) we get from the adjunction formula that

J#Y*2 ^ 0Vl2(\). By the Lefschetz theorem Pic Vl2 == Pic W ̂  Ζ θ Ζ is generated by

the classes ψί*& 2^> where pr,·: Ρ2 χ Ρ2 —*• Ρ 2 for i = 1 and 2 are the projections onto

the /th factor. Since deg Vl2 = 12 is not divisible by any cube greater than 1, the index of

Vl2 cannot be greater than 1. Other examples of Fano 3-folds Vl2 C P 8 with Pic V12 ̂  Ζ

will be considered in §6.

(iii) g = 8; the intersection of the Grassmannian G(l, 5) C P 1 4 by five hyperplanes in
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general position is a Fano 3-fold F 1 4 C P 9 . By the Lefschetz theorem Pic F 1 4 = Ζ · Η,

where Η is the hyperplane section (see Lecture 4 of [15]).

Another type of example is given by the anticanonical models of Fano 3-folds of index

r > 2. Some of these are complete intersections inside Veronese varieties; that is, images of

Pd in P ^ under embeddings corresponding to & d(n):

(iv) g= 4d + l,d=2, 3, . . . , 7; V2g_2 C Pg+1 are Fano 3-folds of index 2 (see

4.2, Part I).

(v) g = 28; F s 4 C P 2 9 is a Fano 3-fold of index 3-the anticanonical model of a quad-

ric 3-fold.

(vi) g = 33; F 6 4 C P 3 4 is a Fano 3-fold of index 4—the 4-fold Veronese embedding of

projective space P 3 .

(1.5) REMARK. One can show that every Fano 3-fold F 1 0 C P 7 with Pic F 1 0 ^ Ζ is a

section of the Grassmannian G(l, 4) C P 9 ; it seems plausible that the analogous statement

for F 1 4 C P 9 is also true.

In the sequel we will use the following result.

(1.6) LEMMA (the Noether-Enriques-Petri theorem; see for example [18]). Let XC

Pg~x be a smooth canonical curve of genus g > 3. Then the following assetions are true:

(i) X is projectively normal in P8~l.

(ii) If g = 3, then X is a plane curve of genus 4. If g > 4, then X is the intersection

of quadrics and cubics ofPs~l passing through X.

(iii) X fails to be an intersection of quadrics only in the following cases:

a) X is trigonal {that is, it has a 1 -dimensional linear system g\ of degree 3);

b) X is a curve of genus 6 isomorphic to a plane curve of degree 5.

(iv) In cases (iii) the quadrics ofPg~l through X intersect in a surface F, which is one

of the following:

a) a quadric in P 3 {possibly singular) if' g = 4;

b) a nonsingular rational normal scroll of degree g - 2 in Pg~l in case (iii, a) for g >

5, with the system g\ cut out on X by the ruling of F;

c) the Veronese surface F4 C P s .

From this result and from Lemmas (2.9 and 2.10, Part I) we at once get

(1.7) PROPOSITION (compare 4.4, Part I). Let V = V2g_2 C P * + 1 be a Fano 3-fold,

and suppose g > 4. Then the following assertions are true:

(i) V is projectively normal in Ps+1.

(ii) V is an intersection of quadrics and cubics.

(iii) V is an intersection of quadrics if and only if it does not have a smooth canonical

curve section which is trigonal.

PROOF. Only (iii) requires proof. If Fis an intersection of quadrics in p ^ + 1 then any

canonical curve section X = F' Π P ^ - 1 is an intersection of quadrics in P8~l. Hence accord-

ing to (1.6, iii) X cannot be trigonal. Conversely, if a smooth canonical curve section X C F

is not trigonal, and is not a curve of type (1.6, iii, b), then according to (1.6, iii), to (i) of

the proposition, and to Lemma (2.10, Part I) Fis an intersection of quadrics. It remains to

prove that on a smooth F a canonical curve section X cannot be of type (1.6, iii, b). Passing
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to the hyperplane section it is enough to prove that a smooth K3 surface Η C Pg cannot have

such a curve as section. This is proved in [13], §(7.12). The proof is complete.

§2. Trigonal Fano 3-folds

(2.1) DEFINITION. A Fano 3-fold V2 2 C pg+1 will be called trigonal if it contains

a smooth trigonal canonical curve section X2g-2 ·

(2.2) LEMMA. On a trigonal 3-fold V every smooth canonical curve section is trigonal.

PROOF. AS we showed at the end of the proof of Proposition (1.7), V cannot contain

smooth curves of type (1.6, iii, b). According to (1.7) V is not an intersection of quadrics,

and hence according to Lemma (2.10, Part I) every smooth canonical curve X fails to be an

intersection of quadrics. By (1.6, iii) X must be a trigonal curve, since case (1.6, iii, b) was

excluded at the end of the proof of Proposition (1.7). The lemma is proved.

(2.3) PROPOSITION. Let V2g_2 C P * + 1 be a trigonal 3-fold with g>5. Let W de-

note the closed subscheme ofPg+1 which is the intersection of all quadrics ofPg+1 contain-

ing V2g_2 · Then W = Wg_2 C Pg+1 is a nonsingular rational scroll of dimension 4 (see Defi-

nition 2.7, Part I).

PROOF. Let P*" 1 C P * + 1 be a sufficiently general linear subspace such that X = V2 2

(Ί Ρ*""1 is a smooth irreducible curve. Then F = W Π Ρ*" 1 is cut out by the quadrics of

P^""1 containing X, and by (1.6, iv, b) F is a smooth rational scroll, and is a surface of degree

g -I'm Pg~l. Hence there is a reduced irreducible component W° of W containing V2 2

and such that dim W° = 4 and deg W° = g — 2. Then W° satisfies the condition

deg W° = codim W° + 1.

According to the classification in (2.8 and 2.5, Part I) each such variety is an intersection of

quadrics. As is well known (see for example [18]), the number of linearly independent quad-

rics containing F C P*" 1 is (g - 2)(g - 3)/2, and by Lemma (2.10, Part I) the same number

contain W°, and at least this number contain W, since their restrictions to P·?"1 cut out the

surface F. Since W° C W, it follows that W° = W.

It remains to show that W is nonsingular. Suppose that w G W is a singular point. We

can choose a hyperplane Vg C p£ + 1 through w such that the hyperplane section Η = V2g_2

(Ί Pg is nonsingular. Indeed, by Bertini's theorem, the general element Η of the linear sys-

tem on F 2 2 cut out by hyperplanes through w can only have singularities at the base point

w, and only then if w €Ξ V2 2 . However, since V2 2 is nonsingular, through any point υ €

V2 2
 o n e c a n P a s s a hyperplane section which is smooth at this point. This shows that

there exists a smooth surface section Η = V2g_2 η Ρ* with w G W η Ρ*. Since w £W is

singular, it remains a singular point on the section W = W Γ) Pg.

Repeating the above argument for Wand H, we prove that there exists a P*" 1 C P*

containing w and such that X = V2 2 (Ί P ^ " 1 is a smooth curve and F = W η Ρ * " 1 is a

singular surface, cut out by quadrics of P * " 1 containing X. This contradicts (1.6, iv, b).

Hence W is nonsingular, and this completes the proof of the proposition.

(2.4) According to (2.4-2.6, Part I) there exist integers d1 > d2 > d3 > d4> 0 such

that W = vJPUf)), where
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and _Jt = 0 wpi^) *s * e t a u t°l°gic a^ invertible sheaf. By Lemma (2.5, Part I) _J£ is

very ample, since d, > 0 for i = 1, . . . , 4. Hence ^ : Ρζ^7) ^ W is an isomorphism. Let

Μ and L be the divisor classes on W corresponding under the isomorphism ψΜ to the inverti-

ble sheaves Ji and i>f = / * ^ p l ( l ) , where / : P(if) —* P 1 is the natural morphism. Then

from the adjunction formula Kv ~ V · (V + ̂ n;) and the formulas for the canonical classes

Kv V-M, Kw AM — ( 2 — 2 d £ ] L

(see 7.5, Part I) we get at once

2 — (2.4.1)

where F = V2g_2 CW is the trigonal Fano 3-fold. Thus to describe the trigonal 3-folds

with g > 5 it suffices to find all possible W (or all possible values of the integers dx > · · •

d4 > 0) for which the linear system

contains a smooth divisor V. Recall (2.5, Part I) that

and hence

(2.4.2)

(2.4.3)

t = l

(2.5) THEOREM. Trigonal Fano 3-folds V2g_2 with g > 5 ow/y ex/si for the following

values of the invariants:

Ν

1

2

3

dx

1

2

2

<**

1

1

2

1

1

2

1

1

2

£

6

7

10

given by V: t0F3 + f, G3 = 0, w/ffc (f0 ,f, )
homogeneous coordinates on P1 and F 3 ,
G 3 cubic forms on P 3 .

Κ is ffte blow-up of a smooth cubic of
P4 in a plane cubic curve.

V — S3 X P1, with SsClP3a smooth cubic surface

(2.5.1)
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PROOF. Inside W ̂  ¥($£) we have the distinguished subvarieties Yd. for / = 2, 3, 4

which are the images of the natural embeddings

Ρ (©ρ· (d() φ . . . Φ ©P. (dj) - ν Ρ (»), for t = 2, 3, 4.

By Lemma (7.4, Part I), every divisor in the nonempty linear system \aM + bL\ has multiplic-

ity > q along Ydj if and only if the inequality

aii + b+ (di — di)(q— 1)< 0 (2.5.2)

holds. The irreducibility and nonsingularity of KG \3M + (2 - Σ 4 dt)L\ leads to the follow-

ing two conditions: Yd is not contained in Κ with multiplicity > 1, and Yd is not con-

tained in Fwith multiplicity > 2.

Using (2.5.2) we get the system of inequalities

2i/2 + 2—d,—d 3 —d 4 5s0,
(2.5.3)

Case

1
2
3
4
5
6

d1

1
2
2
2
3
4

d2

1
1
2
2
2
2

d3

1
1
2
1
1
1

d4

1
1
2
1
1
1

It is elementary to check that the following values are the only solutions to the inequalities

(2.5.3):

(2.5.4)

Now let us show that the first 3 cases of (2.5.4) actually occur; that is, there exists a smooth

KG \3M 4- (2 - Σ 4 d()L\, and that in Cases 4, 5 and 6 the corresponding V always has sin-

gularities.

Cases 1 and 3. Here W =*. Ρ 3 χ Ρ 1 , and in Case 1 j£ ^ p* 0pl(l) ® Ρ* ^ p i O ) , w h i l e

in Case 3 JC =* ρ* 0ρ3(1) <8> pf ^ p l ( 2 ) . Let MQ be the divisor class of the sheaf p* <^p3(l).

Then K e |3M - 2L\ = \3M0 + L\ in Case 1, and KG \3M- 6L\ = \3MQ\ in Case 3. In ei-

ther case the linear system \3M + (2 - Σ^ d^)L\ is obviously without fixed components and

base points, so that the existence of a smooth divisor V follows from Bertini's theorem. Ac-

tually, one can check this readily by writing down the general equation for V. In each of

these two cases Fis of the form shown in the corresponding place in Table (2.5.1). From

this one sees in particular that V is a rational variety.

Case 2. Set -JiQ = Λ ® S L ~ X , and let Mo be the divisor class corresponding to

JCQ. Then V G |3M 0 | . Let / : PGf) = W —• P 1 be the natural morphism, so that f*JC0 =

&Q = J£ ® 0 iC~l)· From this one sees that JCQ is spanned by its global sections, and

defines a birational morphism ψΜ : W —>• P 4 , which is just the blow-up of the plane P 2 =

V^i o (P(^pi ® ^ p i Φ ^ P i ) ) c p 4 ( s e e i 1 · 6 . P a r t 0)· T h e l i n e a r system |3Afo| is the in-

verse image under φΜ of the system of cubics | 0~n{3)\ in P 4 . Hence in this case <PMQ\V:

V —> V' C P 4 is the blow-up of a smooth cubic 3-fold V' C P 4 with center in a smooth

cubic curve C = F ' n p 2 . This shows that Case 2 occurs.
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The theorem will be proved if we show that in Cases 4—6 in Table (2.5.4) Fmust be

singular.

Cases 4-6. Here d3 = d4 = 1 and every divisor VE \3M + (2 - Σ\ d^)L\ contains

the quadric Yd = P( <£? x ( l ) θ 0 j ( l)) C W with multiplicity 1. Indeed, setting i = 3,

q=l,d3=d4 = l,a = 3 and b = {2 - Σ\ d{) in (2.5.2), we get the inequality 3 — dx -

d3 < 0, which holds in each of the Cases 4—6. On the other hand, if we set q = 2 under

the same conditions, (2.5.2) does not hold. Hence the general element

contains Yd with multiplicity 1. It is not difficult to calculate the dimension of the linear

system \3M + (2 - Σ^ df)L\, using the isomorphism induced by the natural map /: W —> P 1:

V V V <=1 /
and to check that in any of the Cases 4-6 it is nonempty.

Now let us show that V cannot be nonsingular. By the Lefschetz theorem the embed-

ding /: V c_> W induces an isomorphism /*: Pic W ̂  Pic V. Hence as generators of Pic V

we can take i*jt and i*^f. Since V is nonsingular, Yd is a Cartier divisor on V; hence

there exist integers a and β such that

Yd, ~ V • (aM + pL) - | 3M + I 2 - ̂  d, ] L • αΛί + βΐ\ .
V V 1=1 I Jw

Restricting this relation to the fiber L:

Yiz-L~3aMz-L

and intersecting with M, we get the equality 1 = 3a, which is impossible for integral a.

Hence Fhas singularities on Yd , and Yd is not a Cartier divisor on V. This completes the

proof of the theorem.

(2.6) COROLLARY . Every trigonal Fano 3-fold V has a pencil of cubic surfaces, the

restriction to V of the pencil \L\ on W; and Pic V ̂  Pic W ̂  Ζ θ Ζ.

(2.7) REMARK. The method of proof of Theorem (2.5) can also be applied to trigonal

Fano 3-folds having only isolated double points as singularities. Simple computations show

that the degree of such varieties is also bounded: g < 10.

§3. The family of lines on a Fano 3-fold V2 2 C

(3.1) Let V = V2g_2 C P*+1 be a Fano 3-fold with g > 3, and let G(l,g+ 1) be

the Grassmannian of lines of P^ + 1 ; let Γ = F(V) be the closed subscheme of G(l, g + 1)

parametrizing lines lying on V, and let S — S(V) be the family of lines of V (the restriction

to Γ of the universal family of lines on (7(1, g + 1)):

S ^ - > V
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is the diagram of natural morphisms, and write R = R(V) for the image ρ(S) C V. A line

of V and the corresponding fiber of S will be denoted by one and the same letter Ζ. ^

will denote the normal sheaf to Ζ in V, and -^z/s t n e n o r m a l sheaf to Ζ in S. Since π:

S —• Γ is a locally trivial fibration, -^z,s is a free sheaf of rank equal to the dimension of

the Zariski tangent space to Γ at the corresponding point γ = π(Ζ).

(3.2) LEMMA. Suppose that S Φ 0. Let Ζ C V be a line, and y e Γ the correspond-

ing point. Then the following assertions are true:

(i) There are just two possibilities for the normal sheaf

a) Λ ζ ι ν ^ 0ζ(τ\)<Β 0z,or

b) JTZIV ~ 0ζ(-2) Θ 0Z{\).

(ii) Let my be the maximal ideal in the local ring 0 y of the point y £ Γ; then

2, in case b)

for the Zariski tangent space at y, and, in a neighborhood of y,

2 > h° (JVZ/V) > dim Γ > h° (jrz/v) — h1 (jrz/v) = 1.

PROOF, (i) Let us first show that through any line Ζ C V we can pass a nonsingular

hyperplane section. Consider the linear system \H — Z\ of hyperplane sections through Z.

It is clear that this linear system has base locus just Z, since this is the case for the linear

system of hyperplanes through Ζ in the ambient Ps+l. By Bertini's theorem almost all sur-

faces of \H - Z\ have no singularities outside Z. Let us show that there exists a suface in

\H - Z\ which is nonsingular along Z. The projection π ζ : Pg+1 —> P*" 1 from Ζ is given by

the linear system of hyperplanes through Z. Let σζ: Ρ1 —• P^ + 1 be the blow-up of Z. Then

we have a diagram

(3.2.1)
Ύ „_ =*

where / = π ζ ° σ ζ is a morphism, and az: V' —* F is the blow-up of Ζ in V. V' is non-

singular and the morphism / : V' —• P*" 1 is given by the linear system \θζΗ - σ'ζ
1(Ζ)\.

This linear system is without fixed components and base points, since it is the restriction to

V' of a linear system on P' with this property. The restriction of \azH - oz

l(Z)\ to the

ruled surface Ζ ' = σζ*(Ζ) is also without fixed components and base points, and is a certain

linear system consisting of sections of Z ' over Z. Hence there exists a surface Η' ε Ισ^/Ζ-ΖΊ

such that the curve Ζ ' Π Η' is an irreducible (and hence nonsingular) section of Z' . Under

these circumstances the morphism oz: H' —+ az{H') is an isomorphism, and since H' has no

singular points on Ζ' Π Η', σζ(Η') is a surface with no singularities on Z.

Thus there exists a smooth hyperplane section Η of V through Z. Since Η is a K2 sur-

face, (Z · Z)H = -2. Hence we have an exact sequence:
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z ( 2 ) j z / v O z ( \ ) ^ 0

η ι\ ( 3 - 2 · 2 >

From this one sees that the invertible sheaf of maximal degree in -^z/v n a s degree 0 or 1;

these lead to cases a) and b) respectively.

(ii) These assertions are a direct consequence of infinitesimal deformation theory [7],

and the trivial computations of h'(^fz/v) in cases a) and b) of (i). The lemma is proved.

(3.3) PROPOSITION. Suppose that S Φ 0. Let Γ° be an irreducible closed component

of the scheme Γ, let S° be the corresponding family of lines over Γ 0 , and let R° = p(S°).

Then the following assertions are true:

(i) If dim Γ 0 = 2 then R° is a projective plane lying on V, and Γ 0 ^ P 2 ; conversely,

if V contains a plane then there exists a 2-dimensional component Γ 0 C Γ with Γ 0 =£ P 2 .

(ii) If dim Γ 0 = 1 and Γ 0 is generically reduced then the scheme T° can have at most

double points as singularities, and possibly O-dimensional embedded components; /?°ed is a

ruled surface on V, and the morphism p: 5^ d —• R®ed is birational.

(iii) Γ 0 is nonreduced at the generic point if and only ifR®ed is a 2-dimensional cone

contained in V.

PROOF, (i) If dim Γ 0 = 2 then, according to (3.2, ii), dim my/m^ = dim Γ 0 = 2 for

all γ e Γ 0 ; hence Γ 0 is a smooth surface. In this case for any line Ζ with π(Ζ) € Γ° we

have -yVzjV =* 0z{-2) Θ ^ z ( l ) , since h°(^Vz/v) = dim Γ 0 = 2 (see (3.2)). The image

R° of the morphism p: S° —• V obviously has dimension > 2 (if 5° is a single line then

dim Γ 0 = 0, contradicting (3.2, ii)). Suppose that dim R° = 3; then since the morphism

p: S° —*• Fis proper (S° is complete), R° = V; and since dim S° = dim V, ρ is generically

finite. Consider the differential dp, restricted to the line Ζ C So. It is obvious that, on the

tangent bundle Tz to Z, dp is the identity isomorphism. We have a homomorphism of the

normal sheaves defined:

dp : JVzis> -

Since ρ is generically finite, for a sufficiently general line Z, by Sard's theorem the morphism

dp has rank 2 at the general point of Z. But the lower arrow in (3.3.1) shows that no such

morphisms exist. Indeed, each of the summands &z can only have a nonzero homomor-

phism into the second summand of -^ZjV, so that dp has at least a 1-dimensional kernel.

Hence our hypothesis that dim R° = 3 is invalid, and there remains the single possibility

dim./?0 = 2.

The surface R° has a 2-dimensional family of lines. This property is enjoyed only by a

plane P 2 C V. In this case it is clear that Γ 0 = P 2 . The converse assertion in (i) is obvious.

(ii) The first assertion follows from Lemma (3.2, ii). Furthermore dim 5 ^ = 2, and,

as pointed out above, dim R° Φ 1. Hence R®ed is a ruled surface, and the morphism p:

S^ed —> R°ed is generically finite, ρ cannot have degree greater than 1, since otherwise

through almost all points ζ G i?°ed there would pass more than 1 line from one and the same
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irreducible family 5°. This is impossible, since dim Γ 0 = 1. Hence p: S®ed —• R°ed is bi-

rational.

(iii) As we have just shown, p: S®ed —> Fmaps S®ed birationally to R^ed. If Γ 0 is

nonreduced at the generic point, then for almost all lines Ζ C S° the normal sheaf -Λ'ζ/ν

is isomorphic to 0z(-2) Θ ^ ζ ( 1 ) (see 3.2). The restriction of the differential dpTed to

the normal sheaf of a sufficiently general line Ζ C 5r°d defines a nonzero homomorphism of

sheaves:

\\ ' r e d l\ (3.3.2)
Oz - » - O z ( — 2 ) Θ Ο ζ ( 1 )

There does not exist a nonzero homomorphism of &z

 m t ° ^ z ( ~ 2 ) . A (nonzero) homo-

morphism &z —*• &z(\) has cokernel k2 supported on a single point ζ Ε Ζ. This means

that the general line Ζ C S°ed intersects the closed set D C S°ed, the degeneracy locus of

pied, in a single point. Let D° C D be the irreducible component of D meeting each Z, so

that D° is a section of the morphism 7rred: Sr°d —• Tr°d. Since pied: Sr°d —* 7?°ed is a bira-

tional morphism and dpTed degenerates in a direction normal to Ζ (that is, tangent to D°),

this means that p r e d contracts D° to a point of i?°ed. Hence /?J?ed C V is a cone.

It remains to show that i?^ed cannot be a cone if Γ 0 is reduced at its general point. In

this case for all but a finite number of lines Ζ C 5° we have -^ZjV — ^ ( - 1 ) Φ ^ z

and -Λ1 0 =; <^z (see 3.2, ii), and the homomorphism φ : ^ C / ? o —*" -^ziv ' s n o n "

Thzero. There is only one possibility, dp: Λ . ^ &z, the projection onto the second

summand of -^z/v Hence the birational morphism p: S° —> R° is an immersion in a

neighborhood of Ζ C S°, and so i?°ed cannot be a cone. The proposition is proved.

(3.4) THEOREM. In the notation of (3.1) suppose that Pic V = Ζ · H, where Η is the

hyperplane class, and suppose that V contains a line Z. Then the following assertions are

true:

(i) Any irreducible component Γ 0 C Γ is I-dimensional.

(ii) If g > 4, Γ 0 is reduced at a generic point (that is, V does not contain any 2-di-

mensional cones, according to (3.3, iii)).

(iii) If g > 4, then every line Ζ C V meets only a finite number of other lines.

(iv) If d is the integer such that R ~ dH, then for g > 4 every line Ζ not contained

in the singular locus of R meets d + 1 other lines of V (counted with multiplicities).

PROOF, (i) If dim Γ 0 = 2 then according to (3.3, i) V contains a plane P 2 , contradic-

ting the condition Pic V = Ζ · Η.

(ii) According to (3.3, iii) we have to show that under the stated hypotheses Fdoes

not contain any 2-dimensional cones. Suppose that i?°ed C V is a cone with vertex υ Ε V.

Then every hyperplane of Pg+1 tangent to V at υ contains R^ed. Such hyperplanes cut out

on V the linear system \H - 2υ\ which contains i?J?ed as a fixed component, and having di-

mension > g - 3. Since Pic V = Ζ · H, every hyperplane section Η is irreducible. Hence

for g > 4 we obtain a contradiction to the assumption that R^d is a cone. Note that for

g = 4 a cone ^° e d can only be a hyperplane section.

(iii) Suppose that the line Ζ meets infinitely many other lines of V. According to (ii)

V does not contain any cones, so that at least one line of V must pass through each point
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ζ G Ζ. Let G be an irreducible component of the ruled surface R swept out by lines of F

meeting Z. Let m > 1 be the integer such that G ~ mH, and let r be the multiplicity of G

in a general point of Z. The projection πζ: V—• P^" 1 from Ζ contracts to a point every

line meeting Z, and hence contracts G onto some curve (G cannot be mapped to a point,

since otherwise G C F would have to be a plane, contradicting (i)). Let us show that r =

m + 1 or m + 2. Any plane of Pg+l containing Ζ can contain only 2 further lines of F,

and the case of 2 occurs only if g = 4. Indeed, if g > 4 then, since Pic V^ Z, Fis not tri-

gonal, and according to (1.7, ii) and (1.3) Fis an intersection of quadrics. Hence F O P 2

can only be a curve of degree < 2, since F does not contain any planes. If g = 4 then the

unique quadric containing F(see (1.3)) could contain P 2 , in which case V Π Ρ 2 is a curve of

order 3.

Let us choose a sufficiently general hyperplane section Η containing Ζ (see the begin-

ning of the proof of Lemma 3.2). The G Γ) Η = rZ + Σ^ Z(., where Z;- C G are certain

lines. We have

( N

m = (Zi • mH)v = (Zi • G)v = ( Z£ · rZ + ^

=* r + (Zi • Zi)H + (Zt · 2 Z/) - r — 2 + 6,
\ ΪΦί ΙΗ

where δ = 0 or 1, since every line of G meeting Zi lies in the plane P 2 spanned by the lines

Ζ and Zi. Hence r = m + 2 — δ.

Let σ: V' —*• Fbe the blow-up of Z, let Ζ ' = σ~ ! (Ζ) be the exceptional ruled surface,

and let G' be the proper transform on V' of G. The linear system \o*H - Z'\ defines the

morphism/z: V' —* P^" 1 , the resolution of the projection πζ. Since G1 is contracted by

fz, we have

(σ'Η—Z'y-G'=0.
Hence

m (σ'Η — Ζ'Υ =. (σ'Η —Ζ')2 • (mo'H — rZ' + (2 - δ)Ζ')

Now we use the multiplication table in the Chow ring A(V') (see 2.11, Part I).

Simple computations give

(σ'Η—Z')3 = 2g—6, (σ'Η—Ζ')2·Ζ'=3.

Substituting in (3.4.1), we get

m ( 2 g — 6 ) = 3 ( 2 - δ ) . (3.4.2)

Since (2 - δ) = 1 or 2, (3.4.2) is only possible for g = 4 and m = 3.

It remains to exclude this case. Here Fis a complete intersection of a quadric and a

cubic in P s , and the morphism fz: V' —-> P 3 has degree 2 (generically), with ramification

locus a surface D C P 3 of degree 6. The curve fz(G') is obviously contained in D, and has

degree equal to the number of lines Zt, Z(. φ Ζ, in the intersection G Π Η; that is, 6m - r =

13. Let Z)j denote the surface fz(Z'). We have
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degDl=(a*H—Z')2· Ζ'= 3.

Let us show that D1 C D. If Z ' were not contained in the branch locus of the morphism

fz then the involution interchanging the leaves of the double cover fz: V' —• P 3 would take

Z' into some surface Z", and then

z Z'UZ'L)G'~3 (a'H — Z').

But since G' ~ 3σ*# - 5Z' we have Z" ~Z'. But this is only possible if Z ' = Z", since Z '

is an exceptional surface, and Z " is irreducible. Hence O, Cfl. Let Z>2 be the complemen-

tary cubic surface; that is, D = Dx U £) 2 . The curve C = Dt U D2 is contained in the singu-

lar locus of the branch divisor D; hence fz

l(C) is a surface on V' such that the image
σ ( / ζ *(O) o n Ρ is swept out by lines meeting Ζ or conies intersecting Ζ twice. However, it

is not difficult to see that on a smooth V = F 2 . 3 every line can only intersect twice with 2

conies: these lie in the two planes contained in the quadric through V, and intersect along

this line. Hence a(fz~
l(C)) is a surface swept out by lines meeting Z. Now note that

degaq(fz

l(C))<degG,

since deg C = 9 < deg fz(G') = 1 3 . But this contradicts (3.4.2). The assertion (iii) is

proved.

(iv) A proof of this assertion going back to Fano [4] was reproduced in [15], Lecture

4, §2 (proof of Lemma 5). We will not repeat the arguments given in [15], noting only that

these work under the assumption that the given line meets only a finite number of other

lines, and that the line is not singular for the ruled surface R. Both of these conditions hold

in our case: the first because of (iii), and the second by hypothesis. The proof of Theorem

(3.4) is complete.

(3.5) REMARKS, (i) It is not known if there exist (smooth) Fano 3-folds V2g_2 con-

taining a plane. If Pic V2 2 — Ζ then these do not exist by the Lefschetz theorem.

(ii) For g = 3 the assertion (3.4, ii) is no longer true. A corresponding example is

considered in [14]: this is the diagonal quartic Σ^ xf = 0, which contains 40 cones, cut

out by the hyperplanes JC,- = ex.- (ι Φ i), where e runs through the primitive 8th roots of 1.

Each of the cones appears in the surface R — p(S) with multiplicity 2.

(iii) Note that if a V2g_2 C P* + 1 with g > 3 does contain a cone R°, then deg R° <

3. Indeed, R° is contained in the intersection V η Ρ 3 of V with the tangent space to V at

the vertex of the cone. If Fis not trigonal and g > 5, then, according to (1.7, iii), V2g_2 is

an intersection of quadrics; hence deg R° < 2. In the trigonal case, deg R° < 3 according to

(1.7,ii).

(iv) Starting from (3.4, i) one shows using elementary methods involving a count of

constants that on a V2 2 which is a complete intersection (see (1.3)) or a Grassmannian

section (see (1.4)) there do exist lines, and these form a 1-dimensional family (for g — 3 see

[14]). In [4] Fano asserts that lines exist on every 3-fold V2g_2 with Pic V2g_2 = Ζ · Η.

However, his arguments are not convincing, and until recently a new proof had not been

found; in this connection we had the following open problem:

(3.6) F A N C S CONJECTURE I. Every Fano 3-fold V2g_2 C P* + 1 with Pic V2g_2 =

Ζ · Η contains a line.
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This has recently been proved by V. V. Sokurov [20].

In §5 during the proof of the main Theorem (5.1) we will need some facts on lines of

Fin general position, and we find it convenient to set forth these results here.

(3.7) LEMMA. Under the hypotheses of Theorem (3.4), on a Fano 3-fold V2g_2 with

g > 4 there exists a dense open set Β C Γ in the family of lines Γ such that every line Ζ in

Β satisfies the following conditions:

(i) Λζ/ν^ 0Z{-1)® 0Z.
(ii) The d + 1 lines Ζχ, ... , Zd+l meeting Ζ (see(4.3, iv)) are distinct, and for each

of them (i) holds.

(iii) Let σ: V —• V be the blow-up ofZ, let Z' = a ~\Z) be the exceptional ruled

surface, and let Z? be the proper transforms of the lines Zt {for i = 1, . . . , d + 1). Then

for all i = 1, . . . ,d+ 1

^ z 0 ~0 Ζ Ο (-1)φ0 Ζ Ο (-1)
i i i

and the point of intersection zi = Z' C\ Zf does not lie on the negative section of the ruled

surface Z'.

(iv) For g > 5 not more than 4 lines pass through every point υ G V, and no 3 of

these can lie in a common plane; for g = 4 not more than 6 lines pass through every point

υ ε V, and no 4 of these can lie in a common plane.

PROOF. According to (3.4, ii) and (3.3, ii), lines with property (i) form an open sub-

set of Γ. The finite number of lines not satisfying (i) only meet a finite number of other

lines according to (3.4, iii). Hence all but a finite number of lines of/? satisfy (i) and (ii);

in the parameter curve Γ they form an open set, which we denote by B. Let us show that

for lines in Β (iii) is also satisfied.

Let Τ = π " 1 (Β)- Then from (i) we deduce, as at the end of the proof of Proposition

(3.3), that the natural morphism ρ: Τ—• Fis an immersion. Furthermore, two distinct irre-

ducible components of the family S cannot map to one and the same component of the sur-

face /?, for otherwise (3.4, ii) would fail. From this and from (3.3, ii) it follows that the

morphism p: S —*• R is birational, and hence ρ: Τ —> V is a birational immersion. Hence if

?j, t2 e T, fj Φ t2, are points such that p(fj) = p(t2), then the point υ = ρ{ίλ) — p(t2) is

a singular point of/?, and the images of the tangent spaces to tl and t2 span the whole 3-di-

mensional tangent space to V at υ. Let Ζ χ and Z2 be lines through t1 and t2, and let £/j

and U2 be normal neighborhoods of Zl and Z2 respectively. Then from what we have said

above it follows that the image of Zj meets p(U2) transversally at υ, and similarly for Z2 and

p(Uy). Hence on performing the blow-up αλ: Vx —> V of the line Zx on V the normal com-

ponent 0Z =i yYz ,ν of the normal sheaf ~^z ,v is replaced by ^ 0 ( - l ) , where Z2

C Vl is the proper transform of Z 2 . Since Kv = o\Kv + d^iZ^), one computes easily

hd S ^ L ( 2 ) Ththatdet S o =* ^ L o ( - 2 ) . Thus

z z
2 S

An analogous thing happens on blowing up Z 2 . This proves the first assertion of (iii). The

second assertion follows from the fact that the negative section of the ruled surface Z'
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corresponds to the second summand 0Z in the normal sheaf

and from the previous arguments which show that the direction of each of the d + 1 lines

Z(. is transversal to this normal component.

Let us prove (iv). If g > 5, since Pic F ^ Z it follows that V is not trigonal, and is

hence an intersection of quadrics in p ^ + 1 (see (1.7)). Let P 3 be the projective tangent space

to Vat υ. Then the lines through υ are contained in F O P ^ , and since Vη Ρ 3 is cut out by

quadrics of P 3 there can be at most 4 of these lines. For the same reason in a plane P 2 there can

be at most 2 lines of V, since otherwise V Π Ρ 2 could not be an intersection of conies of P 2 .

In the case g = 4, V = V2.3 C P 5 is a complete intersection of a quadric and a cubic.

Hence V Π Ρ 3 is a curve of degree 6 and at worst can break up into 6 lines. If in one plane

P2 there are more than 2 lines of V, then this P 2 must be entirely contained in the quadric

through V, and the cubic through V will cut out on P 2 a curve of degree 3. Here and above

we are using the fact that V does not contain a plane (see (3.4)). The proof of the lemma is

complete.

§4. The family of conies on a Fano 3-fold of the principal series

(4.1) Let V= V2g_2 C Pg+l be a Fano 3-fold, and let Δ = A(V) be the scheme parame-

trizing the conies on V; this is a closed subscheme of the Hubert scheme of closed subschemes of

PS+1

 w jth Hubert polynomial 2n + 1. Let Τ = T(V) denote the universal family of conies over

Δ, and let
Τ -!-+ V

4
Δ

be the diagram of natural morphisms. Set Q = q(T). A conic on V (possibly reducible or

nonreduced) and the corresponding fiber of Τ will be denoted by one and the same letter C.

As usual, -^civ w ^ denote the normal sheaf. On decomposing y^CjV into a direct sum,

or in representing it as an extension of invertible sheaves, the symbol 0c{d) will denote the

invertible sheaf of degree d on C.

(4.2) LEMMA. Suppose that on V there exists a smooth conic C. Then there are only

the following 4 possibilities for the normal sheaf ^

a)

b)

c) jrciv ^ Oc (— 2) φ Oc (2),

d) Jirc/V~QC(— 4) ® 0 C (4).

PROOF. If we can pass a smooth hyperplane section Η through C, then we have an

extension

(— 2) -+JrCfv+Oc(ty-+0, (4.2.1)

since -^C,H — 0c(-2), since C is a curve of genus 0 on the K3 surface H, and (C · C) =

-2. As in (3.2.2) we get from this the first 3 possibilities a), b) and c) for -^civ-

Let Ρ = P(C) be the plane of a conic C in P8+1. If Ρ C V, then (C • C)p = 4 and we

have the exact sequence
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0 -ν Oc (4) -v JTciv - Oc ( - 4) -> 0, (4.2.2)

which obviously splits as a direct sum. This gives the remaining possibility d).

It remains to show that there are no other possibilities for the decomposition of

into a direct sum. As in the beginning of the proof of Lemma (3.2), it is not difficult to

show that there exists a smooth surface F E. \2H - C\ cut out on V by some quadric of

through C. Since KF ~ F · Η it follows at once from the formula for the genus of C that

(C • C)F = — 4. From this we get an exact sequence

0-+Oc(— 4)-»- JVciv-^Oc (4)-»0. (4.2.3)

This sequence shows that apart from cases a), b), c) and d) only one other case is possible:

e) yrclv ^ ac{-3) ω 0c{y).
We will prove that in fact this case does not occur.

Let D = V Π Ρ be the closed subscheme of V cut out by the plane P. The case D = Ρ

has already been considered. Thus we can assume that dim D = 1. Clearly C C D; let μα(ϋ)

be the multiplicity of D in the general point of C.

Let us show that μο(Ζ>) = 1 or 2, with μ€(Ο) = 2 only if V = V4 C P 4 , and the plane

Ρ touches V along C. According to (1.7, ii), if g > 4 then V is an intersection of quadrics

and cubics. Hence D C Ρ is also cut out by conies and cubics. It follows that μς(ΰ) = 1

foTg>4. If g = 3 then Z> C Ρ is a curve of degree 4. If Z> = C U C°, with C° a conic dis-

tinct from C, then obviously μο(Ζ>) = 1. There remains only the case where C = C° and £>

is a double conic of P; that is, vc(D) = 2.

Consider the linear system \H - C\ on V. Obviously D and only D is the base scheme

of this linear system. Let σ: V' —> V be the blow-up of C, and let C' = a~1(C) be the ex-

ceptional ruled surface, having s and / the class of the negative section and the fiber of C'

respectively. We have

(σ'Η — C ) · C = — 2σ*Η • C'2 + C1' = 2 (H • C)v — deg det JTCIV = 4 (4.2.4)

(see (2.11), Part I). The linear system \a*H - C'\ cuts out on C a certain linear system of

sections of the ruling; that is, {a*H - C') • C' ~ s + af for some integer a. If jUc(Z>) = 1,

then this linear system is without fixed components; and, conversely, it has a fixed component

if μσ(Ό) = 2. From (4.2.3) we get

(4.2.5)

For MC(D) = 1 the negative section of C' is not a fixed component, and hence

(s • s + af) > 0; that is, s2 + a > 0.

Using (4.2.5) we get from this that α < 4 and s2 >-4. Since C' = P ( _ ^ . / K ) , with /

the conormal sheaf, it follows that -^c/v — 0c(-d) θ 0c(d) with d = 0, 1 or 2, and

the same is true of y^CiV. Hence in this case only the possibilities a), b) and c) can occur.

Now let μ^(Ρ) = 2. In this case a hyperplane section Η of V = V4 through C is a

quartic surface of P 3 which touches Ρ along C. If x0 = 0 is an equation for Ρ C P 3 and

(x0, . . . , x3) are homogeneous coordinates, then C C Ρ has equation Q2(X\. *2 > *3) = >̂

and Η is given by an equation of the form
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Qi(Xi, X2, XiY+xaFz(xa * , ) = 0 ,

where F3(xQ, ..., x3) is some cubic form. The general hyperplane Η is nonsingular at the

general point of C, and hence the cubic F3(x0, ..., x3) - 0 does not contain C. Simple

computations show that Η has 6 singular points on C-the intersections of C with the cubic

F 3 ( J C 0 , . . . , x3) = 0. Hence the linear system \a*H - C'\ cuts out on C' curves in the class

s + β/, with β>6. Since (s + 0/ · s + 0/) = 4 (see 4.2.5), β > 6 is only possible if s2 <

- 8 . Since s2 = -2d, there remains the unique possibility β — 6 and d = 4; that is, case d).

The lemma is proved.

(4.3) PROPOSITION. Suppose that Τ Φ 0, and let T° be an irreducible component of

the scheme Τ, Δ 0 the corresponding component of the scheme Δ, and Q° = q(T°) a compo-

nent of Q. Then the following assertions are true:

(i) If for the general conic C C Q° the normal sheaf y^c/v 's °f tyPe a ) of Lemma

(4.2), then Δ 0 is nonsingular at its general point, dim Δ 0 = 2 and Q° = V; that is, the mor-

phism q: T° —*• V is generically finite.

(ii) //, for the general conic C C Q°, -^CjV is of type b), then Δ 0 is nonsingular at

its general point, dim Δ 0 = 2, dim Q° = 2, and Q° is either the Veronese surface in P s , or

one of its projections into a lower-dimensional space, but not a plane P 2 or a quadric 0/P 3 .

(iii) //, for the general conic C C Q°, ~^/ν is of type c), then Δ 0 is nonsingular at

the general point, dim Δ 0 = 3, and Q° is a quadric surface in V.

(iv) //, for the general C C Q°, ^ c / v is of type d), then Q° is a plane Ρ C V.

PROOF, (i) The smoothness of Δ 0 at a general point and the equality dim Δ 0 = 2

follow from general deformation theory [7]. Clearly dim Q° > 2. If dim Q° = 2 then Q°

is a surface containing a 2-dimensional family of conies. According to a classical result of

Bertini [2], Q° is either the Veronese surface in P s , or one of its projections in a lower di-

mensional space. All of these surfaces are well known (see, for example [17]):

F 4 the Veronese in P5

F't, F\ R3 in I " (4.3.1)

S 4 R'3 Q2 in P 3

and the plane P 2 , where S4 is the Steiner surface, R3 and R'3 are rational cubic scrolls, and

Q2 is a quadric (as usual the lower index denotes the degree). An immediate verification

shows that if Q° is one of the surfaces in (4.3.1) then -Λς/γ has a positive summand; that

is, -^cjy ^ &c{-d) θ 0c(d), with d > 0. But this contradicts the assumption that

-Λς,ν =i &c θ 0C. Hence Q° = V and the morphism q: T° —>• V is generically finite.

Here we are using the fact that T° is proper over k.

(ii) The first two assertions are a consequence of deformation theory. As usual we

have dim Q° > 2. Suppose that Q° = V. Then the morphism q: T° —> Fis generically fi-

nite, and hence its differential

Oc θ Oc - * Oc (— 1) θ Oc (1) (4.3.2)
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is nondegenerate at the general point of some curve C. However, the lower arrow of (4.3.2)

shows that dq must have kernel of rank at least 1. This contradiction shows that dim Q° =

2, and hence Q° is one of the surfaces of diagram (4.3.1). It cannot be the plane P 2 or a

quadric Q2 C P 3 , since for either of these -^civ W 0 U W have a summand of positive degree

greater than 1.

(iii) According to deformation theory two cases are possible here:

α) Δ 0 is nonsingular at a general point and dim Δ 0 = 3;

β) Δ° is nonreduced at the general point and dim Δ 0 = 2.

In either case the morphism q: T^d —* Κ cannot be dominant, since the differential

cannot have rank 2 at the general point of C, because the trivial sheaf Λ' 0 can only

have a nonzero homomorphism into the second summand of -^Civ- ""*

Hence Q° = q(T®ed) is a surface from diagram (4.3.1). Clearly, in case a) Q° = Q2 is a

quadric of P 3 . Case j3) cannot occur. Indeed, Q° cannot be the plane by considerations of

the dimension of the family of conies on it. It is not difficult to check that for all the re-

maining surfaces in (4.3.1) -Λς,γ has positive summand &c(l).

(iv) Here also Q° = q(T^d) must be a surface from (4.3.1). In Lemma (4.2) we showed

that -^c/v ^ a s 'yP e ^) o n ly ^ * n e p l a n e Ρ οϊ C lies on V, or if V = F 4 is a quartic and V

touches Ρ along C. This final case is excluded since a smooth quartic 3-fold cannot contain

any of the surfaces of (4.3.1) (see [14], and also (4.4, ii)). There remains the case Q° = P,

a plane of V. The proposition is proved.

(4.4) THEOREM. Suppose that Pic V a Z, and that V contains a line Z. Then the

following assertions are true:

(i) V contains a smooth conic.

(ii) For every irreducible component T° of the family of conies Τ on V the morphism

q: T° —> V is generically finite.

(iii) If q > 8 then only a finite number of conies pass through each point υ G V.

PROOF, (i) According to (3.4) the lines of V sweep out a ruled surface R ~ dH, and

the general line of/? meets a further d + 1 lines. Hence there is a reducible conic CQ on V

consisting of 2 incident lines. Let / be the sheaf of ideals of the conic Co C V. Then

JfCt/v = Hom(//U, Oco)

is a locally free sheaf of rank 2, since Co is obviously a locally complete intersection, so that

I/I2 is a locally free sheaf.

According to Schlessinger's deformation theory we have

dim Δ° > h" (jrc./v) — h1 (^c./v),

where Δ 0 is an irreducible component of the scheme of conies Δ parametrizing deformations

of Co in V. By the Riemann-Roch theorem we get

— A1 (JVcjv) = deg ^cjv + 2 (1 — pa (C)) = 2.
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Hence dim Δ° > 2. On the other hand, reducible conies on V form only a 1-dimensional

family, since for g > 4 every line of V meets only a finite number of others (see (3.4, Hi)).

In the case that V = K4 C P 4 is a quartic, the existence of smooth conies can easily be

shown directly (see for example [14]). Thus (i) is proved.

(ii) According to Proposition (4.3), if q: T° —> V is not generically finite then Q° =

q(T®ed) is one of the surfaces of (4.3.1). Hence deg Q° < 4. By assumption Pic F ^ Z and

V contains a line, and hence Pic V = Ζ · Η, with Η the hyperplane class. Hence deg G >

2g — 2 > 4 for any surface G C V. Thus for the proof of (ii) we have to exclude the only

possible case: V = F 4 C P 4 , and Q° = S 4 , the Steiner surface. But it is easy to see (see

[14], Lemma 4) that the Steiner surface 5 4 cannot lie on a nonsingular quartic 3-fold F 4 .

(iii) Let υ & V be a closed point, and mv its sheaf of ideals. For any integer e > 0 w e

have

h° (Ov (Η) ® ml) > h° (Θν (Η)) -

In particular, for ν = 3 and g > 9 we get

that is, dim \H — 3υ| > 1. If there were a 1-dimensional family of conies passing through υ,

then the surface Gv swept out by these conies would have to be a fixed component of the

linear system \H - 3u|, since the proper transform of any such conic has negative intersection

with the proper transform of \H - 3υ| on blowing up u. But since Pic V = Ζ • Η, every hy-

perplane section Η is irreducible, so that \H - 3υ| cannot have any fixed components. This

completes the proof of the theorem.

§5. Fano 3-folds of the first species: preliminary results

(5.1) DEFINITION. A Fano 3-fold V will be said to be of the first species if Pic V ^ Ζ

(the term comes from Fano's "di l a specie" [4]).

Thus Fano 3-folds of the first species are characterized among projective varieties by

the two conditions Pic V ^ Ζ and K\ < 0.

The study of the birational properties of such varieties is the principal content of Fano's

classical papers. Basing himself on Fano's assertion that there exists a line on (the canonical

model of) a Fano 3-fold of the first species with Pic V = Ζ · Kv (see [20], (3.5, iv), and

(3.6)), Roth classified in [11] all Fano 3-folds of the first species. However, as pointed out

in our note [9], Roth's classification contains gaps. The most significant of these is the false

assertion that such 3-folds (with Pic V — Ζ · Kv) exist only for g < 10. We will subsequent-

ly show (see (6.1, iii)) that there also exist Fano 3-folds with g = 12.

Let &V{H~) be the positive generator of Pic V =± Z, and r the index of V (so that rH

~ -Kv). The classification of 3-folds of the first species and with index r > 2 is contained

in our Part I [8], where a classification of all Fano 3-folds of index r > 2 is given, under the

assumption (since proved; see [19]) of Hypothesis (1.14, Part I), that the linear system \H\

contains a smooth surface. One can show, although we will not do this here, that for r > 2

and Pic V =ί Ζ we can get rid of this hypothesis.

In [8] we also gave a description of hyperelliptic 3-folds of the first species with index

r = 1. A partial description of 3-folds of the first species and of the principal series has
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already been given in the present article: these are the complete intersections (see (1.3)) and

the Grassmannian sections (see (1.4) and (1.5)).

In the remaining part of this article we describe Fano 3-folds of the first species with

g> Ί', under the assumption of the existence of lines (see (3.6) and [20]). The existence of

lines and conies is used in (6.1) for the proof of the boundedness of the genus g (g < 12).

To construct 3-folds with given g we use the birational technique (going back to Fano [5],

[6]) of projection and double projection from lines on V.

From now on we will stick to the following notation.

(5.2) Notation and conventions.

V= V2g_2 C P* + 1 is a Fano 3-fold of the first species.

Ζ C V is a line on V.

a: V' —> V is the blow-up of Ζ in V; H* = a*H, where Η is the hyperplane section,

and Z ' = o~1(Z) is the exceptional ruled surface.

π ζ : V—• ?g~l is the projection from the line Z.

ψζ = πζ ο σ: V —*• Pg~1 is the morphism resolving the indeterminacy of πζ.

V" = nz(V) = φζ(ν') is the image of Κ under the projection π ζ .

R3 = φζ(Ζ') is the image of the ruled surface Z'.

π 2 Ζ : V —• Pg~6 is the double projection from Z; that is, the rational map defined by

the linear system \H - 2Z|.

W = TT2Z(V) is the image of V under the double projection π 2 Ζ .

Q = Qz is the surface of V swept out by conies on V which meet Z.

Q' is the proper transform of Q in V'.

Q" = φζ{<2') C V" is the image of Q under π ζ .

Z(., for / = 1, . . . , d + 1, are the lines of V meeting Z.

Z?, for i = 1, . . . , d + 1, are the proper transforms of the Z,- on V'.

τ. V' —> V is the blow-up of all the d + 1 lines Ζ 9'.

Ζ? = f~l(Zf) are the exceptional ruled surfaces above the blown-up lines Zf, and Z '

= r\z'\
z(- = Z9 Π Ζ ' is the point of intersection of the line Zf with the ruled surface Z', for

i = 1 , . . . ,d+ 1.

Η* = τ*Η*.

An isolated singularity χ G X of a 3-fold X will be called an ordinary double point if

after performing at χ the blow-up αχ: Χ' —• X the blow-up X' is nonsingular in a neighbor-

hood of Y' = a~l(x), and F ' ~ Ρ 1 χ Ρ 1 , with the normal sheaf given by

We begin with the following auxiliary result, which is also of independent interest.

(5.3) LEMMA. In the notation of (5.2) suppose that Ζ has the properties (i)—(iii) of

Lemma (3.7). Then Z' — F j , where Fj is the standard ruled surface (obtained by blowing

up one point in P 2), and if g ^ 5 then the following assertions hold:

(i) The morphism φζ: V' —• V" is birational.

(ii) The linear system \H* - Z'\ cuts out on Z' the complete linear system \s + 2/|,

where s is the class of the exceptional section and f is the class of a fiber of the ruled
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surface Ζ ' ; and R3 is a nonsingular scroll of degree 3 in P 4 , lying on V".

(iii) V" has d + 1 isolated ordinary double points, the images of the d + 1 lines Ζχ,

..., Zd+1 meeting Ζ (see (3.4, iv)), and has no other singularities.

(iv) Let g1 =g - 2; then V" C Pgl + 1 with deg V" = 2gx - 2, and furthermore the

sheaf 0 »(~ 1) ' s the canonical dualizing sheaf J&W". Also Pic V" — Ζ · Η", so that

Fj _ 2 C P y i is a Fano 3-fold of the first species, only having a finite number of ordinary

double points.

PROOF. Since JYZjV ^ 0z(~l) ® @z a n d z ~ P ( - ^ Z / F ) > w i t h -^ZJV t h e c°-
normal sheaf, it follows that Z ' = F x .

(i) In the projection π ζ : Pg+1 —• P ^ " 1 the inverse images of points y € P*"1 are the

planes P2 through Z. Hence if y ε V" then its inverse image lies in K f i P j . Since Pic V

^ Ζ and g > 5, V is an intersection of quadrics of Vg+i (see (1.7)), and ?2

y (/: V (see (3.4, i)).

Hence V η V2 is cut out by conies in P^. Hence, apart from the line Z, the scheme VHP2

can only contain either a further line Z f (for i = 1, . . . , d + 1), or no more than one other

point j t £ K Hence the restriction of π ζ to V - (Z (J ^ ί/ Z f) is a one-to-one mapping to

F" - <£Z(Z' U f = / Z?). Hence the morphism «pz: V" —* V" is birational. Note that it con-

tracts each of the d + 1 lines Z? into a point of V".

(ii) Each nonsingular surface H' (= |/f* - Z'\ cuts out on Z ' some section; that is,

Η' Γ) Z' ~ s + af, with α some integer. We have

(s+af-s+af)g.= (//'—Z')2-Z' = 3 (5.3.1)

(see 2.11, Part I). Since Z ' =̂  F j , s2 = - 1 . Hence α = 2. Ζ ' only contains a single curve

having negative self-intersection, namely the negative section s. Since (s • Z')v = (s +2f · Z')

- 2 ( / · Z') = 3 - 2 = 1, the morphism φζ cannot contract s to a point. Hence ψζ cannot

contract anything, apart from the d + 1 lines Z?.

Furthermore, if we prove that V" is projectively normal, and hence a normal variety,

then it will follow that φΖ\Ζ<: Ζ ' —> R3 is a birational morphism, and R3 is a normal surface

of degree 3 (see (5.3.1)). But this is only possible if φΖ\Ζ< is defined by the complete linear

system \s + 2/ | ; and then R3 is a smooth scroll of P 4 .

Let us prove the projective normality of V". Choose a smooth surface H' S \H* — Z'\

and set

X' - Ov. (H* — Ζ'), ΧΉ' - £' ® Ow.

Since //' is a K3 surface, φζ: Η' —>• φζ(Η') is a birational morphism and the complete lin-

ear system \Sz%,\ is without fixed components and base points, it follows as shown in [13],

Theorem 6.1, that the natural homomorphism

S'H° (//', £'H>) -* θ H° (//', £'£) (5.3.2)

i s s u r j e c t i v e , w h e r e t h e l e f t - h a n d s i d e i s t h e s y m m e t r i c a l g e b r a o n H ° ( ^

S i n c e t h e s e q u e n c e

H° (V, 2') -y H° (//', %Ή>) -ν Η1 (V, ©y) =• 0

is exact, the hypotheses of Lemma (2.9, Part I) are satisfied with X = V,Y = H' and



FANO 3-FOLDS. II 491

^ = y . Becasuse of this lemma the natural homomorphism

S'H° (V, X') -> φ Η^ν,Χ'") (5.3.3)

is also surjective, so that

V" = Ψζ (V) = Proj φ Η° (V, X"1)
rt>0

is projectively normal in P ^ " 1 .

(iii) We have shown that outside U f*l Z9 the morphism φζ is a bijection with V"

- \Jf~x φζ(Ζ°). Since V" is normal, it follows from this by Zariski's theorem that

rf+l </+i d+i

cpz | V — \J Z°i: V — U Zi —y V" — U φ 7 (Ζ?)

is an isomorphism. The inverse image Z9 of each of the points φζ(Ζ9) is 1-dimensional, and

hence each φζ(Ζ9) is a singular point of V". Since (Z9 • H* - Z') = 0, φζ extends to a

morphism ~φζ: V' —•> V", where V' —> F' is the blow-up of all the d + 1 lines Zf. Let Z?

be the exceptional ruled surface over Z9. By hypothesis (see (3.7, iii))

A/* ,~**s f^i I 1 ̂  (T\ f7^ ( 1 ^

and hence Z? ̂  P 1 x P ! ; and, since ψζ{Ζ9) = ψζ(Ζ9), φζ{Ζ9) is an ordinary double point

of V".

(iv) Using the multiplication table (2.11, Part I), we get

(//*—Z') 3 = H'3+3H' • Z'2—Z"=Η3—3Η • Ζ + deg detJfz/r

= 2g—2—3—\=2g—6,

and hence if we set gt =g-2, then deg V" =2g1-2 and F" = V2gi_2 C P ? 1 + 1 . Fur-

thermore, it is well known that ordinary double points are Gorenstein; that is, the dualizing

sheaf 5£ν» on V" is invertible. Since

Gv> (—Kv)^Ov> (Η· — Ζ')

and the morphism φζ is birational, we have

Xy= (φζ).Ον> (Κν) = Ον (-1).

It remains to show that Pic V" ^ Z, with J^~y" = &γ<·{1) a generator. We have that

Pic V' = Ζ Θ Ζ, with generators 0V'(H*) and 0ν·(Ζ'). Note that the surface Λ 3 =

ψζ(Ζ') is not a Cartier divisor on F", since it passes through all of the d + 1 singular points

φζ(Ζ9) of F", but according to (iii) is itself nonsingular. One sees easily that no multiple

rR3 of R3 can be a Cartier divisor either. On the other hand we know that the sheaf

is invertible, and that 0V'{H* — Z') can be chosen as one of the generators of Pic V'.

Hence the sheaf

(^).Ov (a//* - βΖ') =te,)/V (Η* - Z'f ® ©ν- (Ζ')α"β
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is invertible on V" if and only if a = β. It follows that Pic V" — Z, with generator

0V"(X)· The lemma is proved.

We will now prove some assertions concerned with the properties of double projec-

tions.

(5.4) LEMMA. Under the conditions of Lemma (5.3), and using the notation (5.2),

the following assertions (i)—(viii) are valid:

(i) Ifg>5 then ti( 0r{H* - 2Z')) = 0 for i > 1, A°( ^K-(ff * - 2Z')) = * - 5 ,

and h°(0y(H* - 3 Z ' ) ) < 1 .

(ii) //g > 7 ifteH f/ie /wear system \H* — 2Z'\ on V' is without fixed components,

and its base locus consists just of the d + 1 lines Zf {see (5.2) for the notation).

(iii) Suppose that g > 7, and let L = \H* - 2Z'\ η Ζ' be the trace of the linear

system \H* - 2Z'\ on Z'. Then L C \2s + 3f\ = \-Kz-\, L has no fixed components,

and its base points are just the d + 1 points zi = Zf Π Ζ' (and hence d < 7).

(iv) For g>l

g = 14 + Λ» (Ov ( # ' — 3Z')) - ft1 (Ov (tf* - 3Z')) (5.4.1)

/o/· g > 7 α«ύ? d Φ 1

g < 13 + A0 (Ov (#* - 3Z')) — d, (5-4.2)

rf κ αχ in (iii), and h\&ν·(Η* - 3Z')) = 0 or 1 (see (i)).

(v) For g > 7 suppose in addition that the d + 1 points z{ are simple base points

for L; that is, that each z{ has multiplicity 1 in L and is resolved by a single blowing-up.

Then the base lines Zf are also simple base lines for \H* - 2Z'\, and if τ: V' —> V is

the blow-up of all the Zf for i = 1, . . . , d + 1, and ψ2Ζ: V —* W C P ^ " 6 is the map

defined by the linear system [H* - 2Z' - ΐή=\ If I (see (5.2) for the notation), then φ2Ζ

is a morphism.

(vi) Under the conditions of (v), if h\0r{H* - 3Z')) = 1 and d Φ 1 then Q' ~

H* - 3Z'.

(vii) // g > 9 and the conditions of (v) hold, then ψ2 ζ is a birational morphism

{apart possibly for the one case g = 9, d = 5 and deg ψ2Ζ = 2) which contracts the sur-

face Q' (in the notation of (5.2)) on some irreducible curve Υ C W and which contracts

each of the surfaces Z,-° = r~l(Zf) onto some line Yt C W.

(viii) Under the conditions of (vii) we have the isomorphism Pic W ̂  Z; further-

more, W is nonsingular if and only if φ2Ζ\Ζ': Ζ' —* ψ2Ζ(Ζ') is an isomorphism.

If W is nonsingular, then it is a Fano 3-fold of the first species and of index r > 2

normally embedded in P8~6.

PROOF. From the cohomology exact sequences associated to the short exact se-

quences of sheaves

0 -->- Ov (— Z') - ©v -> Oz· -+ 0,

0 -y Ov, (//' - Z') -y Ov (W) -> Oz. (//*) -• 0

and

0 -> Ov (H* — 21') -• Ov {Η* ~ Ζ') -> Οζ· (Η* — Z') ->• 0,
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we get h'i^yi-Z')) = 0 for i > 1, h\0v-{H* - Z')) = 0 for i > 1, and, finally, for

g > 5 (using (5.3, ii)), h'( &y{H* - 2Z')) = 0 for ί > 1. From this, using the Riemann-

Roch formula, we get

h»{Ov.{ir — 2Z'))=g — 5.

Let us prove the inequality h°(&ν·(Η* - 3Z')) < 1. Suppose that this is not the case;

that is, that \H* — 3Z'| is a mobile linear system. Then the surface Q' of conies meeting

Ζ (in the notation of (5.2)) is a fixed component of \H* - 3Z'|, since (H* - 3Z' · C')

= - 1 for C' C Q' the proper transform of a sufficiently general conic C C Q. Since β'

# Ζ', Q must be a component of some hyperplane section Η C V, which contradicts the

assumption Pic V = Ζ • H. The assertions in (i) are proved.

(ii) Since Pic V = Ζ • Η, the linear system \H* - 2Z'\ cannot have fixed compo-

nents (for g ~> 7) other than Z'. The surface Z' can also not be a fixed component, since

otherwise h°(ar(H* - 3Z')) = h°{0v(H* - 2Ζ')) = g - 5 > 2, contradicting (i).

Let us prove that \H* - 2Z'\ has no base points outside U f = } Zf. For this we use

Lemma (5.3). For every υ' Ε V' - (J f'=ι Zf we can find, using Bertini's theorem and

(5.3, iii), a smooth surface H' e \H* - Z'\ with υ G H'. Furthermore, if Y' C V' is

some curve through υ then H' can be chosen so as not to contain any component of Y'.

Since hl{ 0V'(-Z')) = 0, \H* - 2Z'| cuts out on H' a complete linear system. By choice

of Η' this linear system is without fixed components. Since H1 is a smooth K3 surface,

every complete linear system without fixed components on it has no base points (see for

example [13]). It follows that υ cannot be a base point of \H* - 2Z'\, and since υ' €Ξ

V - \Jf=l Ζ? was an arbitrary point, this proves that \H* — 2Z'\ does not have any

base points outside the d + 1 lines Zf. On the other hand each of these lines is obvi-

ously a base locus for \H* - 2Z'|, since (Zf • H* - 2Z') = - 1 .

(iii) By the adjunction formula we have

- Kz- - ( - Kv - ζ.') η ΐ = (Η' - 2Z') η ζ'.

Hence L C \-Kz>\ = \2s + 3/1, where s is the class of the negative section and / is the

fiber of the ruled surface Z' ^ F j . Clearly, the d + 1 points zt are base points for L,

and L has no further base points, since \H* - 2Z'\ has no base points on V' outside the

d + 1 lines Zf.

(iv) From the exact cohomology sequence associated to the short exact sequence of

sheaves

0->Gv{H' — W) -+OV.{H' — 2Z') - Oz· {H* — 22') ->0,

using (i) and (iii) we get h\ &r(H* - 3Z')) = 0 for i > 2.

Computing the Euler characteristic we get (5.4.1). Since hx{0y{H* - 3Ζ')) =

dim \—KZ'\ — dim L, and L has no fixed components and only the d + 1 points z(. as

base points, we have hl{&v(H* - 3Z')) > d + 1 if d < 7. The inequality (5.4.2) fol-

lows immediately.

(v) The multiplicity of the linear system \H* - 2Z'\ at the general point of Zf is at

most equal to its multiplicity at the point zt, which by hypothesis is 1. Hence \H* ~ 2Z'\

has multiplicity 1 along each of the d + 1 lines Zf.
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Let τ: V' —• V' be the blow-up of the d + 1 lines Zf. The restriction of the linear

system \H* - 2Z' - Σ ί ^ 1 Zf\ to Ζ ' = τ~ι(Ζ') is without fixed components and base points

by (iii) and by the assumption in (v). Let us prove that its restriction to each of the d + 1

surfaces Z? is also without fixed components and base points. According to (3.7), z f ^ P 1

χ Ρ 1 ; let Sj and ft be the classes of a section (with sf - 0) and a fiber of the ruled surface

Z° Then from the fact that \H* - 2Z'\ has multiplicity 1 along Zf it follows that its prop-

er transform on V' cuts out on Z? some linear system of sections (that is, curves from the

class s( + ctfff, with a,- > 0 some integer). We have

2α< = (st + atft • s, + a,·/,) = I tf* — 2Z' — 2 Z? · Z\

= 2 (W • Zfiv. - 4 (Ζ' · Ζ%. - deg det JT^. = 2 — 4 + 2 = 0;

and hence a(. = 0 for i = 1, . . . , d + 1. Hence

r* 2Z' "S1 Z° Π Z° czzz 1 st-1

and since dim |s,.| = 1 and the restricted linear system is mobile (this follows from the fact

that it is mobile when restricted to the fiber over z(·, assumed in (v)), the complete linear

system |s ( | is cut out. Thus we have proved that \H* - 2Z' - Σ / ^ 1 Ζ° | is without fixed

components, and without base points on Ζ ' or on any of the d + 1 surfaces Z° ; since we

have already proved in (ii) that it has no base points outside these surfaces, it defines a mor-

phism φ2Ζ: V —• W, where W C P*~6, since h°(0y{H* - 2Ζ')) = g - 5 (see (i)).

(vi) Suppose that h°{€?y{H* - 3Z')) = 1. Every conic C C V which meets Ζ only

meets it in 1 point, as follows from the fact that V is an intersection of quadrics. We have

(C' • H* - 3Z') = - 1 , where C" C V' is the proper transform of C. Hence if \H* - 3Z' |

Φ 0, then the surface Q' of conies meeting Ζ is contained in \H* - 3Z' | as a component

(that Q' is irreducible follows from Pic V = Ζ · 7/). Let us show that in fact Q' ~ H* - 3Z'.

From the condition Pic V = Ζ · Η a surface in |//* - 3Z' | can a priori only contain Q' to-

gether with some multiple of Z'. Let Q' + aZ' ~ //* - 3Z', with α > 0 an integer. Since

( C · H* - 2Z') = 0, the surface Q' C V has degree 0 relative to Ή* - 1Z' - SfJ"/ Zf, so

that

Q' · IH' — 2Z' — 2 Z°) = 0. (5.4.3)

In the proof of (v) we showed that Z? also has degree 0. Hence T*Q' also has degree 0.

Hence, using the multiplication table (2.11, Part I), we get

_
*Z' • \H*

/
= (H' — 3Z') · [H' — 2Z' —

For d ΦΊ inequality (5.4.2) implies that g < 14 - d. Substituting this in the last equation

we get a(8 - d - 1) < 0, and hence a < 0. This proves (vi).
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(vii) Using the multiplication table (2.11, Part I) we get

H* — 2Z'—yiZ7)=2g — 22 + d+l. (5.4.4)

By Lemma (2.1, Part I) we have the inequality

codimr+ 1 = g —8.< degr = 2 g ~ 2 2 + d + ' . (5.4.5)
deg φ 2 Ζ

If g > 9, then it follows from (5.4.2) that d < 5. For d < 4 it follows immediately from (5.4.5)

that deg φ2Ζ = 1; that is, ψ2Ζ is a birational morphism. For d = 5 one other case is pos-

sible: g=9, deg v>2Z = 2. From (5.4.2) we get that in this case h°(0V'(H* - 3Ζ')) = 1.

In the following section during the proof of Theorem 6.1 we will show that this case does

not in fact occur.

It is clear that φ2Ζ contracts the surface Q' and each of the Z?. From the proof of

(v) one sees that the Y. = </>2Z(Z?) are lines of W. It remains to prove that Q' is not con-

tracted to a point. This follows from the fact that Q' ΓΊ Zf Φ0 for each /, or from the fact

that the curve Q' Π Ζ' cannot be contracted under the map ψ2ζ\Ζ': Ζ' —• φ2Ζ(Ζ'). The de-

tailed checking will be carried out during the proof of Theorem (6.1).

(viii) The group Pic V' has rank d + 3 and is generated by the classes of Η*, Ζ' and

the Zf, i = 1, . . . , d + 1. The morphism ψ2Ζ contracts all the Zf and the surface Q'.

Standard arguments then deduce that Pic W ̂  Z. In exactly the same way we can prove that

the group of Weil divisor classes Cl W is also isomorphic to Z. Hence Pic W C Cl W ̂  Z.

Let us show that in fact we have equality Pic W = Cl W. For this it is enough to check that

on V' the group Pic V' is generated by (H* - 2Z') and the class of the contracted surface

Q'; that is, that the class of Z ' can be expressed in terms of them. Let a and b be the inte-

gers such that Q' ~ aH* - bZ''. If C C Q is a sufficiently general conic meeting Ζ then

yycjV ^ &c Θ 0C (see (4.4, ii)). Let C' be the proper transform of C on V; then

jrc.p,.~.oc· (— 1) Θ oc>.

It follows that (C' • Q')v, = - 1 , since ( C · C')Q· = 0. We have

Hence Q' ~ a(H* - 2Z') - Ζ', and

Z'~a(H* — 2Z')— Q'. (5.4.6)

From this we conclude that the image ϋΌη W of the class of (H* - 2Z' - Σ ί ^ 1 Ζ?) is a

generator both of Pic W and of Cl W, and furthermore, the image F = φ2Ζ(Ζ') of the sur-

face Z' is equivalent to aE.

From the fact that Q' · (Ή* - 2Z' - Σ ^ 1 Ζ?)2 = 0, we get

a(2g—2l+d) + (d—7)=0. (5.4.7)

Hence and from (5.4.1) and (5.4.2) we get a list of all possible values of g, d and a (of

course, with g > 9):
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g

13
12
11
11
10
10
9
9

d

1
2
1
3
3
4
4
5

a

1
1
3
1
2
1
3
1

(5.4.8)

Now let us prove the criterion for the nonsingularity of W. First suppose that F =

φ2Ζ(Ζ') =ί Ζ ' is a smooth surface. Then W cannot have singularities on F, since F ~ aE is a

Cartier divisor. Furthermore, from the fact that W has a smooth hyperplane section it follows

that W cannot have more than isolated singularities. It is easily seen that W is projectively

normal in Pg~6. Hence every isolated singularity is the image of the contraction of some

subvariety X' C V', and Χ' Π Ζ' = 0 , since otherwise the singular point would lie on F. But

a curve of V' not meeting Z ' cannot be contracted by φ2Ζ, since it has a nonzero intersec-

tion number (equal to its degree) with H* — 2Z'. This proves that F smooth implies W

smooth.

For the proof of the converse implication note that F can only have singularities if the

birational morphism φ2Ζ\Ζ': Ζ' —>· F contracts some curves. Let X' C Z ' be such a curve.

Since W is nonsingular, Q' is an exceptional divisor of the first kind (more precisely, it be-

comes an exceptional divisor of the first kind after contracting all of the Zf) on V', so that

its image on W should be a nonsingular curve Υ C W. It follows from this that the intersec-

tion curve Y' = Q' (Ί Z' is also nonsingular, since it is isomorphic to Y. Hence the curve X'

cannot lie on the contractible surface Q'. One checks similarly that X' also cannot lie on

any of the d + 1 surfaces Zf. There are no other surfaces contracted by φ2ζ· Hence φ2Ζ

must contract an isolated curve. But then W must have a singular point. This contradiction

shows that W smooth implies that F = ψ2Ζ{Ζ') is a smooth surface.

The Final assertion in (viii) follows at once from previous arguments. The lemma is

proved.

(5.5) REMARKS. The term "double projection" for φ2Ζ comes from the fact that the

map π 2 Ζ defined by the linear system \H — 2Z\ on V can be represented as the composite

of two projections:

a) the projection from the line Ζ, π ζ : V—• V";

b) the projection irR : V" —* W from the ruled surface R3, the "image" of the line

Ζ under the projection πζ.

The second projection is induced by the projection P^" 1 —* J>g~6 from the linear sub-

space P4—the linear span of the scroll R3. To resolve the indeterminacy of the projection

irR one has to blow up R3 C V" into a Cartier divisor. Let δ: V'" —• V" be this blow-up.

Then V1" is a smooth 3-fold: δ is the most economic resolution of the singularities of V",

in the sense that the inverse image of each singular point is a smooth rational curve—the

blow-up of the corresponding point on R3. Let R3 = 8~1(R3). Then 5\R3: R3 —* R3 is

the blow-up of R3 in the d + 1 points of R3 which are singular on V". Under the conditions
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of general position of (5.4) it is not difficult to show that V'" is the image of the variety V'

on contracting the d + 1 surfaces Z? =*• Ρ 1 χ Ρ 1 on the other component from the contrac-

tion τ.

§6. Fano 3-folds of the first species: the main theorem

(6.1) THEOREM. Let V = V2g-2

 c pg+1 > g>7,be a Fano 3-fold of the first species.

Suppose that V contains a line, and let π2Ζ: V —>• W C p#~ 6 be the double projection {see

5.2) from a sufficiently general (in the sense of Lemma (3.7)) line Ζ C V. Let Ε denote the

hyperplane section of W. Then the following assertions hold:

(i) g<l2.

(ii) If g = 12, then W - W5 C Ρ 6 κ a Fano 3-fold of the first species and of index 2

and degree 5 (with possibly one singular point); the map ργ: W —> V inverse to n2Z is given

by the linear system \3E - 2Y\, with Υ C W a normal rational curve of degree 5 in P s .

(iii) There do not exist any Fano 3-folds of the first species with £ = 1 1 .

(iv) If g = 10, then W = W2 C P 4 is a quadric and ργ: W —>• V is given by the linear

system \5E — 2Y\, where Υ is a smooth curve of genus 2 and degree 1 in P 4 .

(v) Ifg=9, then W = P 3 and ργ: Ρ 3 —* V is given by the linear system \1E - 2Y\,

where Υ is a smooth curve of genus 3 and degree 7.

(vi) If g = 8, then π2Ζ: V —• Ρ 2 is a rational map with fibers (after resolving the de-

terminacy) curves of genus 2, and such that the inverse images of lines ofP2 are rational

surfaces.

(vii) If g = 7, then π2Ζ '• V —• Ρ 1 is a rational map whose general fiber (after resolv-

ing the indeterminacy) is a del Pezzo surface of degree 5 with 8 points blown up; V is a ra-

tional 3-fold, and the projection from a line maps it into a complete intersection of 3 quad-

rics of P 6 containing a smooth rational ruled surface R3 C P 4 .

(6.2) COROLLARY (FANO). Fano 3-folds of the first species with g = 7 or g > 9 are

rational (of course, assuming that there exist lines on them [20]).

(6.3) REMARK. In [6] it is asserted that Fano 3-folds of the first species with g = 5,

6 or 8 are irrational, and that a 3-fold with g = 8 is birational to a smooth cubic of P 4 . The

irrationality of V& with g = 5 is proved in [16] and in [1]. The author has succeeded in re-

establishing the construction of the birationality of F 1 4 (g = 8) with a cubic 3-fold. The

proof will be published.

(6.4) PROOF OF THE THEOREM, (i) From (5.4.2) one gets at once that g < 13, since

d > 1 (see (3.4, iv)). Let us show that there do not exist any 3-folds with g = 13. In this

case (5.4.2) becomes an equality with d = 1 and h°(0V'(H* - 3Z')) = 1. Note that the

points of intersection ζγ and z 2 of the lines Z° and Z2 with Z' must be distinct, since other-

wise the 3 lines Z, Z1 and Z2 on V would have to lie in one plane, which is impossible since

V is an intersection of quadrics. Furthermore, according to Lemma (3.7), the line Ζ can be

chosen so that the points Zj and z 2 do not lie on the negative section of the ruled surface Z'.

Consider first the case that ζχ and z 2 do not both lie on the same fiber of the ruled

surface Z'. In this case all the conditions of Lemma (5.4) are fulfilled, and according to this

lemma the image of the double projection ff2Z: V—>• W is a smooth Fano 3-fold of the first

species and of degree 6, W6 C P 7 . W is smooth, as one checks using the criterion (5.4, viii).
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However, it is known (4.2, Part I) that such 3-folds do not exist. Hence in this case a 3-fold

V with g = 13 cannot exist either.

Now suppose that zx and z 2 lie on the same fiber of Z'. Following through the proof

of Lemma (5.4) in this situation, one can check that the double projection ττ 2 Ζ: F —> W

can be resolved to a birational morphism φ2Ζ- V' —* ^ which contracts the fiber of Z ' on

which Zj and z 2 lie into an isolated singularity of W. Apart from this singular point, as in

the first case W satisfies deg W = 6 and Pic W = Ζ · Ε. An analysis of the proof of Theo-

rem (4.2) in this case shows that such 3-folds W do not exist. Hence g Φ 13 and (i) is

proved.

REMARK. It is known (see 4.2, Part I) that there does exist in P 7 a Fano 3-fold W6 ^

Ρ 1 χ Ρ 1 χ Ρ 1 of index 2. A map pY, the inverse of a double projection ττ2Ζ, allows us to

construct a Fano 3-fold V C P 1 4 of index 1 with g = 13. However, V is not a 3-fold of the

first species: Pic Κ ^ Ζ Θ Ζ Θ Ζ . The map pY is given by the linear system

where Ε is the hyperplane section, Υ is a smooth curve of genus 1 and degree 7 in P 6 , and

Yt and Υ2 are two lines, chords of Y.

(ii) Now let us consider the case g = 12. It follows from (5.4.2) that d = 1 or 2. The

case d = 1 does not occur (see the table (5.4.8)). If d = 2 then h°{0V'(H* - 3Z')) = 1,

and (5.4.2) turns into an equality; that is, in (5.4.1)

Note that all 3 of the points ζχ, z 2 and z 3 cannot lie on one fiber of the ruled surface

Z', since otherwise this fiber would be a base curve of the linear system \H* - 2Z'\, contra-

dicting (5.4, ii). Furthermore, by Lemma (3.7) the line Ζ can be chosen such that none of

the 3 points z t , z 2 and z 3 lie on the negative section of the ruled surface Z'. We consider

separately two cases:

a) The 3 points ζχ, z 2 , z 3 G Z ' are in general position; that is, no two of them lie on

a fiber of Z', and all 3 do not lie on a section of Ζ ' in the class of s + /.

b) The 3 points z1,z2,z3 G Ζ ' are not in general position.

Case a). Here all the conditions of Lemma (5.4) are fulfilled, and according to this

lemma the double projection π2Ζ maps V to a smooth Fano 3-fold of the first species TV5 C

P 6 . The degree of W is computed from (5.4.4). There exists just one such 3-fold up to pro-

jective equivalence, namely a linear section of the Grassmannian G(l, 4) of lines in P 4 (see

4.2, iii, Part I). Now to convince ourselves of the existence of V we carry out the construc-

tion of the inverse map pY: W —>• V to TI2Z . For this let us find first the curve Υ C W on-

to which the surface of conies Q = Qz is contracted (for the notation, see (5.2)). Let Y' —

Q' Π Z ' be the curve of intersection of the contractible surface Q' ~ H* — 3Z' with Z ' (see

(5.4, vi)). Clearly Y' ~ 3s + a/ for some integer a, which we find from the equation

(3s + af • 3s + a/)z- = (/Γ — 3Z')2 · Z' = 15. (6.4.1)

Hence a = 4. The curve Y' passes through the points zx, z2 and z 3 with certain multiplici-

ties. To discover these, we first compute the multiplicity of the surface Q' at the general

points of the lines Z j , Z 2 and Z 3 .



FANO 3-FOLDS. II 499

Let H' G \H* — 2Z'\ be a sufficiently general smooth surface. This exists by Lemma

(5.4) and by Bertini's theorem. Then Q' Γ) H' = rxZ\ + r2Z2 + r^Z\ + X, where r-, / =

1, 2, 3, is the multiplicity of Q' at the lines Z?. Computing the intersection number Q' · Zf

in two different ways, we get

- 2 = (//*- 3Z' · Z°) = (Q' • Z?) = - r, + (X · Z,V·

Since (X · Zf)H' > 0, we have ri > 2 for / = 1,2,3. Hence a fortiori the points z(- have

multiplicity at least 2 on Y'.

Set y ' = Q' η Ζ ' on F'. As was mentioned at the end of the proof of Lemma (5.4),

because W is nonsingular, Q' becomes an exceptional divisor of the first kind after contracting

the 3 surfaces Z? (the irreducibility of Q' follows from the assumption Pic V = Ζ • Η). Any

irreducible conic C C Q meets Ζ in one point. It follows from this that the curve Y1 is a sec-

tion of the ruled surface Q'· Y' is irreducible, since otherwise either Q' would be reducible,

which is not the case, or Y' would contain some fiber of the ruled surface Q' as a compo-

nent. But in this case such a fiber, belonging to the intersection Q' ilZ', would be contracted

under the morphism ψ2ζ
: Ζ' —+ φ2Ζ(Ζ'), contradicting the fact that z t , z 2

 a n c^ Z3 a r e m

general position on Z'.

Thus Y' is a nonsingular section of the ruled surface Q', and is isomorphic to the curve

Υ C W on which Q' is contracted. From this it also follows that Υ and Y' are smooth

curves.

The morphism r: V' —• V' takes Y' to Y'. Hence Y' is irreducible. From the formu-

la for the genus of a curve on a surface we get

g (f') =

( 6 A 2 )

where ti > 2 are the multiplicities of Y' at the points z,· for / = 1, 2, 3. Hence we get tx =

t2- t^ = 2 and g(Y') = 0. Hence g{Y) - 0.

Let us compute the degree of Y. This is equal to

s _ \ _
' — 2Z' — V. Z? )-Y' = (2s + 3/ - 3 s + 4/) — 6 = 5 .

1 = 1

Note that each of the 3 lines Yt into which the surfaces Z° are contracted meets Υ in

2 points; that is, it is a 2-chord of Y.

Now let us find the image of the hyperplane section Η under the double projection

ir2Z'- V —*• W, or, more precisely, the image of the linear system \H*\ on V' under the mor-

phism φ2Ζ: V —• W. From general considerations it is clear that

3

Ψ2ζ(1 H'\) = nE—mY — ^ mtYi ,

where n, m, and the mi are certain integers. Let us compute them. We have
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' — 71' — ̂  Ζ? = 15,

whence η = 3. The integer m is equal to the intersection number of the surface H* with

the fiber of the surface Q' which contracts to Y; that is, m = {C · H) = 2, where C C β is

an arbitrary conic. Similarly mi = (Z,. · H) = 1 for ί = 1, 2, 3.

Thus

i=\

= | 3 £ — 7Y\

The final equality holds because the chords Yt are automatically base curves of the linear

system \3E - 7Y\. The linear system ψ2Ζ{\Η*\) has no further base points, since, outside

Q' U U \ Zf, φ2Ζ is an isomorphism and the linear system \H*\ is free from base points.

Hence the map pY inverse to π2Ζ should be defined by the linear system

where Υ C W is a smooth rational curve of degree 5 in P 5 , and the Yt for i = 1, 2, 3 are 2-

chords of Y. It remains to see that such a linear system exists.

We show first that W contains a curve Υ with the required properties. Let / : Ε —• Ρ2

be the representation of a del Pezzo surface of degree 5 (a smooth hyperplane section of W)

as a blow-up of 4 points xx, . . . , χ4 6 Ρ 2 in general position. Then the proper transform on

Ε of a smooth conic of P 2 passing through just one of the points JC(· satisfies all the condi-

tions for Y: the three 2-chords Yt are the proper transform on Ε of the 3 lines of P 2 pass-

ing through a pair of the remaining points. For computational purposes we will require in-

formation about the normal sheaf -^Y/W. Since Υ lies on a smooth hyperplane section Ε

and (Y · Y)E = 3, -^γιψ can be represented as an extension

0 -> Oy (3) -> JVYIW -* Oy (5) -• 0,

where as usual in this article &Y(d) denotes the invertible sheaf of degree d on Y. Hence

h°(-^Y/w) = 10 and ^ 1 ( ^ y / l v ) = 0> a n d hence it follows according to local deformation

theory that the family of curves in a neighborhood of Υ is smooth and 10-dimensional.

There are only two possibilities:

JfY/w~aY (4) ®OY (4), "jfr/w^Oy (3) @Oy (5) .

In both cases the computations lead to varieties V with the same numerical characteristics.

The different normal sheaves only affect the geometrical properties of the surface Q. It is

likely that for a sufficiently general curve Υ 1) holds; for our purposes this is not essential.

Choose one such curve Υ and let Υχ, Υ2 and Y3 be its 2-chords. The linear system

\3E - 2Y - Y1 - Y2 - Y3\ cuts out on E, in addition to the base curves 27 + Yl + Y2 +

Y3, also a pencil of conies \C\ with (C · C)E = 0 and dim \C\ = 1. It follows from this that

it has no further base points outside the curves Υ and the three Yr Each curve C meets Υ

in 3 points and is contracted to a point by the map pY defined by the linear system

\3E-2Y-Yl-Yt-Yt\,
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Hence the surface Ε on which the curve Υ and its chords Y{ lie is contracted to some curve.

Let W' —> W be the blow-up of Υ and the three Yt, let E* be the total transform of

Ε on W", let Y' and Y- be the inverse images of the corresponding curves, and let E' be the

proper transform of the surface Ε containing Y, so that E' ~ E* — Y' — Υχ— Y^— Y'3. From

the exact sequence

IS * >\\
— Y))^H° \Ow 3 £ ' — 2Y' — yt Yi\ |

H° IOE- I 3£" — 2Y' —'

we find that

dim 3£ - 2Y - = 13.
1 = 1

Hence p y(H0 = V C P 1 3 . As in Lemma (5.4) we check that pY defines a morphism ρ'γ:

W' —*• V. One of the methods used to check that p ' y is a birational morphism is the follow-

ing. By Lemma (2.1, Part I), deg p ' y = 1 or 2. Furthermore, if deg p ' y = 2, then V is a ra-

tional 3-fold scroll of P 1 3 (see 2.7, Part I). The morphism p ' y contracts down the 3 surfaces

Υ I and the surface E'. It follows from this that Pic V = Cl V ^ Z. This is sufficient to get

a contradiction to the assumption that deg p ' y = 2. An alternative method is a direct alge-

bro-geometric analysis.

The degree of V is computed in the usual way:

\3Ε* — 2Υ' —y, Υ'Λ =22.

We leave out the detail of standard computations so as not overload what has already become

a rather weighty exposition. The reader can easily reestablish them if desired.

Case b). This case only differs from the consideration of case a) in that the image W

gets one singular point.

(iii) Let g = 11; then from (5.4.2) we have d = 1, 2 or 3. We restrict ourselves to

the consideration of the general case; that is, when the points z t , . . . , z d + 1 e Z' are in gen-

eral position. The case when these points are not in general position leads, as in (ii, b), to a

variety W having the same numerical invariants, but having isolated singularities. From the

table (5.4.8) one sees that the case d = 2 is excluded, d = 1 is also excluded, since it con-

tradicts (5.4.5). There remains the case d = 3. By Lemma (5.4), in this case W is a Fano

3-fold of the first species in P s and deg W = 4; that is, W C P s is the intersection of two

quadrics (see 4.2, Part I).

As in the proof of (ii), Case a), let Y' = Q' Π Z'\ then, since Q' ~ H* - 3Z' (see (5.4,

vi)), we have that Y' ~ 3s + 4/on Z'. The curve Y' passes through z x , . . . , z 4 and has

multiplicity at least 2 at each of them. From the formula for the genus (6.4.2) we deduce

that Y' cannot be irreducible. From this as in (ii) we deduce that the surface Q' is irreduci-

ble, which contradicts the assumption Pic V = Ζ · Η. This shows that there do not exist

Fano 3-folds V containing a line and with # = 1 1 and Pic V — Ζ • Η. An analysis of the
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cases where we do not have general position confirms this conclusion.

REMARK. If we leave out the condition Pic V = Ζ · Η and carry through the construc-

tion analogous to that in (ii) we arrive at the following result.

There exists a Fano 3-fold V with g = 11 and Pic Γ ^ Ζ Θ Ζ , which is obtained as the

image of a rational map ργ: W —*• V given by the linear system \3E - 27 — Σ 4 Y.\, where

W = Wq C P s is a complete intersection of two quadrics of P s , 7 = C U Z, where C is a

smooth conic and Ζ is a line disjoint from C, and the Yt are lines meeting both C and Z.

Furthermore, the lines Υ and Yt,i= 1, . . . , 4, all belong to a smooth hyperplane section Ε

ofW.

(iv) Let g = 10; then, according to (5.4.2), 1 < d < 4. Let us again restrict ourselves

to considering the case that the points ζλ, ... , zd+l are in general position on Z'. Table

(5.4.8) excludes the cases d= 1 or 2. The case d = 4 is also excluded; indeed, by Lemma

(5.4) we would have deg W = 3; that is, W C P 4 is a cubic. As in (iii) the curve 7 ' = Q' C\

Z' would again turn out to be reducible, which contradicts the condition Pic V = Ζ · Η.

There remains the case d = 3. Here W C P 4 is a quadric. Set F = ψ2Ζ(Ζ'). From

(5.4.8) and (5.4.6) we get F ~ IE and Q' ~ 2H* - 5Z\ Let 7 ' = Q' η Ζ', so that 7 ' ~

5s + If on Z' . Let us determine the multiplicity of the curve 7 ' at each of the 4 points

z,·. Let H' G \H* - 2Z'| be a sufficiently general surface. Then Q' η Η' = r^Z\ + ••• +

r^Z® + X, where rt is the multiplicity of Q' at the general point of the line Zf. Computing

the intersection number Q' · Zf in two different ways, we get

- 3 - (2//· - 5Z' · Z?) = (Q' · Z?) = - η + (X • ZfiH..

Since (X · Z?)H> > 0, we get ri > 3 for i = 1, . . . , 4. Hence 7 ' has multiplicity at least 3

at each of the z(.. From the formula for the genus, as in (6.4.2) we find that rl = · · · = r 4

= 3 and g(Y') = 2, where 7* is the proper transform of 7 ' on V'. Here we are using the

fact that Q', and hence the curve 7', are irreducible, for otherwise h°(&V'{H* - 3Z')) Φ 0,

so that Q' ~ H* - 3Z', which is not the case.

As in the proof of (ii) it can be shown that the curve 7 ' ==: 7 is nonsingular. Hence

7 C W is a smooth curve of genus 2, and

deg 7 = (5s + 7/ · 2s + 3/)z, — 3 -4 = 7.

The 4 lines 7,· = φ2Ζ{Ζ°ί) are obviously 3-chords of 7. As in the proof of (ii) we get that

4

This information is already sufficient for the construction of the inverse map pY: W —• V.

We will not give here the details of the construction.

(v) Let g = 9; then 1 < d < 5. Again let us restrict ourselves to the general case. The

values 1, 2 and 3 for d are excluded by (5.4.5). If d = 5, then, according to (5.4.2),

Then by Lemma (5.4, vi) we have Q' ~ H* - 3Z', and as in (iii) the curve 7 ' = Q' Π Ζ '

turns out to be reducible, contradicting the condition Pic V = Ζ · Η.

There remains the case d = 4. By Lemma (5.4) we have deg W = 1; that is, iV a: P 3 .

The subsequent computations are analogous to those of the previous paragraphs. Here
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F ~3E, Q' ~ 3H* - 7 Z ' , the curve Y' contains 5 points zt, ... , z$ with multiplicity 4 each,

Y' CU y is a smooth curve of genus 3 and degree 7, with 5 lines y ; as 4-chords of Y, and, fi-

nally,

7E—2Y—V. V

(vi) If g = 8, then Λ ° ( ^ κ . ( # * - 2 Z ' ) ) = g - 5 = 3, and hence the double projection

n2z maps V onto P 2 . The fibers of the morphism φ2Ζ: V' —> P 2 are curves; hence

_
Η' — 2Ζ'—

1. (6.4.3)

and so J = 5. We have

Kv H' + Z', Kv,

Let //•' G !//•* - 2 Z ' | be a sufficiently general surface, and let
6

Η' _
Η' — 2Z' —

Ζ?

be its proper transform on V'. Then obviously τ\Η': Η' —* Η' is an isomorphism. From

the adjunction formula we get

Ή'-Ζ'.—ΚΉ. (6.4.4)

Hence the anticanonical system \-KH>\ is nonempty: it contains an irreducible elliptic curve

D = Η' Π Ζ ' ~ 2ΐ + 3/on Ζ'. Let us show that hl{0H<) = 0. Consider the exact sequence

0 = H1 (Ov.) -v H1 (OH·) -+ H2 {Ov. ( - //')).

By duality h1 (0νι(—Η')) = Ηχ(0γ·(—Ζ')). As we saw at the beginning of the proof of

Lemma (5.4), hl(0V'(-Z'y) = 0. Hence by Castelnuovo's rationality criterion H' and also

H' are rational surfaces. Let X be a fiber of the morphism φ2ζ
: V' —> P 2 · Th e n X ^ H'

and (X • X)H· = 0. By the formula for the genus we obtain

(X • X)- + (X • Kjr^jr,

2 L i L J Lg (X) = 1 =

H

ι = 2.

(vii) Let g = Ί. Then π 2 Ζ maps Κ onto P 1 . From (6.4.3) we get d = 7. In the nota-

tion of (vi),

( % , · ΚΉ,)Ή, = (D • Ό)Ή. = (//* - 2Z')2 · Z' = - 3. (6.4.5)

Furthermore, on the general fiber H' G | i /* - 2Z ' - Zj Ζ? | there are 8 pairwise disjoint

exceptional curves of the first kind H'C\Zf,i— \,...,i. As a result of contracting these

the self-intersection number {KJJ, · K^,)^, increases from - 3 to 5. As in (vi) one shows

that H' is a rational surface. Let F be the image of H' on contracting the curves Η' Π Zf.

To prove that F is a del Pezzo surface of degree 5 it remains to prove that the anticanonical

sheaf 0F{—K.p) is ample. We will use the numerical criterion of ampleness, so that it is

enough to show that any curve X' C H' has nonempty intersection with D + 2 j Z?. But
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this is obvious, since otherwise 0 = X' • (H* - 2Z') => X' · H* = 0; that is, X' C Z'. But

then (X' • D)z. = (X' • 2s + 3f)z> Φ 0.

Another method of proving that F is a del Pezzo surface of degree 5 is got from the

following considerations. Let π ζ : V—v V" be a projection from a sufficiently general (in

the sense of (3.7)) line Z. Then, according to (5.3), V" is a variety of degree 8 of P 6 contain-

ing a scroll R3, and having d 4- 1 = 8 ordinary double points Uj, . . . , u8 lying on R3. The

pencil of hyperplanes of P 6 through R3 (or equivalently, through the linear span P 4 of R3;

see (5.5)) cuts out on V", residually to R3, a pencil of surfaces F of degree 5 of P 5 . By Ber-

tini's theorem the general member of this pencil can only be singular at i>j, . . . , υ 8 . How-

ever, it is easily seen that it is in fact nonsingular. Indeed, \F\ cuts out on R3 a pencil of

irreducible elliptic curves |2s + 3 / - Σ® υ,-|. Hence the general member of | F | does not have

singularities at the 8 points υ{. Hence F is a del Pezzo surface. It is clear that F is the image

of//' under the morphism φζ: V' —*• V".

It is well known (see for example [3]; a modern proof has been given by Swinnerton-

Dyer) that a del Pezzo surface of degree 5 defined over an arbitrary field is rational over the

same field. Hence V is rational, since the general fiber of the double projection π2ζ
: V—*"

Ρ1 is rational.

It is not difficult to show that V" is a complete intersection of 3 quadrics of P 6 ; that

is, according to (1.7), that it is not trigonal.

The representation of V" as a complete intersection of 3 quadrics of P 6 passing through

R3 is the base for a proof of the existence of V. Let (xQ, ... , x6) be homogeneous coordi-

nates of P 6 . These can be chosen so that the scroll R3 is given by the system of equations

XXX^ X2X3 — 0

in P 4 : x5 = x6 = 0. Then the general form of V" will be given by equations of the form

— x\ -f xbL21 + xeL22 = 0, (6.4.6)

x6Ln -\- x6L32 = 0,

with the Lfj arbitrary linear forms in (x0, ... , x6) for / = 1, 2, 3 and / = 1, 2. If the L(, are

sufficiently general, then direct computations show that the V" given by (6.4.6) does in fact

have 8 double points lying on R3- Κ is constructed by means of an inverse map V" —> V

to the projection πζ. The proof of the theorem is complete.
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Case

1

2

3

4

5
6

7

8

9

10

11

12

13

14
15

16
17
18

r

4

3

2

2

2
2

2

1

1

1

1

1

1

1
1

1
1
1

1

2

1

2

3
4

5

2

4

4

6

8

10

12
14

16
18

22

g

33

28

5

9

13
17

21

2

3

3

4

5

6

7
8

9
10
12

3-fold V

ps

Q j C P 4 a quadric

V1 —» U 4̂ a double cover of the cone over
the Veronese

V2 —» P 3 a double space with quartic
ramification

V's C P 4 a cubic
V J 2 d P5 an intersection of 2 quadrics

VjC P 6 a section of the Grassmannian
(3(1, 4) C P 9 by a P 6

V2 —» P 3 a double space with sextic
ramification

V4 C P 4 a quartic

V, —* Q2 a double cover with ramification

in a surface of degree 8

V 2 3 d P 6 an intersection of a quadric

and a cubic
i/ — η) ι complete intersection
" i · ! · ! 1 — r of 3 quadrics
Vjo C P7 the intersection of the Grass-

mannian G(l, 4) C P y by a P 7 and a
quadric

K 1 2 C P 8

Vu CZ P 9 the intersection of the Grass-
mannian G(l, 5) C P 1 4 by a P 9

ν 1 β c P 1 0

V7i8 C P 1 1

V.2 C P 1 3

Reference

4.2, Part I)

4.2, Part I)

4.2, Part I)

4.2, Part I)

4.2, Part I)

4.2, Part I)

(4.2, Part I)

(7.2, Part I)

(1.3)

(7.2, Part I)

(1.3)

(1.3)

(1.4)

(6.1)

(1.4)

(6.1)

(6.1)

(6.1)

Here r is the index of V, g its genus, and Η is a positive generator of Pic V — Z.

The form of the varieties in Cases 3—7 depends on Hypothesis (1.14, Part I) on the exis-

tence of a smooth divisor in \H\; this is proved in [19]. Cases 8-18 depend also on Conjec-

ture (3.6) on the existence of lines, proved in [20].
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