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Abstract. This article contains a classification of special Fano varieties; we give a
description of the projective models of Fano 3-folds of index r > 2 and of hyperelliptic
Fano 3-folds.
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Introduction

In this article we begin the study of smooth projective 3-folds V, defined over an
algebraically closed field k of characteristic 0, and having an ample anticanonical class Ky1.

These will be referred to as Fano 3-folds; Gino Fano studied these varieties (and even not
necessarily smooth ones) in a series of papers [4] - [ 10 ] . An exposition of his results can
be found in Leonard Roth's book [24]. Interest in Fano varieties has recently been stimula-
ed in connection with progress achieved in the birational geometry of 3-folds (see [3], [12],
[19] and [27]-[29]).

The simplest, and as far as birational geometry is concerned the essential examples of
Fano 3-folds are projective space P3 , the smooth hypersurfaces Vd of degree d < 4 in P4

and the following smooth complete intersections:

V2.2— the intersection of two quadrics in P s ;
F2 .3- the intersection of a quadric and a cubic in P s ;

K2.2.2— the intersection of 3 quadrics in P6.
This exhausts the list of Fano 3-folds which can be represented as complete intersections in
projective space.

Fano's theory has two aspects:
(A) the biregular classification—the description of the projective models of Fano

varieties and their numerical invariants;
(B) the birational theory—studying the problem of rationality or unirationality, and

determining the group of birational automorphisms of Fano varieties.
The present article is concerned with (A). As is generally admitted, Fano's theory is

in an extremely unsatisfactory state. For this reason we have been obliged to carry out
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practically all the investigations anew. Apart from this, Fano's treatment completely ignored

the classification of hyperelliptic varieties (§7, Theorem 7.2); in the main he studied

varieties embedded in projective space by means of their anticanonical sheaf. The definition

we have chosen requires us also to study Fano varieties V for which the linear system

\Κγι I has base points (see §3). In §§4-6 we give a treatment of Fano 3-folds of index

r > 2 which is more complete than Fano's [9]; and in §§5 and 6 we give a complete

description of the family of lines on the varieties of index r = 2 and degree > 5. The

family of lines in the cases of degrees 3 and 4 are already described in the literature (see

[30] and [22]). In § 1 we treat a number of basic properties of Fano 3-folds which follow

immediately from the definitions and from the Riemann-Roch theorem. Already here the

condition char k = 0 is essential, since we use the Kodaira vanishing theorem. In §2 we

collect together certain technical material which we subsequently need.

We remark that the definition we have chosen excludes the consideration of anti-

canonical varieties with singularities. Such varieties would arise if instead of insisting on

the ampleness of Ky1 we merely required that for some integer m > 1 the sheaf Kym

defines a birational morphism φ^-m : V—*• Ψ^-m • The absence of any geometric theory
^ γ ^ γ

of singularities of 3-folds prevents us for the moment from working with this wider definition.

In this article we will make the hypothesis (see (1.14)) that \HV\ contains a smooth

surface, where Hv is a primitive submultiple of Ky1 in Re V, which we will use to define a

map from V to projective space; this is a weakening of the standard requirement that \$iv\

is without fixed components and base points. I am not aware of any example for which

(1.14) fails.

We note here the essential methods used:

(1) the reduction of properties of V to properties of a smooth surface Η €Ξ | HVV, that

is, to the thoroughly investigated properties of Del Pezzo surfaces [20] and K3 surfaces

[25];

(2) a modernization of Fano's method of projecting a variety from points or from

curves of low degree, which is used to prove the existence or nonexistence of varieties

V with given invariants;

(3) the geometric properties of the scrolls X = P(E), with Ε a locally free sheaf of rank

m > 2 over the line P 1 , and of linear systems on X (see (2.5) and Reid's lemma (7.4)).

The main results of this article are Theorems (3.2), (4.2) and (7.2).

While working on this article I have received great benefit from discussions with

many mathemticians; I would like here to express my deep gratitude to all of them. In

particular I would like to thank Ju. I. Manin, A. N. Tjurin and M. Reid; their help and

constant interest in my work has to a large extent enabled me to complete this article.

Manin kindly provided me with his copies of Fano's articles, and Reid lent me his notes

on the rational scrolls X = P(E), which I have used in this paper.

§ 1. Elementary properties of Fano 3-folds

(1.1) DEFINITION. A smooth complete irreducible algebraic variety V of dimension 3

over a field k will be called a Fano 3-fold if the anticanonical invertible sheaf Ky1 on V is

ample.
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For the duration of this article the field k will be assumed to be an algebraically

closed subfield of the complex number field C.

(1.2) NOTATION. For any Cartier divisor D on a variety X, 0x(D) will denote the

corresponding invertible sheaf, and in particular K^1 = 0v{- Kv), where Kv is a canonical

divisor of V. For any invertible sheaf L = 0x(D) the symbol I LI OT\D\ denotes the complete

linear system of effective divisors formed by the divisors of zeros of sections in//0 (X, L). By

definition dim I LI = dim H°(X, L) ~ 1 • The symbol ~ denotes linear equivalence of

divisors. The invertible sheaf L defines a rational map φ^ (or <P\D\ if L — 0x(D)) from X

to P(//°(X, L)) - P d i m l u (the isomorphism depending on the choice of basis in H°(X, L)).

If Μ C | LI is a linear subsystem, then Μ defines a rational map which we will denote φΜ.

If X is a smooth complete variety, and Yx, . . . , Yr are reduced irreducible sub-

varieties of X of codimension codim Y{ > 2, and vx, . . . , vr are nonnegative integers,

then the symbol \L-vlYl vTYr\ (or \D - νχ Υχ vrYr | if L = 0x(D))

will denote the linear subsystem of | LI consisting of all divisors D G \L\ such that, for each

i = 1, . . . , r, Vy.{D) > Vj, where vy.{D) is the multiplicity of D at the generic point

y. £ γ..

For F an arbitrary coherent sheaf on a variety X we will often write h'(X, F), or

simply /z'(F), instead of dim H'(X, F).

Let A(X) denote the Chow ring of numerical equivalence classes of cycles of X. For

Υ and Ζ any two cycles on X, (Y • Z) or Υ • Ζ will denote the product of the corresponding

classes in A(X). We will occasionally write Z 2 instead of (Z · Z), Z 3 instead of (Z · Ζ • Ζ),

etc.

We recall the Riemann-Roch theorem for a smooth complete 3-fold X and invertible

sheaf 0x(D):

2 ( —l)'ft'(X, 0x(D)) = -^-D3—-^P2 · /Cx
[ = 0

1 3 1

12 ' 24

K* · c8(X)= -24 (l-h1 (Οχ)+ h2(Ox)-h3(Qx)),

where c2(X) G A(X) is the second Chern class of the tangent sheaf Τ χ .

From the Riemann-Roch theorem, Serre duality and the Kodaira vanishing theorem

we immediately obtain

(1.3) PROPOSITION. Let Vbe a Fano variety. Then:

(i) h'(0v(- mKyJ) = 0 // i > 0 and m > 0, or if i < 3 and m < 0; in particular,

hl(0v) = Ofori>0.

(ii) h°(0v(- mKy)) = (m(m + l)(2w + 1)/12)(-KV)
3 + 2m + 1, and, m particular,

h° {Ov (— Kv)) = dim |—Kv 14-1 = - ^ + 3 > 4.



488 V. A. ISKOVSKIH

Let F € \-Kv\ be an effective divisor in the anticanonical linear system of a Fano 3-

fold V. Then from the cohomology exact sequence associated to the exact sequence of

sheaves

0->CV( — F)-+ Ov -+QP ->0 ,

and from Proposition (1.3), together with the adjunction formula for any effective divisor
Don V:

OD (KD) » OD ® βν Ov (D + Kv)

we get

(1.4) PROPOSITION, (i) h°(0F) = h2(0F) = 1, and hl(0F) = 0.

(ii) OpiKp) * 0F; that is, KF ~ 0.

(1.5) COROLLARY. If F & \-Kv \ is a smooth surface, then F is a K3 surface {see

for example [25]).

Suppose that there exists a smooth surface F G \-Kv\, and let 0F(-Kv) = 0F ®

0v(-Kv) be the invertible sheaf on F obtained by restricting the anticanonical sheaf

0ν(~Κν). Then 0F(— Kv) is ample, and from the Riemann-Roch theorem

Let Χ G I OF(-KV)\ be any curve. Since Ορ(-Κν) is ample on F it follows that

h°(0x) = 1 (see [21]). By the adjunction formula we have 0x{Kx)~ 0x ® 0F{X), and

hence deg Kx = (X • X)F = -Ky. From this follows immediately

(1.6) PROPOSITION. If F G \-KV \ is a smooth surface, X € 10 ρ (-Κ ν ) \ is a curve,

and X has genus g = g{X) = hx{0x), then the following assertions are true:

(i) - ^ = 2 ^ - 2 .

(ii) If 0v(-Kv) is very ample, then <P\-Ky\(V) = ^ 2 ?-2 " a s m o o t n variety of degree

—Ky — 2g — 2 in Ps+1, the hyperplane sections of which are K3 surfaces, and the curve

sections of which are canonical curves X2g_2 ^ P * " 1 of genus g.

(1.7) DEFINITION. The integer invariant g = g{V) = -Ky/2 + 1 will be called the

genus of the Fano 3-fold V.

We introduce one more integer invariant. For this, note that the Picard group Pic V

coincides with the NeVon-Severi group NS(F), since hl(Qy) = 0 ((1.3, i)), and hence is a

finitely generated Abelian group. Hence there exist at most a finite number of classes of

invertible sheaves L G Pic Fand integers s > 1 such that Is - Ky1.

(1.8) DEFINITION. The maximal integer r > 1 such that Hr - Ky1 for some

invertible sheaf Η G Pic V is called the index of the Fano 3-fold V.

Obviously the invertible sheaf ii in (1.8) is ample, and if Η is some divisor for which

Η — 0v(U) then from the Riemann-Roch theroem, Serre duality, the Kodaira vanishing
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theorem and the adjunction formula one easily obtains

(1.9) PROPOSITION, (i) h'(H') = 0ifi>l and j > 1 - r, where r is the index of V,

or if i < 3 and j < 0.

(ii) For j > 1 - r we have

12

and in particular

h°(Ov(H))= ( r + 1 ^ r + 2 ) //» + • ! • + 1 > 3 .

(iii) Ifr > 2, then h°(0H) = 1, hl{0H) = h2(0H) = 0, and the canonical invertible

sheaf of His given by KH- 0H® Ov(r(r - l)H).

(1.10). DEFINITION. A smooth projective surface with ample anticanonical sheaf is

called a Del Pezzo surface.

From (iii) of Proposition (1.9) we at once get

(1.11) COROLLARY. // V has index r(V)> 2, ff - Ky1 and Η e |f/| is a smooth

surface, then Η is a Del Pezzo surface.

Using elementary properties of Del Pezzo surfaces (see for example [20]), we get

(1.12) PROPOSITION. Let V have index r > 2, let Hr — Ky1, and suppose that the

linear system \ ΗI contains a smooth surface H. Then

(i) 1 < r < 4;

(ii) ifr = 2 then 1 <H3 < 9;

(iii) if r = 3 then H3 = 2 ;

(iv) if r = 4 then H3 = 1.

PROOF. For a Del Pezzo surface Η we have 1 < (KH · KH) < 9 (the left-hand

inequality follows from the ampleness of 0f^~KH), and the right-hand one from Noether's

formula applied to rational surfaces). Substituting the expression for KH in (1.9, iii), we

get

(i), (ii) and (iv) follow from this, and for r = 3 we get two possibilities, H3 = 1 and

H3 = 2; but if r = 3 then H3 = 1 is impossible, since -K$ = r3H3 =2g-2 = 0 (mod 2).

This proves (iii), and completes the proof.

(1.13) DEFINITION. Set d = d(V) = H3. If Η is very ample, then d(V) is the

degree of <ptf{F) in P*"1"1'"1

In what follows we will study the map φ H : V —* P d l m ' H ' defined by the invertible

sheaf Η for which Hr — Ky1, r being the index of V. Instead of the usual hypothesis

that the linear system | ΗI is without fixed components and base points we will impose the

following slightly weaker requirement:
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(1.14) HYPOTHESIS. There exists an invertible sheaf Η £ Pic V such that Hr - Κ γ1

(where r is the index of V), and such that the linear system \ ΗI contains a smooth surface

H.

It follows immediately from (1.14) that I HI is without fixed components.

The restriction Η <S> 0H of Η to Η will be denoted HH- The invertible sheaf Η in

(1.14) is determined up to an r-torsion element of Pic V. However, the ampleness of Η

together with the hypothesis (1.14) excludes the existence of any torsion in Pic V, as is

shown by the following assertion:

(1.15) PROPOSITION, (i) Pic V- H2(V, Z).

(ii) Under hypothesis (1.14), Pic V is torsion-free.

PROOF. We may assume that k = C. Then the isomorphism (i) follows immediately

from the cohomology exact sequence associated to the exponential sequence

and the fact that h\0v) = 0 for i > 0.

Let us prove (ii). By the Lefschetz theorem we have an embedding H2(V, Z) C».

H2(H, Z). Since Η is a K3 surface or a Del Pezzo surface (see (1.15) and (1.11)),

H2(H, Z) is torsion-free. Hence H2(V, Z), and by (i) also Pic V, is torsion-free. The

proposition is proved.

§2. Some preliminary results

We begin with the following elementary fact.

(2.1) LEMMA. Let X C P^ be a variety (that is, a reduced irreducible k-scheme)

not lying in any hyperplane pN~1 c P^; then

(2.1.1)

PROOF. Both sides of (2.1.1) remain unaltered on passing to a hyperplane section of

X, and if the hyperplane section is sufficiently general the conditions of the lemma will

continue to hold. Hence we can assume that dim X = 1. Intersecting the curve X by a

sufficiently general hyperplane E, we obtain a finite number deg X of points which span E.

(2.1.1) obviously holds for these. The lemma is proved.

(2.2) COROLLARY. Let V be a Fano 3-fold, let r be the index of V, and let Η =

QV(H) be an invertible sheaf for which Hr - Kf1- Suppose that \H\is without fixed

components and base points. Let deg φH be the degree of the morphism φΗ : V —*• φΗ (V)

(deg φ <°°, since Η is ample), and set d = H3. Then the following assertions are true:

degqp 12 r '12
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(ii) deg ψΗ = 1 or 2.

PROOF. Substitute X = φ ,.(V) in (2.1.1). The degree of φ AV) is d/deg ιρΗ , and the
π Η "

codimension is computed from the formula in (1.9, ii). Hence we get the inequality (2.2.1),

proving (i).

One checks easily that (2.2.1) has positive integral solutions for d, r and deg φ only
π

if degipH = 1 or 2. This gives (ii) and proves the proposition.

(2.3) REMARK. The conditions in (2.2) imply the conditions in Proposition (1.12)

by Bertini's theorem. However, the inequality r < 4 can also be obtained directly from

(2.2.1), with r = 4 implying that d = 1 and deg φΗ = 1. If r = 3, then d = 2 and

deg φ = 1 (d = 1 is excluded since the right-hand side of (2.2.1) must be an integer).

Let deg φ = 2; then for r = 2 (2.2.1) again has the unique solution d = 2 (since the right-

hand side must be an integer). If deg φ^ = 2 and r = 1 then (2.2.1) becomes an equality;

that is, the corresponding variety W = φ (V) satisfies
Π

degW=codim W+l. (2.3.1)

The varieties W satisfying (2.3.1) are described in the classical literature (see also [25]). We

reproduce this description here, and will make use of it in the classification of hyperelliptic

Fano varieties in §7, and of trigonal varieties in the sequel.

(2.4). Let dl > d2 > · · · > dm be nonnegative integers, and let Ε = 0 j(d/j) Θ · · ·

θ 0 j(c?m) be a locally free sheaf of rank m on P 1 . Set X = Ρ j(E), and let / : X —+ P 1

be the natural projection. Let L = f*0 j ( l) and let Μ = 0 , i ( l ) be the tautological

invertible sheaf on X (such that f^M — E). Let L and Μ denote divisors on X such that

L = 0x(L) and Μ = 0x(M). The following assertions are proved in [25].

(2.5) LEMMA. In the notation of (2.4) the following assertions are true:

(i) Μ is generated by its global section, and Μ is very ample if and only if d{ > 0

for every i = 1, . . . , m.

(ii) h\X, MO = 0 for i > 1, / > 0, and
tn

h° (X, ,M) = ft» (P\ fjf) = 2 (dt +1);

(iii) The natural homomorphism of graded algebras

a:S'H°(X, JS)->- θ Η°{Χ, ,Mn)

is an epimorphism, where S*E denotes the symmetric algebra generated by the vector space

E.

(iv) The kernel I of a is generated by elements of degree 2 {or I = 0); that is, the

variety ψ^ (X) C Ρ ' is an intersection of the quadrics which pass through it (or

φ^(Χ) = P s d < + m - 1 ) (compare [25]).

(v) d e g * M ( * ) = codim«pM(*)+ 1.

(2.6) REMARK, (iii)—(V) are only proved in [25] for a very ample sheaf M. How-

ever, the inductive argument used there also goes through in our more general case (see
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also (2.9) and (2.10) below). Note also that if Μ is not very ample then there exists some

index /„ with 1 < /„ < m such that dx > • • • > dt > 0 and di +l = • • · = dm =0. The

projection Ε—*@i>tQ0 ι defines an embedding

Ρ ( φ Of ή α Ρ"1"'0"1 Χ Ρ1 -> Ρ (&) = Χ.

The variety φ^ (Χ) is in this case a cone with vertex

over a base which is isomorphic to iY©'/L, 0 Ad;)). The restriction φ IPftB,·̂ ,· 0 i)
m-i-l P *jn-i -1 ' ^ Ό P1

coincides with the projection pr t : Ρ ° χ Ρ 1 —*• ν °

(2.7) DEFINITION. If Μ is very ample, the variety ψΜ (Χ) will be called a rational

scroll.

We now state the classical result in which we are interested.

(2.8) LEMMA (see [25] and [23]). Let W C P^ be a variety not lying in any

hyperplane; suppose that dim W > 2 and that deg W = codim W + 1. Then W is one of

the following:

(i) a quadric hypersurface in PN;

(ii) a rational scroll;

(iii) a cone over a rational scroll; that is, a variety φ (X), with X and Μ as in (2.4),

but with Μ not ample;

(iv) the Veronese surface in P 5 ;

(v) the cone over the Veronese surface;

(iv) the cone over a rational normal curve of degree η in P".

We will also use the following facts.

(2.9) LEMMA. Let X be a complete irreducible variety with dim X > 2, and let L be

an invertible sheaf on X;let Υ G \L\ be an effective divisor, and set LY = 0Y ® L Suppose

that the sequence H°(X, L) —• H°(Y, LY) —> 0 is exact. Then, if the graded ring

®n>iH°(Y, Ln

Y) is generated by H°(Y, LY), it follows that the graded ring

Φ Η°(Χ,Χη)

is generated by H°(X, L).

PROOF (compare (6.6) of [25]). Let s0 E. H°(X, L) be the section defining the

divisor Y. Consider the exact sequence of sheaves

O CpTl So Cptl+1 QjTl+1 f\

—*•£ — > A i —f-jjv —>(J.

Let s0, sl, . . . , sN be a basis of H°(X, L); then by the hypotheses of the lemma the

restriction s~t, . . . , s~N to Υ is a basis of H°{Y, LY). Let hn+1 € H°(X, L"+ 1 ) be any

element, and let h~n+i e H°{Y, Ly+ 1) be its restriction to Y. Then again by hypothesis

hn+1 = p(s"i, . . . , s N), with ρ some homogeneous polynomial of degree n + 1. The

section hn+1 -p(s1, . . . , sN) vanishes on Υ and is therefore of the form sQ · hn for
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some hn e H°(X, /."). By induction hn = q(s0, . . . , sN), with q a homogeneous poly-

nomial of degree n, and hence hn+l = p(sx, . . . , sN) + sQq(sQ, . . . , sN); that is,

s0, . . . , sN generate the ring Q)n>0H°(X, L"). The lemma is proved.

(2.10) LEMMA (compare (7.9) of [25]). Let X be a complete irreducible variety

with dim X>2,let L be a very ample sheaf on X and let ψι :Χ —>PN be the correspond-

ing embedding. Let PN~' C P^ be a hyperplane, intersecting X in the subvariety Υ =

Χ Π P ^ " 1 . Then, for any integer m > 2, ;/ the homomorphism

β : S"1'1//0 (X, X) -> H° (X, X"1'1)

is surjective {where Sm~l denotes the (m - 1 )th symmetric product), it follows that for

every hypersurface FM(Y) of degree m in p ^ 1 containing Υ there exists a hypersurface

Fm{X) of degree m in P^ containing X and such that the restriction of Fm{X) to P ^ " 1 c

P^ coincides with Fm(Y). For m = 2, F2(X) is uniquely determined by F2(Y). Further-

more, if Υ C p " - 1 is the intersection of the quadrics containing it, then so is X C P^.

PROOF. We have the following diagram with exact rows and columns:

0 0 0

1 1 I

0 -v {Fm_, (X)} • {Fm (X)} ^ U {Fm (Y)}

0 -v //»(P", OpN (m-1)) - * H° (PN, OpN (m)) -v fP (PN~\ OpN^ (m)) -^ 0

0 ->H°(X, X"1'1) —*ΗΟ(Χ, Xm) >H°(Y, Χγ)

4
ο

j3 is surjective by hypothesis, so that by the Snake Lemma am is also surjective. If m = 2

then {Fj(Z)} = 0, since X, under the embedding φ , is not contained in any hyperplane,
and hence a2 is an isomorphism.

Let us prove the final assertion of the lemma. Let F\(Y), . . . , F^Y) be a basis for

the space of quadrics containing Y, and let F2(X), • • • , F2(X) be the corresponding basis

of the space of quadrics containing X. If Υ is an intersection of the quadrics containing

it, then any hypersurface containing 5 îs given by a form Fm(Y), with

with the G'm_2 forms of degree m - 2 on P f f *. Let H'm_2 be forms of degree m - 2

on P ^ whose restriction to P ^ " 1 is G'm_2 (for i = 1, . . . , s). Then for Fm(JT) any

hypersurface of P^ containing X we have

F m ( X ) - ^ WL2F2 (X) = Fm-l (X)L,
i—1
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with L the linear form defining p ^ " 1 c P^, and Fml(X) some hypersurface of degree

m - 1 containing X. By induction Fm _ x (X) belongs to the ideal generated by the quadrics

Ρ*2(Χ). Hence Fm(X) also belongs to this ideal. The lemma is proved.

In the rest of this paper we will frequently use the multiplication table in the Chow

ring of a blown-up 3-fold.

(2.11) LEMMA (see [13] and [14]). Let X be a nonsingular 3-fold, and let σ :X'—

X be the blowing up of X in the smooth center Υ C X. Let Υ' = σ~1(Υ), and let f be

either the class of a line in Y' if Y' is a plane, or the class of a fiber of Y' if Y' is a

ruled surface in the Chow ring A{X'\ Then the following assertions are true:

(i) AiX1) - σ*Α(Χ) θ 1Υ' θ Zf as additive groups, with σ*(Υ') = σ*(/) = 0, and

ο*σ*Α(Χ) = A(X).

(ii) The multiplicative structure of A(X') is given by the following multiplication

table:

(a) // Υ is a point, then

and (2.11.1)

(Y' • σ'Ζ) = (f • σ* Ζ) = 0 for all Z^A (X).

(b) // Υ is a smooth curve, let Cj(X) be the first Chern class of X, HY the normal

sheaf to Y, and Cj(Wy) its first Chern class; then

!"·/) = - 1 . (2.11.2)

, (f.a'(D))=0 for all D<=Al(X),

for all

A'(X) denoting the ith component of the Chow ring A(X), graded by codimension.

Furthermore, the first Chern classes on Υ satisfy the usual relation

) ( ) ()Y), (2.11.3)

where g{Y) is the genus of Y.

§3. Base points in the linear system I HI

(3.1) PROPOSITION. Under the hypothesis (1.14) the linear system \ HI on a Fano

3-fold V does not have base points, except in the following two cases:

(a) r = 2, H3 — 1; IHI has a unique base point;

(b) r — \;H contains smooth irreducible curves Ζ and Y, with Ζ a curve of genus 0,
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Υ a fiber of an elliptic pencil \Y\ on Η with (Z • Y)H = \,andUH = QH{Z + mY) with

m ~> 3 an integer; \ \\ \ has the unique base curve Ζ and has no other base points.

PROOF. Since hl(0y) = 0, we have an exact sequence

0. (3.1-1)

Hence any base curve of the linear system | ΗI is a fixed component of the linear system

\HH\ on H, and conversely, every fixed component of \HH\ is a base curve of IHI· If

I HI has no base curves, then the base points of the linear system If/1 are precisely the base

points of the restriction | ΗΗ\. First suppose that r > 2. Then by (1.11) Η is a Del Pezzo

surface, and \-KH\ = Iff^11- From the theory of Del Pezzo surfaces it is well known that

IHHI is without fixed components, and only in the unique case r = 2, (KH • KH) = 1 can

it have a single base point. Thus this point is the only possible base point of | HI, and this

gives case (a).

Now supposet that r = 1; Η is then a K3 surface, by (1.6), and the sheaf HH is ample

on H. In [25] it is shown that for any ample sheaf L on a K3 surface H, provided that the

linear system | LI is without fixed components, it has no base points; and | LI can only have

fixed components if L = 0H(Z + mY), with Ζ and Υ as in (b), and m > 3. Hence if

HH = ΰΗ(Ζ + mY) then | ΗI has a unique base curve Ζ and has no other base points—

since there are none in the linear system Im^l on H. The proposition is proved.

(3.2) REMARK. In (4.2, iv) we will show that 3-folds having the properties (3.1, a)

exist, and we will even give a description of the equations defining them. For each such

V, Η defines a rational map φ : V —>· Ρ 2 whose fibers are elliptic curves. Every fiber X is

irreducible, since its "degree" (X · H) = 1. The question as to the existence of Fano 3-folds

of the type (3.1, b) is answered by the following result:

(3.3) THEOREM. Let V be a Fano 3-fold as in Proposition (3.1, b). Then m = 3,

and there exists a Fano 3-fold V*a\ of type (3.1, a), and a birational morphism τ : V—•

V,ay which is the blow up with center a smooth elliptic curve X C V,ay with X G \HH, J

for some surface H(a) G | H ( a ) | .

Conversely if V^ is a Fano 3-fold of the type (3.1, a), and X e \HH( J " « smooth

elliptic curve on V,ay then let V,b·. —> V,a·, be the blow up of V,as with center X; then

V(b) is a Fano 3-fold of type (3.1, b).

PROOF. Let Η e | HI be a smooth surface, and let HH = 0H(Z + mY) be as in

(3.1, b). Then the linear system |HI has precisely the single curve Ζ as its base locus. Since

(Z · Z) = - 2 on the K3 surface H, it follows that H3 = 2m - 2, and according to (1.3, ii)

we have dim IHI = m + 1. The map φ : V—• P m + 1 is undefined only on Ζ C V, and the
π

image of V in ρ^ + 1 is a certain surface W of degree deg W = m. Indeed, the restriction of

φ^ to Η is a morphism, defined by the invertible sheaf 0H(mY), according to the exact

sequence (3.1.1). The linear system \mY\ on //is composed with the elliptic pencil \Y\,
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and, as is easily verified, ψ^ \H maps Η to a normal rational curve of degree m in P m . But

this curve is none other than the hyperplane section of IA, (V) by the hyperplane of P"1 +1

corresponding to H.

Let σ: V' —• V be the blow up of the curve Z, and let Ζ ' = σ - 1 ( ^ ) be the ruled

surface. Let S' denote the unique section of the rational ruled surface Z' —* Z, which is

a curve with negative self-intersection, and let F' denote a fiber. Let H' and Y' be the

proper transform of Η and 7, and let φ = φΗ ° σ.

The following assertions hold.

(1) φ : V' —* W is a morphism.

Indeed, φ is given by the invertible sheaf 0V'(ff'), and the linear system \H'\ on V'

is without base points, since the curve Ζ C V can easily be seen to be the scheme-theoretic

intersection of the divisors of \H\.

(2) -Ky ~ ff.
This follows from general formulas for the behavior of the canonical class of varieties

under blowing up.

(3) The general fiber of the morphism ψ is a geometrically irreducible smooth elliptic

curve.

Indeed, among the fibers of φ one finds the proper transforms of the curves of the

elliptic pencil \Y\ of H.

(4) The restriction of φ to Z' is a birational morphism ψ \Z': Z' —* W, taking the

fibers of the ruled surface Z' —• Ζ into lines of W; and hence W is either a nonsingular

rational scroll, or a cone over a normal rational curve, (compare (2.8))

This follows from the fact that (Z' · Y1) = 1 and ( # ' · F') = 1 (see (2.11.1)), and from

the fact that deg W = codim W + 1.

(5) Let F n denote the standard rational scroll having an exceptional section with

self-intersection number -n. Then Z1, together with its projection onto Z, is isomorphic to

either F m _ 2 orFm.

For the proof consider the normal sheaf Uz to Ζ in V. Since Ζ lies on a nonsingular K3

surface Η and its normal sheaf in Η is isomorphic to 0z(— 2), since (Z • Z) = - 2 on H,

we get the exact sequence

0-^z(—2)-+jrz-+Uz{m—2)-»-0. (3.3.1)

From the corresponding exact cohomology sequence we get the following two

possibilities for the dimension of the cohomology:

(a) h°(Uz) = m-2, Λ1(ΜΖ) = Ο;

(b) h°(blz) = m-\,hl(Hz)=\.

On the other hand, since Wz is a locally free sheaf of rank 2 on a smooth rational

curve, it is of the form OZ(G?J) θ 0z(d2) for some integers dl and d2. Comparing the

values for the cohomology, we get:

(a') d1=-l,d2=m-3;

(b') d1=-2,d2=m-2.

(5) now follows from the fact that Z' - P(WZ).
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(6) If Z' - Fm_2 then φ \Z' :Z' —> W is the isomorphism vy+ („,_!)/?' defined by

the invertible sheaf QZ>{S' + {m - 1)F'). And ifZ'-¥m then φ' \Z' :Z' —> W is the

morphism ψ3·+mF· defined by Oz'(S' + mF'), and contracts S' to a singular point

w0G W; that is, in this case W is a cone with vertex w0.

Indeed, according to (4) ψ \Z' : Z ' —> W is the morphism defined by some linear

subsystem of the complete linear system \S' + aF'\, where the integer a is determined by

the condition (S' + aF' • S' + aF') = m. Computing the dimension of \S' + aF'\ by

Riemann-Roch, we get that for a = m - 1 if Ζ' — Fm _2, or for a = m if Ζ' — F m , we

have dim \S' + aF' \ = m + 1. Hence the morphism is given by the complete linear system

\S' + aF' | for the appropriate value of a. From this all the assertions of (6) follow

easily.

(7) Let F be a fiber of the scroll W, and let S be the negative section if W - F m _2,

or the vertex w0 if W is a cone. Let Ε' = φ'~ϊ{8). Then E' is an irreducible surface in

V' containing a pencil of irreducible {possibly singular) elliptic curves, having as section

the curve S'—the negative section of the surface Z'. Furthermore, Ε' Π Z' = S1, and E'

is nonsingular in a neighborhood of S'.

All these assertions follow easily from (6). Indeed, the linear pencil of elliptic curves

on E' is cut out by the pencil of surfaces \φ'~1(Ρ)\, or \ip'~l{F) - E'\ if W is a cone. All

the curves of this pencil are irreducible; otherwise there would exist a component C for

which (C · H') = (C • Z') = 0, and hence (C • H' + Z') = (C · σ*Η) = {a*C • H) = 0.

Since C cannot be a fiber of the surface Z ' , this contradicts the ampleness of QV{H).

The remaining assertions are just as simple, and we omit the proofs.

We now proceed with the direct proof of the main assertions of Theorem (3.3), which

we restate as two lemmas:

(3.4) LEMMA. Under the hypotheses of Theorem (3.3), the integer m cannot be

greater than 3, and the surface Z' defined at the beginning of the proof of (3.3) is isomorphic

to Fj.

PROOF. By the adjunction formula we compute the canonical (dualizing) sheaf on

the surface E' C V' defined in (7):

if Z ' - F m _ 2 >

0E.(-mX'), if Z ' r ~ F m ,

where X' is a fiber of the elliptic pencil on E'. Since m > 3, we have h°(Er, Kpl) > 0,

and hence h°(E', KE>) = 0. By duality h2(E', ΰΕ·) - 0. From the fact that E' has a

linear pencil of curves of genus 1 it follows that hl(Er, 0E>) < 1. On the other hand, the

restriction exact sequence

Hl(X\ 0x>)-*Hl{E', 0E.)^H2(X', 0X'(-E')),

together with Serre duality:



498 V. A. ISKOVSKIH

h2(X', OX'(-E')) = h°(X', Οχ>(Κχ> + Ε')) = Ο

shows that h1^', 0χ·) > 1. This proves that hl{0x·) - 1.

Let us compute (S1 • S1) on E'. This is permissible, since, as we have seen in (7), E'

is nonsingular in a neighborhood of S'. Since S' = Ε' Π Ζ ' , we have

m — 3, i f Z ' ~ F m . 2 >

_m—2, i f Z ' ~ F m .

The Riemann-Roch inequality gives

t — 2 , if Z ' ~ F m . 2 )

m, if Ζ' ~ F m .

Since 5 ' is a section of the elliptic pencil on Ε1, the left-hand side of this inequality

cannot be greater than 1, for otherwise E' would have a linear pencil of curves, whose

sections are curves of genus 1, which is impossible. Hence there remains the single

possibility m = 3 and Z ' - F x . The lemma is proved.

(3.5) LEMMA. In the previous notation, suppose that m = 3, Z ' ^ Fj and Ε =

σ{Ε'). Then Ε is an exceptional smooth ruled surface on V over the elliptic curve X as

base. The contraction morphism τ : V—• V,a·. of Ε maps V onto a Fano 3-fold V,a\ of

type (3.1, a), and τ(Ε) = X is an elliptic curve in the linear system \ WH | for some non-

singular surface Hta\ ε \MH, J· Conversely, the blow up of any such smooth curve X on

any Fano 3-fold of type (3.1, a) leads to a Fano variety of type (3.1, b).

PROOF. Let us show that the condition for the contractibility of a ruled surface onto

a nonsingular curve is also satisfied by the surface E'. Let Hs> be the normal sheaf to S'

in V'; then Us> can be represented as an extension

which splits as a direct sum Hs> = 0$· ® 0g'(" 1), since S' is a smooth rational curve, and

Ext1 (Os-i-1), 0s>) = 0. We have A°(N50 = 1 and h1^) = 0.
According to general deformation theory, V' contains a 1-parameter family of deforma-

tions of the curve 5', over a base which is nonsingular at the point corresponding to S'

(see [11]). Furthermore, since the summand 0s> in Ns> is the normal sheaf to S1 in E1,

every deformation of S' belongs to E', and these do not intersect one another in view of

the fact that the normal sheaf is trivial. It follows that E' is a ruled surface with base X';

that is, there exists a morphism β: Ε' —>· Χ'. Furthermore, the elliptic pencil on E'

defines a morphism a : Ε' —*• Ρ 1 . Hence we can define the product morphism α χ β :

Ε' —* Χ' χ Ρ 1 . Since the fiber of a and a fiber of β meet in a single point, and a has

irreducible fibers, one sees easily that α χ |3 is an isomorphism.

Let us prove that X' is a nonsingular curve. If x 0 ε Χ' is a singular point (there can

only be one such point, and it must be a node or a cusp since Λ1(0Α-') — 1), and if SQ is
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the smooth curve of V' consisting of singular points of E1', then from the fact that Ε' ~

Χ' χ P1 it follows that Ns> - O5'0 θ 0 5 ' ο and hence c^W^) = 0. On the other hand, by

(2.11.3) we have

cx(JT .)=—2 + (H' -S'0)=l.
so

This contradiction shows that X' is nonsingular, and hence that E' — Χ' χ Ρ1 is also

nonsingular.

The ruled surface E' —> X' satisfies the contractibility criterion:

(£' · S')v = ( £ ' · Z' · Z') = (S' • S')z> = - 1 ;

actually this is immediately visible since the second summand in the normal bundle Ns> is

0s-(-i).

Now note that since Ε' Π Z' - S' it follows that the morphism a: V' —*· V

contracting Ζ' preserves the structure of ruled surface of Ε = σ(Ε'), and that the numerical

criterion for the contractibility of Ε is still satisfied; and σ ^ ' ) = Ζ, and (Ζ · Ε) = -1,

(Z-H) = m-2=1.

Let r : V—> V,a\ be the morphism contracting Ε in some nonsingular variety V,ay\

then T(E) = X is a smooth elliptic curve on ^( a)· Let us show that the anticanonical

invertible sheaf K^r1 is ample on V^ay We have r^c^V) = ^ ( T ^ ) , since τ is a birational

morphism, and hence ~Ky ~ T%(H); also by the well-known formulas for the behaviour

of canonical class under blowing up, we have r*{-Kv ) ~ Η + Ε.

By the numerical criterion for ampleness we have to show that (—Ky · C) > 0

for every curve C C V,ay For this it is enough to show that

<τ* (-KvJ • rc) = {H+E- f c) >o.

If C Φ X, then the cycle T*C is numerically equivalent to a curve C° + vZ, with

ν > 0 and C° the proper transform of C. We have

(//+£· fC) = (//+£· C° + vZ)=(// · C°) + (£ · C°) + v(// + £ • Z)>0,

since (7/ + £" · Z) = (77 · Z) + (£ · Z) = 1 - 1 = 0, (H · C°) > 0 by the ampleness of

0v{H), and (E · C°) > 0 since C° <t E. If C = X, then

Thus Ky1 has been proved to be ample, so that V,a) is a Fano 3-fold.

Now let us show that K, , is of index 2. For this note that -Kv , ~ TJH) =

τ%(Η — E), since TJJT) = 0, and Η — Ε ~ 2G, where G is the inverse image of the fiber of

the ruled surface W- F, under φμ : V—+ W. Thus Ky1 is divisible by 2 in Pic V, v

On the other hand,

= τ* ( - K v J 3 = (H + Ef = W3 -f 3h'2£ + 3//£2 -f
= 4-f-6-f 0 — 2 = 8.
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Hence if H(a) is a divisor of V(a) such that ~KV ~ 2H(a), then Hfa) = 1; if H ( a ) =

0V(a)(H(a)), then Ηΐα^Κν1

(α) .

Thus the Fano variety F(a) has index r = 2 and degree d = 1, and thus is of type

(3.1, a). It is clear that the curve X lies on some surface T(G) ε \Η<α\\ and passes through

the base point of the linear system \ii^\- We can assume that H,as = T(G), and since

(~KV • X) = 2 we have (7/ ( a ) · X) = 1 and X e | Η # , J . Thus the direct part of Lemma

(3.5) is proved.

(3.6) PROOF OF THE "CONVERSE" PART OF LEMMA 3.5. Let τ : V —• V,a·, be the

blow up of V,a·. with center in a smooth curve X S | \{H |, and let Ε = τ " 1 (.Υ). We have

We can assume that H^ is a smooth surface, and (X · X)H, = 1- If N^ is the normal

sheaf to X in V,ay then it can be represented as an extension

which as is easily seen splits as a direct sum

Λ/χ ~ 0 χ

Hence Ε - P(Wy) - P 1 x AT.

The linear system Ιτ*Η(α\Ι has a unique base curve Ζ = τ~ι(υ), where ν ε F/a^ is

the base point of l///a)l- In the exact sequence

0 - IP (V, Ov (x'H{a)-E)) --> H° (V, Ov (fHla)))

the final arrow is an epimorphism, and the final vector space is 1-dimensional, since

\r*H,a J cuts out on Ε only the curve Z, which is a fiber of the projection Ρ 1 χ X —* X,

and does not move in a linear system, since X is an elliptic curve. It follows that the

surface τ~ι(Η,α-Λ - Ε cuts out on Ε some fiber Υ of the projection Ε —*• Ρ 1 . Indeed,

Ε Π (r - 1(7// a\) — Ε) is numerically equivalent to a cycle of the form Υ + αΖ. But

aZ)E = (t'Hia)—Ef • Ε = 0

according to (2.11.1). Hence a = 0.

Now let us show that the linear system \-Kv \ = \2τ*Η,α*. — E\ has Ζ as its unique

base curve. For this note that this system cuts out on Ε curves numerically equivalent to a

cycle of the form Υ + bZ. The coefficient b is determined by the condition

Y + bZ)E = (2f# ( e ) — EYE = 2,

and hence b = 1. Obviously any linear system on Ε of the form \Y0 + Zo\, where yQ

and Z o are fibers of the first and second projections respectively of Ε ~ Ρ 1 χ Χ, contains

Zo as fixed component. Hence the base locus of the linear system | - K F | is some fiber

Z o of Ε and only this. But for any fiber Z o distinct from Ζ one easily gives an example

of a reducible divisor in |r*///a ) | + k*//(a) - E\ not containing Z Q . Hence the base curve

of \-Kv | is Z.
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It is not difficult to show, using Bertini's theorem, that \-Kv\ contains a smooth

surface.

To prove that 0v(-Kv) is very ample it is sufficient to check that (~KV · Z) > 0.

By direct computation, one gets

(—Kv • Z) = (2x'Hw—E • Z) = 1.

Finally, according to Proposition (3.1), V can only be of type (3.1, b). The proof of

Lemma (3.5), and with it that of Theorem (3.3), is thus complete.

§4. Fano 3-folds of index r > 2. The statement

and beginning of proof of Theorem (4.2)

(4.1) Let V be a Fano 3-fold of index r satisfying the hypothesis (1.13); let Η be an

invertible sheaf, and HG \H\ a surface as in (1.14). Then according to (1.12) we have

1 < r < 4. Recall that d = H3, and that 1 < (/• - l)2d < 9 for r > 2 (see (1.12.1)). For

any variety X and a very ample invertible sheaf 0x{\) we write Xm to indicate that X has

degree m with respect to 0x(X)· In this section we begin the proof (for its completion, see

§6) of the following theorem.

(4.2) THEOREM . Let V be a Fano 3-fold of index r > 2 satisfying the hypothesis

(1.14). Then the following assertions hold:

(i) If r>3, then φ : V -+ Ρ 3 is an isomorphism for r = 4, and φ : V^ V2 C P 4

is an isomorphism of V with a smooth quadric ofP4 for r = 3.

(ii) // r = 2, then a variety V only exists for 1 < d < 7; for d > 3, ψΗ : V^-VdC

pd+1 is an embedding of V as a subvariety Vd of degree d in P d + 1 , with Vd protectively

normal; and if d > 4, then Vd is the intersection of the quadrics containing it. Conversely,

for any d > 3, every smooth projectively normal 3-fold Vd C p*"1"1 not lying in any hyper-

plane is a Fano 3-fold, and has index 2, apart from the case r = 4, d — 8, when V8 is the

image o / P 3 in P 9 under the Veronese embedding.

(iii) If r = 2 and 3 <d < 7', then; for d = 7', F 7 is the projection of the Veronese

3-fold K8 C P 9 from some point of V8;

for d = 6, V6 - Ρ 1 χ Ρ 1 χ Ρ 1 in its Segre embedding;

for d = 5, V5 C P 6 is unique up to projective equivalence, and can be realized in

either of the two following ways:

(a) as the birational image of a quadric ( C C P 4 under the map defined by the

linear system 10^(2) - Y\ of quadrics passing through a twisted cubic Y;

(b) as the section of the Grassmannian Gr(2, 5) of lines in P 4 by 3 hyperplanes in

general position;

for d = 4, F 4 is any smooth intersection of two quadrics in P 5 ; for d = 3, V3 is any

smooth cubic hypersurface o / P 4 .

(iv) Ifr = 2 and d = 1 or 2, then:

for d = 2, ψΗ : V —• Ρ 3 is a double covering with smooth ramification surface D 4 C

Ρ 3 of degree 4, and any such variety is a Fano 3-fold with r = 2 and d = 2; and every
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Fano 2-fold with r = 2 and d = 2 can be realized as a smooth hypersurface of degree 4 in

the weighted projective space P(x0, . . . , x4), where x4 has degree 2, and the remaining

Xj have degree 1;

for d = 1, ψΗ : V —• Ρ 2 is a rational map with a single point of indeterminacy, and

with irreducible elliptic fibers; and V can be realized in either of the two following ways:

(a) ψ _ ! : V —> W4 is any double cover of the cone W4 over the Veronese surface

F4 C P 5 , having smooth ramification divisor D C W4 by a cubic hypersurface not passing

through the vertex of the cone;

(b) any smooth hypersurface of degree 6 in the weighted projective space

P(x0, . . . , x 4 ) , where x0, χγ and x2 have degree 1, x3 has degree 2, and x4 degree 3.

(4.3) PROOF OF (4.2, i). Both assertions follow at once from (1.9, ii), (1.12, iii,

iv) and (3.1). In the case r = 3 one has only to show that the quadric W = ψ (V) is

nonsingular. This follows from the following general assertion.

(4.4) PROPOSITION. Let V be a Fano 3-fold of index r > 1 satisfying the hypothesis

(1.13). If \H\ is without base points (see (3.1)) and deg φίΛ = 1 (that is, the morphism
Π

φ . : V —*• φ^ (V) is birational), then the following assertions are true:

(i) The natural homomorphism of graded algebras

S*H°(V, 3f) -> φ H°(V, Mn) (4.4.1)
n>0

is surjective.

(ii) Η is very ample, and the image fu(V) ' s projectively normal.

(iii) The ideal Iv (the kernel of (4.4.1)) is zero if' r = 4, is generated by elements of

degree 2 if r = 3 or if r = 2 and d > 4, and is generated by elements of degree 2 and 3 if

r = 1 and d > 4.

(4.5) PROOF. By Lemma (2.9) we only have to prove (i) for a smooth surface

Η € | ΗI and for the invertible sheaf HH• Since | ΗI is without fixed components and base

points, by (3.1.1) the linear system \HH\ on Η is also without fixed components and base

points. Since dim \HH\ ^ 2 by (1.9, ii), by Bertini's theorem there exists a smooth curve

XG \HH\, which is irreducible since HH is ample (see [21]). By the same Lemma (2.9)

we then only have to prove (i) for the curve X and the invertible sheaf Hx = 0x ® U-

Now if r > 2, then, as one checks easily by the adjunction formula, X has genus

g(X) < 1, and under the conditions of the proposition deg Hx > 2g + 1. Hence our

assertion follows from a result of [18].

If r = 1 then Hx - Kx is the canonical invertible sheaf, deg Hx = 2g(X) - 2, and by

hypothesis the morphism φΗ : X —*• φ Η (X) is birational; that is, X is a nonhyperelliptic

curve. In this case our assertion follows from a classical theorem of Max Noether (see,

for example, [31]). This proves (i).

The first assertion of (ii) follows from (i), as was shown in [18], and the second is

merely a restatement of (i).

For the proof of (iii), use Lemma (2.10). By this lemma it is sufficient to prove the
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assertion for a curve X e | HH\ and the sheaf Hx. If r = 4, then (iii) follows from

(4. 2, i), which has already been proved.

According to the main result of [26], the ideal Ix is generated by elements of degree

2 if deg Hx > 2g(X) + 2. This proves (iii) for r = 3 and r = 2, d > 4. The case r = 1

follows from the classical Noether-Enriques-Petri theorem on canonical curves (see, for

example, [31]). The proposition is proved.

(4.6) PROOF OF (4.2, ii). If r = 2 and d > 3, then from (2.2.1) it follows that

deg ψΗ = 1. According to (3.1) the linear system I HI is without base points. Hence all

the hypotheses of Proposition 4.4 are fulfilled. Hence, since dim \H\ = d + 1 (1.9, ii),

we get that fovd>3 the morphism φ : V —* P d + ! is an embedding, and if d > 4, the

image φH (F) is projectively normal, and is an intersection of quadrics.

Conversely, if V = Vd is a smooth 3-fold of degree d > 3 in P d + 1 , not lying in any

hyperplane, then its smooth hyperplane section //is a rational surface (see [20]). Hence,

using the exact sequence

0-+H* (V, Ov ( m — 1)) -> H° (V, Ov (m)) ^ IP (H, OH (m)) ̂  . . .

and the Kodaira vanishing theorem, one shows easily by induction that am is an epimorphism

for every m > 0. From this it follows that if V is projectively normal, then so is the section

Η C P d . Hence Η is a Del Pezzo surface; that is, Κχ1 - 0H(l) (see [20]). By the Lefschetz

theorem one has a natural embedding Pic V C> Pic H. Hence, using the adjunction formula,

we get that Ky1 - 0v(2); that is, V is a Fano 3-fold of index r > 2. From (4.2, i) it

follows that the index can only be distinct from 2 if r = 4, d = 8, and F 8 is the image of

P 3 in P 9 under the Veronese map.

For the proof of (4.2, ii) it remains to show that there do not exist Fano 3-folds

Vd C P d + 1 of index 2 for d = 8 and 9, since according to (1.12.1) d < 9.

First consider the case d = 9. Let Η be the smooth hyperplane section of V9.

Then Η is a Del Pezzo surface of degree 9 in P9; that is, it is the image of P 2 under the

Veronese map by means of the invertible sheaf 0 2(3). We can assume that k = C. By

the Lefschetz theorem there exists an epimorphism

Ht(H,Z)hHt{V,Z)^0, (4.6.1)

where i : Η —> V9 is the natural embedding. Since H2(H, Z) - Ζ and rk H2(V9, Ζ) Φ 0,

i* is an isomorphism. By duality H2(V9, Z) - H2(H, Z); hence, by (1.15, i), Pic V9 -

Pic H, with the isomorphism given by the natural restriction. But this is impossible, since

Pic V9 is generated by H, whereas the restriction of fi to Η is divisible by 3. This contra-

diction shows that such a 3-fold V9 does not exists.

Now let d = 8. For the hyperplane section Η there are now two possibilities:

(a) H is the image of Ρ 1 χ Ρ 1 under the anticanonical embedding;

(b) Η is the image of the standard ruled surface F under the anticanonical embedding.

Since Pic V - H2(V, Z) and Η is a primitive element of Pic V, because r(V) = 2,

by Poincare duality there exists an element Ζ G H2(V, Z) such that (// · Z) = 1. According
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to (4.6.1) the cycle Ζ can be chosen to lie on the hyperplane section H. Since the surface

//is rational, any cycle of H2(H, Z) is homologous to some divisor. We can therefore assume

that Ζ is a divisor of H.

In case (a) we therefore get an immediate contradiction, since any divisor in Η C P 8

has even degree.

In case (b), Η C P 8 contains a unique line—the image of the exceptional curve of Fx.

Let us show that in this case Vs must contain a surface swept out by lines. Let X =

H1 Π H2 be the smooth intersection of two hyperplanes Hl and H2; then X is an irreducible

curve of genus 1. The hyperplanes Hl and H2 span a pencil of hyperplane sections of V

having base locus X, defining a rational map φ : Vs —*• P 1 which is indeterminate only at

X. Every nonsingular fiber of this pencil contains a single line; and these lines sweep out

some ruled surface on V%, whose closure we denote b y P C F 8 . X does not lie on P;

indeed, if Ζ C Η is a line then (Z · X)H = (Z • H) = 1. Hence if X C Ρ then X is either a

section of the ruled surface P, or a component of a fiber. Obviously, neither of these is

possible, since X is an irrational curve. Hence the intersection Ρ Γι Η consists of the line

Ζ only. From this one computes easily the degree of the surface P:

that is, Ρ is a plane.

The plane Ρ C Vs satisfies the numerical criterion for contractibility to a non-

singular point:

The contraction is achieved by the invertible sheaf 0v{H + P). Indeed, since

0P®0V (H+P) ~OP (1) ®OP (— 1) ~<?P

and hl(Ov(H)) = 0 by (1.9, i), we have the exact sequence

W{P, <?P)->0. (4.6.2)

From this it follows that dim \H + P\ = dim \H\ + 1; that is, Ρ is not a fixed component

of the linear system \H + P\, and by a standard method one checks that because 0v(H)

is very ample, 0v(H + P) defines a birational morphism contracting Ρ to a nonsingular

point. For V = Vs we have h°(0v(H + P)) = 11 and (H + P)3 = 9, so that
φ\Η+ρ\(ν&) ~ V9 i s a s m o o t n 3-fold of degree 9 in P 1 0 . Since φΙΗ+Ρ\ is a birational

morphism, we have <P\H+p\»(Kv ) = Kv9>
 a n d hence

8

—Kv, ~ 2<P|H+p,. (Η) = 2φ 1 Η + Ρ 1 . (// -f Ρ);

that is, K K 1 - 0v ( 2)· Hence F 9 is a Fano 3-fold of index r > 2. Since ~ ^ F 9 =

23(// + P) 3 = 2 3 · 9, we have r = 2. But we have already shown that such Fano 3-folds do

not exist. Hence Fano 3-folds Vs C P 3 of index 2 do not exist either. This completes the

proof of (4.2, ii).
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(4.7) REMARKS, (a) One can see that every projectively normal 3-fold of degree 9

in Ρ ' ° having no more than isolated singularities is the cone over the Del Pezzo surface of

degree 9 in P 9 . Every projectively normal 3-fold of degree 8 in P 9 having only isolated

singularities is either the cone over the Del Pezzo surface Ρ 1 χ P 1 in Ρ 8 , or the cone over

Fj (that is, the projection of the cone V9 C Ρ 1 ° from some nonsingular point), or the smooth

Fano variety of index 4, the Veronese image of P 3 .

(b) It is also not difficult to prove that any smooth 3-fold Vd C P d + ' with 3 < d

< 5 not lying in any hyperplane is projectively normal, and is hence a Fano 3-fold of index

2.

§5. The family of lines on the Fano 3-folds Vd C P d + 1

(5.1) PROPOSITION. Let V = Vd C ?d+1 with 3 < d < 7 be a Fano 3-fold of index

2, let Gr(2, d + 2) be the Grassmannian of lines in ?d+l, and let Τ C Gr(2, d + 2) be the

subscheme parametrizing the family of lines lying on V. Then the following assertions hold:

(i) Τ is closed, and each irreducible component of Τ is a smooth complete surface.

(ii) Let TQ CT be an irreducible component, and let SQ be the family of lines

parametrized by TQ; that is, the restriction to To of the universal family P(E), where Ε is

the tautological locally free sheaf of rank 2 on Gr(2, d + 2). Consider the diagram of

natural maps:

S0%V

Then either ψ 0 is surfective, and through the general point of V there pass a finite number

of lines, or it has image φο(Ξο) = Po, a plane lying on V.

PROOF, (i) Τ is the Hilbert scheme of closed subschemes of V with Hubert poly-

nomial p{ri) = η + 1. Its existence follows from general theorems [11], and the fact that

it is closed is proved in just the same way as the analogous assertion in [17], Lecture 15.

Also, Γ is nonempty. Indeed, any smooth hyperplane section Η of V is a Del Pezzo surface

of degree d with 3 < d < 7, and it is well known (see for example [15]) that there exist

a finite number of lines on H, which implies the existence of lines on V.

For the proof of the nonsingularity of Τ let us turn to the infinitesimal deformation

theory (see [11]). Let Ζ C V be any line, and let Hz be its normal sheaf in V. There

exists a smooth hyperplane section Η containing Z; indeed, the linear system of hyperplane

sections passing through V obviously has base locus precisely Z. Hence it is without fixed

components, and by Bertini's theorem its general element can only have singular points

along Z. The claim then follows from a dimension count, since hyperplanes containing Ζ

form a linear system of dimension d — 1, whereas the hyperplanes containing the tangent

plane to some point of Ζ form a variety of dimension < d — 2.

Since (Z · Z)H = — 1, we have the exact sequence
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0-+σζ(— l ) - * ^ V H ? « ( l ) - * 0 . (5.1.1)

From the corresponding cohomology exact sequence we get

Α°(Λ β ζ)=2, hl(Jfz)=0. (5.1.2)

According to [11] it follows from this that Τ is smooth and of dimension 2 at the

point corresponding to Z. This proves (i).

In assertion (ii), if i//Q is surjective, then, since dim SQ = dim V = 3, φ0 is generically

finite-to-one, and through almost every point of V there pass a finite number of lines. If

φ0 is not surjective, then, since So is complete and irreducible, its image ψ ο (5 ο ) = PQ is

a closed irreducible subvariety of V. Clearly one cannot have dim Po < 1. There remains

the possibility dim Po = 2; that is, Po is a surface containing a 2-dimensional family of lines.

From the classification of surfaces it is well known that such a surface can only be the

plane. The proposition is proved.

(5.2) PROPOSITION. In the notation o/(5.1) suppose that φ0 :S0 —> V is sur-

jective, and let DQ C So be the subvariety of points of So where ψ 0 is not etale. Then the

following assertions are true:

(i) //deg ψ 0 > 1, there exists a closed curve Co C To such that TT^^CQ) = Do.

(ii) The dimension of any fiber of φ0 is no greater than 1, and either ψ0 is a finite

morphism, or there exist a finite number of 1 -dimensional fibers.

(iii) For any point t e To let Nt be the normal sheaf to the corresponding line Zt C

V. Then there are two possibilities:

(a) jr,^Ozt®OZt, ( 5 2 1 )

Qo) jr,cxOzt( — \)®0zt(\),

and ifteT0-C0 then hlt is of type (a).

PROOF, (i) Since char k = 0, ψ 0 is a separable morphism, and hence Do is a closed

subset of So distinct from So.

On the other hand, Do is nonempty. Indeed, the inverse image of ψΰι(Η) of the

general hyperplane section Η is an irreducible surface by Bertini's theorem, and, since Η

is rational and deg i//Q > 1, the morphism ψο 1{H) —+ Η is ramified. Hence ψ 0 itself is

also ramified; that is, DQ is nonempty. By Zariski's theorem on the purity of the branch

locus, Do is a divisor of 5 0 .

We compute the canonical class of So by two methods. On the one hand,
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where D'o is an effective divisor supported precisely on Do. On the other hand, since

So = P(E0), where Eo is a locally free sheaf of rank 2, the restriction to TQ of the tauto-

logical sheaf Ε on Gr(2, d + 2), letting Mo = UQOV(1) be the Grothendieck tautological

sheaf on P(E0) one gets the following formula for the canonical class Ko (see for example

[14]):

WSa ** Λ/ο~
2 <g) nlxT. ® JtJ det So. (5.2.3)

Let CQ denote a divisor on Γο such that 9 r (C^) = Kr 0 ® det Eo; comparing (5.2.2) and

(5.2.3) we get D'o ~ ir^(C'o). Since £)'o is an effective divisor, and π 0 : So —> To is a locally

trivial fiber bundle with fiber Ρ1, the divisor C'o can be chosen to be effective; for example,

C'Q = TTO(D'O). Setting CQ = πο(Ζ>ο), we obtain a proof of (i).

For the proof of (ii), note that if dim φ^ι(ν) = 2 for some point υ & V, then every

2-dimensional irreducible component of φ^1^) would be contained in Do. But according

to (i) any such component contains a 1-dimensional family of lines from So, and hence

φ0 must map it onto some ruled surface in V, and not into a point υ. This contradiction

proves that a fiber of φ0 cannot have dimension 2.

Let W = {veV\dim\pQ1(v)> 0}. Then W is a closed subset of V. If dim W > 0,

then for any curve F C W every 2-dimensional component φ^1(Υ) is contained in DQ, and

by what we have seen above cannot be mapped to Y. Hence dim W < 0, which proves

(ii).

The fact that in (iii) only the two possibilities (a) and (b) can occur follows at once

from a consideration of the exact sequence (5.11) and the values of the cohomology (5.1.2).

Let t e To - Co. Then according to (i) φ0 is etale along the fiber ιτ^ι(ί) = So t. Hence

the differential άφ0 of φ0 defines a monomorphism of the tangent bundles

and since φ0 \S0 t : So t —* Z f is an isomorphism, άφ0 induces a monomorphism of normal

bundles Λ^ —*• Nz . Since Ns is a trivial rank 1 bundle, it follows from this that Mt

is an extension

which must be split, since Zt is a line. This proves (iii), and with it the proposition.

(5.3) PROPOSITION, (i) A Fano 3-fold V = Vd C Pd+1 does not contain any

planes for 3 < d < 6, and contains a unique plane if d = 7.

(ii) Through every point υ Ε Vd for 3 < d < 7 there passes at least one line.

PROOF, (ii) for 3 < d < 6 follows from (i) and from (5.1, ii). In the case d = 7

both (i) and (ii) follow from the explicit description of F 7 C P 8 given in (6.1) and (6.2),

independently of the proposition in hand.

It remains to prove (i) for 3 < d < 6. Let Ρ C V be a plane; then Ρ satisfies the

condition for contractibility to a nonsingular point. Indeed, for any line Ζ C P, the
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normal sheaf Uz of Ζ in V fits into an exact sequence

+az (—ι)

since det Mz - Oz according to (5.1.1). Hence (Z · P) = - 1 . Just as in (4.6, b) the

contraction of Ρ is given by the invertible sheaf 0v(H + P), where Η is the hyperplane

section, and we have an exact sequence (4.6.2). As in (4.6, b) we get <P\H+P< • Vd —-*

Vd+i. The inverse map is the projection from the point υ = ψ\Η+Ρ\(Ρ), χν : Vd+l —• Vd.

Since the restriction of φ^Η+Ρ\ is an isomorphism Vd~P —*• Vd+1 -v, the restriction of

the projection χυ is the inverse isomorphism χυ | Vd+l - ν : Vd+1 - υ —•» Vd - P. But if at

least one line Ζ of F d + 1 passes through υ, then the projection χυ from υ must contract Ζ

to a point, and the restriction χυ | Vd+1 — υ cannot be an isomorphism. Thus if (ii) holds

for Vd+l then (i) holds for Vd; for d < 6, (i) for Vd implies (ii) for Vd by (5.1, ii). The

proof of the proposition thus follows from the fact that (ii) holds for F 7 (Corollary (6.2)).

(5.4) REMARK. In the case d = 3 the scheme Τ of lines on F 3 has been thorougly

investigated (see [1] and [30]); Γ is the irreducible smooth Fano surface of lines on the

cubic 3-fold F 3 . In the case d = 4, Τ has also been thoroughly investigated (see for

example [22] and [29]); it turns out that it is irreducible, and has the structure of an

Abelian surface, isomorphic to the intermediate Jacobian / ( F 4 ) of the 3-fold F 4 . Further-

more, it is isomorphic to the Jacobian J(C) of a certain curve of genus 2 which is closely

associated with F 4 .

In §6 we compute Τ in the remaining cases d — 5, 6 and 7 (see (6.6), (6.4) and (6.2)).

In these cases Τ has rather a simple structure: each of its irreducible component is

isomorphic to either P 2 or Ρ1 χ Ρ 1.

§6. Fano 3-folds of index r > 2; completion

of the proof of Theorem (4.2)

(6.1) PROOF O F (4.2, iii): the case d = 1. Let V - F 7 C P 8 . Then its smooth

hyperplane section Η is a Del Pezzo surface of degree 7. It is well known [15] that any such

surface is the image of the plane by means of the linear system of cubics passing through

2 distinct points. Η contains 3 lines Z o , Ζχ, Ζ 2 which form the following configuration:

Among the 3 lines Z o is distinguished by the fact that it meets both of the remaining lines,

whilst Z x and Z 2 meet only Z o . As in the proof of (4.6, b) one shows that as Η varies in

a sufficiently general pencil of hyperplane sections the lines Z o sweep out a plane Po C Vn.

In the process of proving (5.3) we showed that Po satisfies the criterion for contractibility,

and that the morphism performing the contraction φ\Η+Ρ | : F 7 —* F 8 maps Vn onto a

Fano variety Vs C P 9 , while the inverse map of ψ\Η+Ρ | is the projection χυ :VS —* Vn

from the point vQ = <P\H+P \(P0)· From the proof of (4.6) one sees that V8 can only be

the Veronese image of P 3 . Hence Vn C P 8 is the projection of the Veronese image F 8

from some point υ G F 8 . It will be enough to show that the image of such a projection is
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smooth and projectively normal. Then from (4.2, ii) it will follow that it is a Fano variety

of index 2, and obviously of degree 7. Let us prove this.

Let σ: V' —»• V8 be the blow up with center υ G Vs, and let Ρ = σ " 1 (υ). Then the

projection χυ from υ defines a morphism

since dim \a*H -P\ = dim \H\ - 1 = 8. Since (o*H - Pf = 8 - 1 = 7 by (2.11.1), it

follows that v?!,,·//../»!: V —* V\a*H-p\(V') *s a birational morphism onto a 3-fold of

degree 7. Since, on blowing up a point, Κν· ~ σ*(ΛΓκ) + IP, it follows that KJ7'1/2 ~

0ν·(ο*Η - P). It is enough to show, according to (4.4), that the sheaf 0ν·{σ*Η - P) is

ample. Let Ζ C V' be any curve. We us the numerical criterion of ampleness.

(a) HZ φ Ρ then (σ* Η - Ρ • Ζ) = deg σ*Ζ - (Ρ · Ζ); that is, (σ*// - Ρ · Ζ) is the

difference between the degree of the curve a^Z and its multiplicity at v. Hence

{a*H - Ρ · Z)> 0, and for an irreducible curve Ζ equality is only possible in the single case

deg a^Z = 1; that is, when a{Z) is a line passing through υ. But since Vs is the image of

the Veronese map of P 3 , it does not contain any lines. Hence, (σ*Η - Ρ · Ζ) > 0.

(b) If Ζ C Ρ, suppose that Ζ is a. curve of degree m on the plane P~ P 2 ; then

(σ*Η -PZ) = -(PZ) = m>0.

Hence Ky·1 is ample, so that V' is a Fano variety, and φ\α*Η_Ρ\ 'V —• Vn is an

isomorphism. This proves the case d = 7 of (4.2, iii).

From the proof one sees that F 7 is obtained from P 3 by blowing up one point. From

this one at once obtains

(6.2) COROLLARY. The surface Τ of lines on Vn C P 8 consists of two components

To and Tv each of which is isomorphic to P 2 . If SQ and St are the corresponding

families of lines, and ι//;·: St —> Vn are the natural maps (i = 0, 1), then ΨΟ(ΞΟ) = Po C Vn

is the plane Ψ\α*Η_Ρ\{Ρ), and φχ :Sl —• V7 is an isomorphism. In particular, through

every point υ & Vn there passes a line.

(6.3) PROOF OF (4.2, iii): the case d = 6. In the usual notation, let Ζ C V be a line

of V = V6 such that Nz - 0z(l) Θ 0ζ{\). Such a line exists by (5.2). As in the proof

of (5.2, i), one shows that there exists a smooth hyperplane section Η G 10^(1)1

containing the line Z.

Let a: V' —• V be the blow up of the line Z. Set Ζ' = σ~ι(Ζ) and Η' = σ*0ν{\)

® 0v>{~ Z'). Then the following assertions hold.

(a) Z ' - , P ( W Z ) - F O = P 1 x P 1 .

(b) The linear system | H'l is without fixed components and base points.

(c) The morphism φΗ>: V' —• φΗ·(ν) is birational, and deg φΗ>(_ν) = 3; //π ζ :

V—* Ρ 5 is the projection from the line Z, then φΗ· = nz · σ.

Let us prove (c). Let H' £ \H'\, and set W = <pH>(V). Then, by (1.11.2), (//')3 =

{α*Η - Ζ'Ϋ = Η3 - 3(H · Ζ) - (Ζ') 3 = 3. Hence φΗ· is birational, and deg W = 3.

From the exact sequence
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0 -> Η° (Gv (ο*Η—Ζ')) -> Η° (Θ

-> Η°{Όζ- (σ*// · Ζ)) ^ Η° (Ζ, Οζ (1)) ** 0

we find that dim |tf'| = 5. Hence V C P 5 , and we obviously have the condition deg W =

codim W + 1. It is also clear that φΗ> = ΉΖ° a.

(d) 7fce morphism ψΗ· \Z' :Z' —* ψΗ>(Ζ') C P 3 is an isomorphism of Z' onto a

smooth quadric Q = φΗ<(Ζ') C P 3 .

Indeed, by (1.11.2), (//' · H' • Ζ') = (σ*Η - Ζ ' ) 2 • Z' = 2. Hence Z' maps onto

some surface Q. Since φΗ· is birational and W is a normal variety (see (2.5, iii)), the

morphism φΗ> \Z' is also birational. Hence deg Q = (Η'Ϋ = 2; that is, β is a 2-dimensional

quadric. This cannot be a cone, since Z' - Ρ 1 χ Ρ 1 does not contain any curves with

negative self-intersection, so that there does not exist any birational morphism of Z' to a

cone.

(e) Let Ε C V be the ruled surface swept out by lines which meet the line Z, and let

E' be the proper transform of Ε on V'. Then E' consists of 2 disjoint irreducible components

E\, E\, the morphism ψΗ>\ V' - E': V' - E' —* \ν-φΗ·{Ε') is an isomorphism, and φ^ · con-

tracts E' onto two disjoint lines Fj and Y2 in W.

For the proof, note that through the general point υ £ V there pass 3 lines. Indeed,

a sufficiently general tangent hyperplane to υ intersects V in a Del Pezzo surface Ηυ of

degree 6 with a double point υ, and Hu contains all lines of V through υ. Considering

Hv as the image of the blow up of Ρ 2 in 3 points xt, x2, x3 under the anticanonical map,

one sees easily that in this case the 3 points lie on a certain line, which is contracted into

the singular point i>; the 3 blown up lines above the xi are the only lines of Ηυ passing

through v.

Now, since we can choose the line Ζ to be outside the ramification divisor of

S —*• V (see (5.2)), then through the general point ζ £ Ζ there pass 2 further lines lying on

V. On the other hand, on a nonsingular surface Η containing Z, 2 of the 6 lines of// meet

Z. Hence if Υ' = Ε' η Ζ', Y' ~ as + (3/, where /is a fiber of the ruled surface Z', and s

is a section, then a = 2; and (Y' • Χ')ζ· = 2, where X' = Η' η Ζ' ~ s + f. From this

we conclude that β = 0.

Obviously, the projection π 2 from Ζ contracts the surface E; and the 2 lines passing

through some point υ & Ζ project into distinct points, provided that they do not lie together

with Ζ in some plane P 2 C P 7 . But 3 lines of V6 cannot lie in one plane, since V6 is an

intersection of quadrics, and does not contain a plane, by (5.3). Hence Y' C Z' cannot

be a section with multiplicity 2, for otherwise φΗ> would not be defined on Y'. There

remains therefore only one possibility: Y' consists of 2 disjoint sections Υ'γ and Y'2, and

hence E' consists of two irreducible disjoint components E[ and E'2. Clearly the images

on W of Ε' and E2 coincide with the images of Y[ and Y2, and are therefore lines Y1 and

Y2 in W.

Let C C V be an irreducible curve which contracts under the projection π ζ : V —*• W.

A necessary and sufficient condition for this to happen is that (H · C) = (Z' • C'), where

C' is the proper transform of Con V'. The right-hand side of this equality can be inter-

preted as the number of points (counted with multiplicities) of intersection of C with the line
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Ζ C V; the right-hand side is the degree of C in P 7 . From the condition (H · C) =

(Z' • C') one sees that C is a plane curve; let Ρ be the plane containing it. Then C U Z C

Ρ Π V. But since V6 is an intersection of quadrics, every such quadric either cuts out on

Ρ a curve of degree 2, or contains P. According to (5.3) Ρ is not contained in V, so that

C U Ζ can only be a curve of degree 2; that is, C is a line meeting Ζ , so that C C f .

Thus the birational morphism φΗ> | V' - E': V' - E' —• W - ( 7 , U F 2 ) does not

contract anything, and is thus a finite morphism of degree 1; and since W is a normal variety,

φ^ι\ν' - Ε' is an isomorphism.

(f) l f C P 5 i s nonsingular, and is the image ο / Ρ 1 χ Ρ2 under the Segre embedding.

Since codim W + 1 = deg W = 3, it follows from Lemma (2.8) that W is either as

in assertion (f), or is a cone over a smooth surface F 3 C P 4 , or a cone over a rational cubic

C3 C P 3 . We have to exclude the latter two possibilities. Suppose that W is a cone; then

from (e) it follows that its vertex has to lie on the quadric Q C W. But it is easily seen

that a cone W cannot contain a smooth quadric which contains the vertex (0- or 1 -

dimensional). This contradiction proves (f).

(g) There is an i s o m o r p h i s m V ~ Ρ ' x P 1 x P 1 .

Identify W with Ρ 1 χ Ρ 2 ; then Q is identified with Ρ 1 χ Ρ 1 under some linear

embedding of the second factor P 1 in P 2 , and Yx and Y2 are identified with the inverse

images of certain points yv y2 G P 1 under the projection Ρ 1 χ Ρ 1 —• Ρ 1 onto the second

factor. The birational transformation inverse to the projection π ζ : V —*• W is constructed in

the obvious fashion: the two lines Y^ and Y2 are blown up, and the proper transform of

Q ~ Ρ 1 χ Ρ 1 is blown down. This transformation is compatible with the projection onto

the first factor Ρ 1 χ Ρ 2 —• Ρ 1 , and transforms the fiber P2 into Ρ 1 χ Ρ 1 . This proves

(g)·
Letting pi : P X χ Ρ 1 χ Ρ 1 —> Ρ 1 denote the projection onto the ith factor, we have

JStfxptXPt C^p[Opi (2) ® p'2Op> (2) (g) plOpr (2)

and hence under the identification F - P 1 x P 1 x P 1 we have

that is, V6 C P 7 is the image of Ρ 1 χ Ρ 1 χ Ρ 1 under its Segre embedding. Thus we have

completed the treatment of the case d = 6 of Theorem (4.2, iii).

(6.4) COROLLARY. The surface Τ of lines on V6 C P 7 is the disjoint union of 3

surfaces Tt - Ρ 1 χ Ρ 1 (ζ = 1, 2, 3). Each of the families St is isomorphic to F 6 - Ρ 1 χ

Ρ 1 x P 1 , with ψ,· coinciding with the ith projection of¥l χ Ρ 1 χ Ρ ' onto Ρ ! x P 1 .

(6.5) PROOF OF (4.2, iii): the case d = 5. This case is in many ways analogous to

the consideration in (6.3) of the case d = 6. Let Ζ be a line of V = Vs such that Uz -

0z θ 0z, and let a: V' —> V be the blow up of Z. Then in the same notation as in (6.3)

we can state and prove as in (6.3) assertions similar to (a), (b) and (d); the assertion

analogous to (6.3, c) takes the following form.
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(c) The morphism φΗ> : V' —> W C P 4 is birational, where W is a quadric o / P 4 . If

TTZ-V —*• P 4 is the projection from the line Z, then ψΗ· — πζ ° σ.

The proof is similar to the corresponding proof in (6.3, c).

The remaining assertions show certain substantial differences from the corresponding

ones in (6.3), and we give complete statements and proofs for them.

(e) In the notation of {6.3, e), E' is an irreducible surface, and the morphism

φ*< | V'*-E : V' — E' -> W—φχ. (£')

is an isomorphism; and φΗ> contracts E' onto a smooth rational curve Υ C Q of degree 3,

where Q = φ^ι(Ζ') is a 2-dimensional quadric.

Indeed, exactly as in (6.3, e) one shows that through almost every point ζ G Ζ there

pass 2 other lines of V, not lying together with Ζ in a plane P 2 C P 6 . On a Del Pezzo

surface H5 C P 5 every line meets 3 otherlines. From this we deduce that Υ' = Ε' Π Ζ' ~

2s + / o n Z'. Clearly, φΗ·(β') = ΨΗ'<7'\ and setting Υ = ΨΗ·(Υ') we have Y' - Y, and

Υ C Q is a curve of genus 0 and degree 3. Such a curve will be singular if and only if it

is reducible; let us show that Υ is nonsingular, and hence irreducible. For this note that

the morphism φ „> factors through the blow up aY : V" —+ V:

V -> V"

tye'l Uy

W = W

Suppose that Υ is a singular curve; then V" is a singular normal variety (this is well known,

and is easily checked directly). Let y G Υ be a singular point; then the fiber ^ ^ ( y ) =

(ρ ° aYY
x(y) is reducible. But this contradicts the fact that the projection π ζ only con-

tracts a single line to the point y G W, and φ ·\Ζ':Ζ' —*• Q is an isomorphism. Hence Yis a

smooth curve, and φΗ·: V' —* W is the blow up with center Υ C W. This proves (e).

(f) The quadric W cannot be a cone.

This follows immediately from the arguments we have just given in (e).

(g) The inverse map W —• V5 is given by the linear system 10w(2) - Y\ consisting

of sections of W by quadrics of P 4 which contain the curve Y.

Indeed, dim 10^(2) - Y\ = 6, and if aY : V" —»• W is the blow up of Y, then the map

*Λ 0 (2)- Y\ when lifted to V" becomes a birational morphism φ" : V" —* V, the image of

which is the 3-fold V of degree 5 in P 6 . It is quite elementary to check that φ^ c ^_ y i

contracts those lines of W which intersect Υ in two points, and only these. These lines sweep

out the two-dimensional quadric Q C W—the unique hyperplane section of W which contains

Y.

The proper transform Z" of Q in V" is a nonsingular ruled surface, satisfying the

criterion for contractibility, and ψ" :V" —* V is a morphism onto a smooth Fano 3-fold of

index 2, contracting Z" onto a certain line Z.

(h) All Fano 3-folds V5 C P 6 of index 2 are projectively equivalent.

Since Vs is embedded in P 6 by means of a submultiple of the anticanonical sheaf, it is

enough to show that all Fano varieties V5 are isomorphic. Since each such variety is obtained
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from a pair (W, Y), where W C P 4 is a smooth quadric, and Υ C W is a smooth rational

cubic, by means of the construction described in (g) it is sufficient in turn to show that all

such pairs are projectively equivalent in P 4 . Let (W, Y) and (W1', Y') be two such pairs,

and let Q and Q' be the corresponding hyperplane sections defined by Υ and Y'. First of

all, by means of a projective transformation one can take (W, Q) onto (W1, (?'), and the

question reduces to the equivalence of the curves Υ and Y' on the smooth 2-dimensional

quadric Q. The group Aut Q of automorphisms of β is an extension

l-»-PGL(2) XPGL(2)-»-Aut Qr*-{1, τ}-»-1,

where τ is the involution interchanging the factors in Ρ 1 χ Ρ 1 ~ Q. We can assume, by

using τ if necessary, that both Υ and Y' belong to |2s + f\, where s and /are respectively

the fibers of the first and second projection of Ρ 1 χ Ρ 1 onto Ρ 1 . The group G = PGL(2) χ

PGL(2) acts on 12s + f\, and the stabilizer GY of each smooth curve Υ € 12s + f\ is 1-

dimensional, since the pair of ramification points of the second projection Υ—• Ρ 1 must

remain invariant. Since dim G = 6 and dim 12s + f\ = 5, the orbit of Υ in |2s + f\ is

everywhere dense. Hence (h) follows at once.

It is well known (see for example [28]) that the general section of the Grassmannian

Gr(2, 5) of lines in P 4 by 3 hyperplanes is a Fano variety V5 C P 6 of index 2. From (h)

it follows immediately that any Fano 3-fold V5 C P 6 is obtained in this way. Our

treatment of the case d = 5 is thus complete.

(6.6) COROLLARY, (i) Pic V5 - Ζ and is generated by 0v(l)·

(ii) The surface Τ of lines of V5 is isomorphic to P 2 .

PROOF. According to (4.2, iii, b), Vs is a complete intersection of 3 hyperplanes in

the Grassmannian Gr(2, 5). Since Pic Gr(2, 5) - Ζ · 0(1), by the Lefschetz theorem

Re V5 — Ζ with CV(l) as a generator. This proves (i).

For the proof of (ii) let us show that the family of lines {Z \Z C V5,Z ΠΖ0Φ0}
meeting any given line Z o is parametrized by a smooth irreducible rational curve Yo For

Wz - 0z θ 0z0>
tms w a s proved in (6.5, e). It ramains to consider the case when

Wz0 - 0zo(~l) © 0zQ(l) ( s e e (5.2.1)). Let E0 be the ruled surface in V$ swept out by

lines meeting Z o , and let σ0 : V' —*• Vs be the blow up of ZQ. Set Z'Q = σ^1(Ζ0), and

consider the exact sequence

0 -vH°(Qv (σ'0Η—2ZO))-νH°(Ov (σ*0Η—Ζο)}

It is easily checked that the final group is 3-dimensional, and the middle one is 4-dimensional,

so that h°(0y'(o%H — 2Z'o)) ~> 1. The proper transform of any line Ζ meeting ZQ has

negative intersection number (equal to —1) with οζΗ — 2Z'O. Hence Eo must be a fixed

component of the linear system \H - 2Z0\. But since Pic V5 - Ζ · 0y (#)> any surface in

\H - 2Z 0 | is irreducible, and hence \H - 2Z 0 | contains only Eo. Let Xo = Eo Π Η for a
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sufficiently general hyperplane section H. Then, since EQ is irreducible, XQ is an

irreducible curve. It has arithmetic genus 1 and a single double point x0 G Xo,

x0 = Z o Π Η. Through every point χ S XQ, χ Φ xQ, there passes a single line of Eo, for

otherwise χ would be singular on Eo, and hence singular on Xo, which is impossible.

Let E'Q be the proper transform of EQ on V', and X'Q the proper transform of XQ; then

XQ is a smooth irreducible rational curve, which is a section of the ruled surface E'o. Hence

the base of this ruled surface is also a smooth irreducible rational curve.

From the assertion we have just proved it follows that Γ is an irreducible surface, and

to every point t G Τ we have associated a smooth irreducible rational curve Yt C T. Let

us show that (Yt · Yt ) = 1 for all t v t2 G T. Since the family {Yt \ t G Τ } is parametrized

by an irreducible and hence connected surface T, it is enough to check this for some

arbitrarily chosen pair of points f j , t2. Let us choose tl and t2 so that the corresponding

lines Zv Z 2 C V5 do not meet. We have to show that there exists a unique line Ζ C V5

which meets both Zx and Z 2 . For this note that the hyperplane section Ε swept out by

lines meeting Zx does not contain Z 2 , since Z t C\ Z2 = 0- Hence (El · Z2) = 1, and the

point z2=ExC\ Z 2 cannot be a singular point of Εχ. Since Ex is ruled, there is a unique

fiber of it passing through a nonsingular point of El, and this is the unique line which

intersects Ζχ and Z 2 .

Summarizing, we get that through each point s G Τ there passes a 1 -dimensional

family {Yt \ t G T, Yt 3 s} of smooth rational curves, for which every curve Yt not

containing s for f x G Τ is a section. Hence this family is a linear pencil of smooth rational

curves with the single base point s. It follows at once from this that Τ- Ρ 2 . The proof is

complete.

(6.7) REMARK. We could have proved (4.2, iii) for d = 5 and 6 by projecting Vd

into P 3 from a normal rational curve X of degree d - 3. The normal sheaf Wx to X can

easily be seen to be represented as an extension

0 ->- 0 P . (d — 5) ->• ../Γχ ·->- Op. (d—3) ->· 0

under the identification X-P1. One can prove that

JTX cs ©p. (d — 4) 0 Op« (rf — 4)

for a sufficiently general curve X. For such a curve the projection πχ : Vd —• P 3 is not

defined only on X, and if ax:V' —*• Vd is the blow up of X, and ax

l{X) = X', then (see

(2.11.2))

,(a'xH—

Hence the morphism ψ\σ*Η_χ'\ '• V' —* P 3 is birational, φ(Χ') = Q is quadric of P 3 , and

the inverse map P 3 —*• Vd is given by some linear subsystem of the linear system of cubics

IOp3(3)l.
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One shows easily that in the case d = 5 the map P 3 —* V5 is given by the linear

system 10 3(3) - Y\, where Υ C Q is a smooth rational curve of degree 4 with Υ ~ 3s + f.

For d = 6, P 3 —• V6 is given by the linear system | 0 3(3) - Y1 - Y2 - Y3\, where

Y1, Y2 and Y3 are pairwise disjoint lines on the quadric Q.

The proofs of all the assertions we have mentioned are simple, but as lengthy at the

corresponding proofs of (6.3) and (6.5) in the text.

(6.8) PROOF OF (4.2, iii): the cases d = 4 and 3. In both cases the assertion follows

immediately from (4.2, ii). For d = 4 one has to note only that from the exact sequence

0 -+1\ -*• S2H° (Ov (1)) -> H" (Ov (2)) - * 0

2

(see (4.4.1)), where Iv is the component of degree 2 of the ideal Iv defined in (4.4, iii),

it follows at once that dim Iv = 2. Hence F 4 is the complete intersection of any two

linearly independent quadrics in Iv. Conversely, from the adjunction formula for the

canonical class of complete intersections we get that any smooth complete intersection

V2.2 in P S and any smooth cubic V3 in P 4 are Fano 3-folds of index 2.

(6.9) PROOF OF (4.2, iv): the case d = 2. If d = 2, then by (1.12, iii) dim \H\ = 3,

by (3.1) I HI is without base points, and according to (2.2), deg φ = 2, and hence φΗ :

V—* Ρ 3 is a morphism of degree 2. φΗ is finite, since Η is ample; and since V is a smooth

variety, φΗ has a smooth ramification divisor B C P 3 . The class of D is given by the

formula

2// Κν = νχ(-Κν>)-\νχ(Ό).

It follows that V is a Fano variety with r = 2 and d = 2 if and only if D is a smooth

quartic of P3.

For an alternative representation of Κ note that the algebra R(V) = (&n>0H°(V, H")

is not generated by H°(V, H); however, according to Proposition (6.12) below it is generated

by H°(V, H) ®H°(V, H2). Furthermore, there is a natural inclusion

S2H°(V,3>g)-+H0{V, 3%2).

We have

dimSzH°(V, 3fS)= /3^~2NJ = io

and h°(V, H2) = 11 (see (1.12)). Choose some element x 4 G H°(V, tf 2 ) not belonging

to the image of S2H°(V, H). Then the algebra R(V) is gneerated by H°(V, H) and the

element xA, and if xQ, xv x2, x3 is a basis of H°(V, H), then R{V) - k[x0, . . . , x 4 ] / / K ,

where the grading of k[x0, . . . , x4] is given by assigning degrees deg χ. = 1 for i = 0,

. . . , 3, and deg x4 = 2. The ideal Iv is generated by a single element, since V =

Proj R(V) and dim Proj R(V) = 3. To find a generator of Iv, consider the exact sequence

0 -»-1\ -*. S2 (S2H° (V, 3t) θ kxt) -> H° (V, M*) -»- 0.

According to (1.12, iii), h°(H4) = 45, and one easily computes
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dim S2 (S2H° (90 Θ kxj = 46.

Hence dim Iv = 1. Let F4(x0, . . . , x4) e Iy be some nonzero element. Clearly Iv = 0

for η < 3, and hence the element F4(x0, . . . , x4) S Iy of least degree is a generator of

V
Set P(x 0, . . . , x 4 ) = Proj k[x0, . . . ,x4], where fc[*0, . . . , x4] is graded as

indicated above. Then F4{xQ, . . . , x4) = 0 is the equation of V in P(x0, • • • , x4)-

Conversely, any smooth hypersurface V' C P(x0, . . . , x4) of degree 4 is a Fano variety

with r — 2 and d = 2. Indeed, the dualizing sheaf of smooth complete intersections in

weighted projective space is easily computed, and we have Kv> - 0ν·(-2), and -Kv· =• 16.

This completes our treatment of the case d = 2.

(6.10) PROOF OF (4.2, iv): the case d = 1. According to (3.1) the linear system

I HI has a single base point, and since dim |HI = 2 (see (1.9, ii)), the rational map φ^ : V—•

Ρ 2 is undefined only at the base point u0 £ V. Clearly every surface / / £ \H\, and every curve

i e \HH\ (that is, any fiber of φΗ ) is irreducible, since H3 = (H · X) = 1, and Η is ample.

To prove the existence of such Fano 3-folds Fwe study another representation for

them. For this, note that the linear system \H2\ = \Κγχ I is without fixed components and

base points. Indeed, there are no fixed components, since there are none in \H\, and

obviously there are no base points outside the point υ 0 . Let us show that u0 also cannot be a

base point. Since hl{V, H) = 0 (see (1.12)) and hl{H, HH) = 0, we have the exact sequences

where Η S | ΗI is a smooth surface, and X e | HHI is a smooth curve. Hence it is enough to

show that the linear system \Ηχ\ on JSTis without base points. But Xis an elliptic curve, and it

is well known that a complete linear system of degree 2 on an elliptic curve cannot have base

points.

According to (1.9), h°(Kyl) = 7. Hence the morphism

is defined. Set φ = φ,,_ ι and W = <p(V). Then according to (2.2, ii), deg ψ = 1 or 2. But
ν

deg φ Φ 1, since the restriction of φ to any elliptic curve X e | HH\ has degree 2. Hence

deg φ = 2, and deg W = -Kv\2 = 4; that is, W satisfies the condition of Lemma (2.8).

Furthermore, the morphism ψ takes the fibers of φΗ :V—*• P 2 into lines of W passing through

the point w0 = φ(υ0). Hence W is a cone with vertex vv0 and the rational map φΗ factors

through ψ:

(6.10.1)
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Hence the base of the cone Wis isomorphic to P 2 , and since deg W = 4, Wis the cone over

the Veronese surface F4 C P 5 .

The closed subset of V at which ψ is not smooth consists of the point vQ and a non-

singular irreducible divisor 25 C V with υ0 $ D and (D • X) = 3. Indeed, since w0 = φ(υ0) is a

singular point of W, ψ must be degenerate at υ0. Let us show that v0 is an isolated component

of the set of degeneracy of ψ. Since j / 2 is ample and W is a normal variety, φ is a finite

morphism. It follows that the local ring 0w is isomorphic to the subring of invariants of

the local ring 0υ under a certain involution τ. Passing to the completions Qv and

0w , we can assume that τ acts linearly on 0υ — k[[x, y, z] ] . Of the 3 possible actions

(x, y, z) (-> (-x, y, z), (x, y, z) |—* {-χ, -y, z) and (x, y, z) I—> (-x, -y, -z) , only the

third can happen in our situation, since only in this case is the ring of invariants 0τ

υ

isomorphic to the local ring of an isolated singularity—the vertex of the cone on the

Veronese surface. Using explicit formulas, it is now very simple to check that the morphism

φ : Spec 0Vo — {v0} -> Spec OWQ — {wo)

is ramified.

Further, φ \ V — v0: V — vQ —> W — w0 is a finite morphism of degree 2 of smooth

varieties. By Zariski's theorem on the purity of the branch locus, the degeneracy locus of

φ is a divisor D C V - υ0. As we have seen, the closure of D on V does not contain v0;

that is, D C V is closed, and is without singularities, since V and W - w0 are smooth. The

restriction ψ \X of φ to the elliptic curve X has 4 ramification points, one of which is

υ 0 . Hence (D • X) = 3. Let D = ψφ) C W. Then D ^ w 0 , and since Pic W - Z, D e

10^/(3)1. It follows from this that D, and hence D, is irreducible.

Conversely, let D e | ()w(3)| be some smooth divisor. Then w0 £D, and since

Pic W — Z, D is connected, and hence irreducible. Let δ : W —»• W be the blow up of the

vertex w0 of W. Then we have a fibration π : W —• P 2 with fibers Ρ 1 , and the smooth

surface S C W, S = δ " 1 ^ ) , is a section of π· In the commutative diagram

(6.10.2)

Κ is a double cover of W with smooth ramification divisor D U S (where we write D for

δ ~ *(£)), since δ is an isomorphism in a neighborhood of/)). V exists, is uniquely

determined by the ramification divisor, and is a smooth complete variety with a fibration

over P 2 with fibers elliptic curves. Indeed, let U = W -{DOS). It is enough to show that

there exists a unique nontrivial unramified double cover U' —> U of U. For this it is in turn

sufficient to show that HX(U, μ 2 ) = Ζ/2Ζ, where μ2 is the sheaf of second roots of 1.

Consider the Kummer exact sequence

1 - ^ //· (U, Oi)/H° (U, O'uf -+ Hl (U, μ2) - • Pic 2 U -*O, (6.10.3)



518 V. A. ISKOVSKIH

where Pic2C/ C Pic U is the subgroup of elements killed by 2. Note that nD -f mS for any

integers η and m. Indeed, D3 > 0 and (D · S) = 0. Since Z) and S are irreducible divisors,

this implies that H°(U, 0%) - k*.

Let L - n*0 2(1); then Pic W - Ζ · Οψ(β) Θ Ζ · L, and simple computations give

Οψψ) - 0w(3S)P® L6. From this we have Pic U = Pic ϊνΚΟψΦ), 0W(S))- Z/6Z.

Hence Hl{U, μ 2 ) — Pic2 ί/~ Ζ/2Ζ. V is a smooth variety, since the ramification divisor

is smooth. Each fiber of φ^ is a double cover of the line with 4 ramification points, which

cannot all coincide, since the fiber is an irreducible (possibly singular) elliptic curve.

Let Τ be the proper transform on V of S; then Τ - S - P 2 , and Τ is a section of the

morphism φΗ : V —*• Ρ 2 . Let us show that Τ satisfies the condition for contractibility to

a nonsingular point. Let Ζ be a line on T; that is, a curve such that φ^ (Ζ) is a line on P 2 .

We have

(2Z · 27) = (φ·φ, (Ζ) • φ· (S)) = 2 (φ, (Ζ) · S),

where ψ = άΐ{ψΗ , and hence 2(Z • Τ) = (φ#(Ζ) · S). Let F = π " 1 ° π ° «ρ(Ζ); then

is a quadratic cone, and hence F—F2, with (<p(Z) ο φ(Ζ))ρ = - 2 . Hence

' = - 2 ,

and so (Z · 7) = - 1 ; hence Τ satisfies the condition for contractibility to a nonsingular

point. In the diagram (6.10.2) above we can simultaneously perform the contraction of

Τ and S and get the following commutative diagram:

v —^— w

(6.10.4)

/ V.
1/ v ^7

where σ is the morphism contracting Τ,ψ-.V —> W is the double cover ramified in D and

in the vertex vv0 of W, ψ is the rational map induced by ψΗ and undefined only at the

point u0 = σ(7), and π is the composite of the projection of the cone W from its vertex

onto the Veronese surface FA with the natural isomorphism F4 ^ P 2 . One easily computes

the canonical divisors of the varieties entering in (6.10.4), and from these computations,

which we omit, it follows that V is a Fano 3-fold with r — 2 and d = 1, with the lower

triangle in diagram (6.10.4) being none other than diagram (6.10.1). Hence we have

proved that the family of all Fano 3-folds with r = 2 and d = 1 is parametrized by the set

{D} of smooth divisors D e 10^(3)1.

Now let us show that every Fano 3-fold with r = 2 and d = 1 has a realization (b)

as in (4.2, iv). According to Proposition (6.12) below, the algebra R(V) = φ η > 0 / / ° ( Κ , {{")

is generated by

H° (V, s%) e H° (V, χη @H»(V
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We have natural inclusions:

a:S2H°(V, 3i)->H2(V, M2),

β : H° (V, M) ® H° (V, SK1) -> H° (V, W»),

where <$> denotes the symmetric product. From (1.9, ii) we get

Trivial computations show that the cokernels of a and β are 1-dimensional. Let JC3 G

H°(V, H2) be such that x3 $ Im a, and x4 G H°(V, H3) such that x 4 φ. Im β. Choosing

a basis x0, χγ, χ2 of H°(V, H), we have

R(V)~k[x0, ..., xtyrv,

where the grading in the polynomial ring k[x0, . . . , x 4 ] is defined by deg xi = 1 for

i = 0, 1,2, deg x 3 = 2 and deg x 4 = 3. By considerations of dimension the idealIv is

principal, and its generator is in 7^,. Indeed, in the exact sequence

0 _• Γν _> S2 (S3H° (Μ) φ (fP (3f) Θ kx3) 0 kxj > H° (3t«) -* 0

the middle term has dimension 64, and h°(H6) = 63 by (1.9, ii). Hence dim Ι γ = 1, and

any nonzero element F6(xQ, . . . , x4) G /£ generates the ideal Iv.

As in the case d = 2, setting

P(x0, x4) = Proj

with the grading indicated above, we get that F6(xQ, . . . , x4) = 0 is the equation of V in

the weighted projective space P(x0, . . . , x4). It is elementary to check that any smooth

hypersurface of degree 6 in ?(x0, . . . , x4), where deg χ. = 1 for / = 0, 1, 2, deg x3 = 2

and deg x4 = 3, is a Fano 3-fold of index 2 with d = 1. The proof is complete.

(6.11) COROLLARY. // V is a Fano 3-fold with r = 2 and d = 1 or 2, then

Pic V — Z, with Η as a generator.

PROOF. It is known that the Lefschetz theorem for the Picard group remains valid

for complete intersections of dimension > 3 in weighted projective space (I. V. Dolgacev,

unpublished; see also [16]). From this, and from the fact that V can be represented as a

hypersurface in weighted projective space, we get the required result.

In (6.9) and (6.10) we referred to the following result.

(6.12) PROPOSITION, (i) If V is a Fano 3-fold with r = 2 and d = 2, then the

graded k-algebra ®n>0H°(V, H") is generated by H°(V, H)®H°(V, H2).

(ii) If Vis a Fano 3-fold with r = 2 and d = 1, then the k-algebra ®n>0H°(V, H")

is generated by H°(V, H) ® H°(V, H2) ®H°(V, H 3).

PROOF. Let //G |HI be a smooth surface. Considering the exact sequence
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0-+Η0 (V, Μ'1'1) - ν Η° (V, Μη) -> Η° (Η, $Cn

H) -> 0

and arguing in the proof of Lemma (2.9), we reduce the proof of both assertions to the

surface Η and the sheaf | HH\- If X S | HH\ is a smooth elliptic curve, then by the same

method one reduces the proof to the curve X and the invertible sheaf \HX\-

Let us use the following particular case of a lemma of Castelnuovo (see [18],

Theorem 2).

(6.13) LEMMA. Let L be an invertible sheaf on an elliptic curve X such that

deg L > 2. If F is a coherent sheaf on X such that hl{f ® L"1) = 0, then the natural

map

is surjective.

Let us apply this lemma first of all to case (i). Set L = Hx and F = Η χ , with

m > 2 any integer. Then the conditions of the lemma are satisfied, and for m > 2 w e get

a surjection

This proves (i) of the proposition.

In case (ii) set L = Hx and F = Hx for m > 3. We get a surjection

-> H° (XT2).

From this it follows that for any η > 5 the space H°(HX) is spanned by the H°(UX) for

ρ < 4. It remains to show that H°(HX) is generated by H°(HX), H°(HX) and

H°(HX). This is easily deduced from the Riemann-Roch theorem. Indeed, let x0 & X be

the point such that Hx = 0x(xo)- Then the space H°(HX) is in a natural way identified

with the space of functions on X which are regular outside x0 and have a pole of order no

more than m at x0.

Using the Riemann-Roch theorem on X we can choose a basis for the spaces

H°(HX) with ρ < 4, as follows:

{\}CZH°(MX),

where u and υ are functions having at x0 poles of orders 2 and 3 respectively. It follows

from this that the functions 1, u, υ and u2, which have poles of different orders at * 0 , are

linearly independent. Hence H°{HX) is generated by the spaces H°{HX) for ρ < 3, which

proves (ii), and with it Proposition (6.12). This also completes the proof of Theorem (4.2).
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(6.14) R E M A R K . On the Fano 3-folds V with r = 2 and d = 1 or 2 there also exist,

as in the cases d > 3, 2-parameter families of "lines", that is, of curves Z C F such that

(H · Z) = 1, for Η & \H | a divisor. As in Proposition (5.1), one proves that this family is

parametrized by a smooth projective surface. It would be interesting to compute the

numerical invariants of these surfaces. It is possible that these invariants will turn out to

be useful in the birational theory of the corresponding varieties.

§7. Hyperelliptic Fano 3-folds

(7.1) DEFINITION. A Fano 3-fold V of index r = 1 will be said to be hyperelliptic

if its anticanonical map ψ _, is a morphism and is of degree deg ψ _. — 2.
ν ν ^ ν

Recall that, in the notation introduced above (see (1.8)), if r = 1 then Ky1 = H.

In the sequel we will write // for Κγι • If ΨΗ is a morphism, then by Bertini's theorem the

linear system Iff I contains a smooth irreducible (since Η is ample) surface H; that is, our

hypothesis (1.14) is satisfied. According to (2.2, ii), deg φΗ = 1 or 2. In this section we

will study the case deg ψΗ = 2. Let W denote the image <PH(V) of the hyperelliptic 3-fold

V; then W C Pg+1, where g + 1 = dim \Κγι\, and the condition of Lemma (2.8) is

satisfied; indeed, deg φΗ • deg W = (-Ky)
3 = 2g - 2 (see (1.6, i)). Hence deg W = g - 1

and deg W = codim W + 1. Recall that the integer g is called the genus of V.

(7.2) THEOREM. Let V be a hyperelliptic Fano variety, and let ψΗ :V —• W C

Pg+ J be the corresponding morphism of degree 2. Then W is nonsingular and V is uniquely

determined by the pair (W, D), where D C W is the ramification divisor of φ». The pair

(W, D) belongs to one of the following families (and if D is a smooth divisor, then for each

pair (W, D) there exists a Fano 3-fold V):

(i) W-P3, and D is a smooth hypersurface of degree 6; in this case V can be

realized alternatively as a smooth hypersurface of degree 6 in the weighted projective space

P(x0, . . - , * 4 ) , where deg x{ = 1 for / = 0,1 . . , 3 and deg x4 = 3.

(ii) W - V2 is a smooth quadric in P 4 and D&\ 0κ 2(4)Ι; that is, D = V2 η V4,

where V4 is a quartic of P 4 . In this case V can also be realized as a smooth complete

intersection in the weighted projective space P(x0, . . . , x5), where deg JC; = 1 for i = 0,

. . . , 4, and deg x5 = 2: V is the intersection of a quadric cone and a hypersurface of

degree 4:

(7.2.1)

Λ(*ο, ...,xs)=o.

(iii) In the notation ( 2 . 4 ) , W-P j ( £ ) is a rational scroll in the embedding

and only the following possibilities occur:

dj = d2 = d3 = 1; then W-P2 χ Ρ 1 in its Segre embedding, and D & |M4 ® L~2\,

where Μ - p f O p 2 ( l ) ® P | 0 p i ( l ) , and L- P%0 χ{\), ρ. denoting the projection of
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Ρ 2 χ Ρ 1 onto the ith factor for i = 1 and 2;

dl =2,d2=d3 = I; then WCP6, deg W = 4, and D G 10^(4)1;

d1 = d2 = d3 = 2; then W - Ρ 2 χ Ρ 1 and the embedding in P 8 is given by the

invertible sheaf Μ - P]fOp 2(l) ® p | 0 p l ( 2 ) , and D G |p*0 2 (4) | ; in this case the 2-fold V

is the product Η χ Ρ 1, with Η a smooth Del Pezzo surface with (KH • KH) = 2; that is, a

double plane with smooth ramification curve of degree 4.

(7.3) BEGINNING OF THE PROOF OF THEOREM (7.2). Let us prove first of all that

W is smooth. From the ampleness of Η it follows that φ :V —> W is a finite morphism,

and in particular each fiber of ψΗ is O-dimensional. Suppose that w G W is a singular

point; then, since Fis nonsingular, there exists only one point υ G Fsuch that φΗ(ν) = w.

Since we have assumed that W is singular, by (2.8) it can only be a cone with 0- or 1-

dimensional vertex. Consider first the case that w G W is an isolated singularity; that is,

W is a cone with O-dimensional vertex w. It follows from Lemma (2.8) that the base of

the cone must be either a nonsingular scroll or the Veronese surface F 4 C P 5 . If the base

of the cone is a scroll, then we can choose two planes Pv P2 C W, each of which contains

the vertex w, and maps onto a certain line, a fiber of the scroll, on projection from w. It

is clear that Px and P2 do not intersect outside w. Let g j and Q2 be the closures of the

open subsets φ~1(Ρ1 ~ w) a n d ί μ 1 ^ ~ w) in V. Then the surfaces Qx and Q2 only

intersect in the single point υ of V, where ψ (υ) = w. This is impossible on a smooth 3-

fold V.

If the base of the cone W is the Veronese surface F 4 , then W contains a hyperplane

section Ε which passes through the vertex w and projects to a double conic on F 4 — the

image of a double line in P 2 under the isomorphism P 2 — F4. Let Η - υ = ψ~^ι(Ε - w);

then the surface Η - υ, and hence also its closure Η = Η ~ υ, is a double on V; that is,

the invertible sheaf 0 v(ff) is divisible by 2 in Pic V, which contradicts the fact that V is

of index 1.

Now consider the case that TV is a cone with a 1-dimensional vertex Ζ <Z W. Accord-

ing to (2.8) the base of the cone W is a normal rational curve X of degree η in P". Here also

we can choose a hyperplane section Ε C W containing the vertex Z, and projecting from Ζ

into a point of X counted with multiplicity n. Arguing exactly as in the case of the cone

over the Veronese surface, we get that V must have index r = η > 1. This contradicts the

definition of hyperelliptic variety. Thus W cannot be a cone, and according to (2.8) it

must be a nonsingular variety.

Let us show that V is uniquely defined by the pair (W, D), where D C W is the

ramification divisor of the morphism ψΗ : V —* W. Let U = W - D. As in (6.10), it is

enough to show that Hl{U, β2)~ Ζ/2Ζ. Note that in our case from the smoothness of

D it follows that D is irreducible. Indeed, if W = P 3 or W = V2 C P 4 this is obvious,

since Pic W - Z. If W is a rational scroll, then W —> P 1 is a locally trivial fibration with

fiber P 2 , and Pic W — Ζ φ Ζ. We will show below that D cannot consist only of fibers of

W —»• P 1 . Hence if D is reducible, any two of its components have nontrivial intersection

in some fiber. This contradicts the smoothness of D.

From the irreducibility of D it follows that H°(U, Of;)-k*, and the Kummer exact
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sequence (6.10.3) gives the isomorphism Hl(U, μ 2 ) — Pic2£/. Since there does exist at

least one cover φ~^ι{1ί) —* U, we have Hl(U, μ2) Φ 0. On the other hand, Re U =

Pic W/Z · 0w(D) cannot have a subgroup of period 2 greater than Z/2Z, since Pic W ~ Ζ or

Ζ θ Ζ. Hence Hl{U, μ2) - Z/2Z, and the pair (W, D) determines V uniquely.

Recall that the ramification divisor is computed from the formula

Kv ~ <$x (KW + γ 0J · (7.3.1)

From this it follows that if W - P 3 then DG\0 3 (6) | ; if FV - F 2 C P 4 , then D €

I OK (4)1, and since Pic V2 — Pic P4 under the natural restriction map, D = V2 D F4 ,

with K4 a quartic hypersurface.

Thus in (i) and (ii) it remains only to justify the realization of V as weighted complete

intersections, (i) is analogous to the consideration in (6.9) of the double cover V —»P3

ramified in a surface of degree 4, and we will not dwell on it. One shows easily, incidentally,

that any cyclic cover of degree m of projective space P" ramified in a hypersurface F C P "

can be realized as a hypersurface of degree deg F in a weighted projective space of dimension

η + 1, where one coordinate has degree (l/m)deg F, and the remainder degree 1.

Consider the case (ii). V is nothing other than the restriction to the quadric Q2 of

the double cover Ζ —> Ρ 4 ramified in the quartic V4 C P4. Hence V can be given by a

system of equations (7.2.1), where the first equation is that of V2, and the second that of

Z.

The idea behind the proof of (iii) is that the condition that the divisor D should be

smooth, together with condition (7.3.1) above, puts extremely strong conditions on the

rational scroll W. We will use the following result.

(7.4) LEMMA (M. Reid, unpublished). Let X = ? j(E), where Ε = θ ^ = 1 0 j(<*,),

with d1>d2>-->dm>0. Suppose that dx > dm, and for every integer c with

dl>c>dm define Yc by Yc = P p l ( E c ) , where Ec = ®d.<c0pl(
di)- We identify Yc

with a subvariety of X by means of the embedding defined by the projection Ε —* Ec-

If a and b are integers such that H°(X, l\a ® Lb) Φ 0, then in order that every section

s Ε H°(X, Ma <8> Lb) has a zero of order > q on Yc it is necessary and sufficient that the

following inequality hold:

ac + b+(dl—c)(q—1)<0. (7.4.1)

PROOF. Let/:X—>-P ! be the structural morphism; then for a > 0 we have natural

isomorphisms

H°(X, Jfa ® %b)~H°(P\ f%(.»a ® £ 6 ))~//o(pi, sa% ® OP.(b)),

where S"E is the ath symmetric power of the sheaf E. By hypothesis H°(X, Ha ® Lb) Φ 0,

so that a > 0. Set Ε = E'c θ Ec, where E'c = ®d.>c0 Mi)- T h e n
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The subvariety Yc C X is defined by the vanishing of sections in //°(P1, E'c) C H°(X, M).

Hence in order that a section s G H°(P1, Sa(E) ® 0 iOO) has a zero of order > q on Yc

it is necessary and sufficient that s has degree > q in the terms in Ee'. In order that for

this to hold for every section s it is necessary and sufficient that the degree of every line

bundle occurring in the direct sum decomposition of Sl E'c ® 0 j (b) should be negative

for every i < q. This is equivalent to demanding that the greatest of these degrees

(occuring when i = q - 1) be negative; that is, that the inequality (7.4.1) should hold. The

lemma is proved.

(7.5) PROOF OF (7.2, iii). First of all we have to compute the canonical class Kx of

the scroll X = Ρ j(E)· This is easily computed from the following two exact sequences of

sheaves (see for example [14]):

0 -»- Ωχ/ρ. -> f'S ® ,Μ-χ -*Οχ->0,

(7.5.1)
0 _• /*ΩΡ. -> Ωχ ->· Ωχ/ρ. - ν 0,

where Ω^ denotes the sheaf of regular differentials on Z, and Ω^ , ρ ι the sheaf of relative

differentials. In the notation of (2.4) we have

In our case m — 3, X = W and Κγι = φ*Μ, where φ: V—> W is the morphism defined by

the anticanonical sheaf Ky1 · From (7.5.2) and (7.3.1) we get

(7.5.3)

where D C W is the ramification divisor of φ. Since W is nonsingular, d3 > 0 (see (2.5, i)).

First consider the case dt = d2 = d3. Then

Wc~Ps X P1, JimplOp.(1) ® plOpi (dj, Xmp\Or»(1).

From (7.5.3) we get

D e | ρ\θρι (4) ® plOpi (4 —2d 1 ) | .

Since D is an effective divisor, 4 - 2dt > 0; and since d1 > 0 there are only the two

possibilities, dj = 1 or dj = 2. Both of these cases can occur. Indeed, if dx — 1 or 2 one

sees easily that the linear system

is without fixed components and base points, and is not composed of a pencil. Hence by

Bertini's theorem almost all divisors D in this linear system are smooth and irreducible.

Since 0 w(P) is divisible by 2 in Pic W, there exists a smooth double cover V —*• W

ramified in D. It is clear that V is a hyperelliptic Fano 3-fold, and, as we have seen earlier,

V is uniquely determined by the divisor D.

Thus the cases d1 = d2 = d3 = 1 and dx = d2 = d3 = 2 of (7.2, iii) have been

completely treated.
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Now consider the case when άλ > d3. We use Lemma (7.4). Since the divisor D

must be smooth it has to be irreducible, as has been shown. Hence the linear system

\4M - 2(c?j + d2 + d3 - 2)L\ cannot have fixed components, and in particular the

surface Yd (in the notation of (7.4)) cannot be a fixed component. Similarly, since D

is smooth, it cannot contain Yd with multiplicity q > 2. Substituting a = 4, b = 4 —

ΊΣ\άρ c = d2 and q = 1 in (7.4.1), and then the same values for a and b, with c = d3

and q = 2, we find that the linear system \4M + 2(2 - d1 - d2 - d3)L |, which contains a

smooth divisor D, imposes the system of inequalities

(7.5.4)

It is easy to find all integer solutions of the system (7.5.4) which satisfy dv > d2 >

d3 > 0. There are just 3:

( 1 , 1 , 1 ) , ( 2 , 1 , 1 ) , ( 2 , 2 , 2 ) .

Among these only (2, 1, 1) satisfies dx > d3. Obviously Μ4 ® L~4 is divisible by 2 in

Re W, and it remains only to show that in the case dx = 2, d2 = d3 = 1 the linear system

IM4 ® L~4\ contains a smooth divisor. Consider the sheaf Μ ® i . " 1 . We have

Hence Μ ® L" 1 is generated by its global sections, and defines a birational morphism

^M® l~l " ^ —* ^ 3 w h i c n contracts the surface Yd — Ρ 1 χ Ρ 1 onto some line in P 3 .

It follows that the linear system |M4 ® L 4 | is without fixed components and base points,

and by Bertini's theorem almost all the divisors in it are smooth irreducible varieties. Note

that φ^® i_-i(D) is a surface of degree 4, having singularities at its points of intersection

with the line ψ _ΛΥα~)· Hence the sheaf φ*(Μ ® L " 1 ) defines a morphism F—> P 3

having degree 2 at the general point. The quartic φ _j(£0 C Ρ 3 is its ramification

divisor. Theorem (7.2) is proved in full.

(7.6) COROLLARY. // V is a hyperelliptic Fano 3-fold, then Pic V - Ζ if and only

ifW-P3orW~V2 C P 4 .

PROOF. If W - P 3 or W - V2 C P 4 , then by Theorem (7.2) V is a complete

intersection in a weighted projective space, and hence Pic V-Z. In all the remaining cases

Pic W — Ζ θ Ζ, and since ^ : Κ —>• W induces an inclusion φ* : Pic W —>• Pic V, we have

Pic V Φ Ζ. The proof is complete.
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