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Amazing Predictions

Let nd = # rational curves of degree d on the quintic 3-fold V ⊆ P
4.

In 1991, Candelas, de la Ossa, Green and Parkes predicted that:

n1 = 2875

n2 = 609250

n3 = 317206375

n10 = 70428 81649 78454 68611 34882 49750

and formulas for nd for all d (to be give later).

n1 = 2875 was known in the 19th century.

Sheldon Katz proved n2 = 609250 in 1986.

In 1991, the predictions for n ≥ 3 were mind-blowing.
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Mirror Symmetry

The Basic Idea

Enumerative geometry on quintic 3-fold V (hard)

←→
A superconformal field theory (SCFT) on V

←→
A SCFT on the quintic mirror V ◦

←→
Hodge theory on V ◦ (easy)

A SCFT is a String Theory

String theory is 10 dimensional: 4 dimensions for the space-time

of general relativity and 6 dimensions for the quantum theory.

The 6-dimensional quantum piece is a compact manifold V , size ~.

Physics⇒ V is complex with trivial canonical bundle and b1 = 0.

Thus V is a Calabi-Yau 3-fold.
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A and B Models

The SCFT on V has twisted versions called the A-model and the

B-model that depend on two types of parameters:

A-model parameters are Kähler moduli that encode the metric

on V .

B-model parameters are complex moduli that encode the complex

structure of V .

The number of parameters of each type is determined by the Hodge

numbers of V :

hpq(V ) = dim Hq(V ,Ω
p
V ).

Specifically:

h11(V ) = the number of Kähler moduli parameters.

h21(V ) = the number of complex moduli parameters.
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The Hodge Diamond

The Hodge numbers hpq = hpq(V ) of a smooth projective 3-fold V are

often represented in the Hodge diamond shown on the left:

h33

h32 h23

h31 h22 h13

h30 h21 h12 h03

h20 h11 h02

h10 h01

h00

1

0 0

0 h11 0

1 h21 h21 1

0 h11 0

0 0
1

The Hodge diamond of a Calabi-Yau 3-fold is shown on the right. Note

that this Hodge diamond is completely determined by

h11 = h11(V ) = #Kähler parameters

h21 = h21(V ) = # complex parameters.
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Mirror Symmetry

In mirror symmetry, a given a family of Calabi-Yau 3-folds V has a

mirror family of Calabi-Yau 3-folds V ◦ such that the corresponding

SCFTs are the same via an isomorphism that does two things:

Interchanges the A- and B-models.

Interchanges Kähler and complex moduli.

In particular, V and V ◦ should satisfy

h11(V ◦) = h21(V ) and h21(V ◦) = h11(V ).

It follows that

The Hodge diamond of V is the mirror image of

the Hodge diamond of V ◦ about the 45◦ line

through the center of the diamond.

This is the origin of the name “mirror symmetry”.
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Picture for the Quintic 3-Fold V and its Mirror V ◦

1
0 0

0 1 0

1 101 101 1
0 1 0

0 0
1

1
0 0

0 101 0

1 1 1 1
0 101 0

0 0
1

V V ◦
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The Quintic Mirror V ◦

In P
4, start with

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + ψ x1x2x3x4x5 = 0

where ψ 6= 0 and ψ5 6= −55.

Take the quotient under the action of

G =
{
(ζa1 , . . . , ζa5) ∈ Z

5
5

∣∣ ∑
i ai ≡ 0 mod 5

}
/Z5,

where ζ = e2πi/5. Note that |G| = 125.

Finally, V ◦ is a crepant resolution of singularities.

Complex Moduli of V ◦

Because of the action by roots of unity on the original equation,

x = ψ−5

parametrizes the complex moduli of V ◦.
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3-Point Correlation Functions

Experiments based on the Standard Model indicate the existence of 3

generations of particles, with interactions described by 3-point functions.

A-Model 3-Point Function on the Quintic 3-Fold V

Let q be the Kähler moduli parameter on V . Then the hyperplane class

H ∈ H1,1(V ) gives the three point function

〈H,H,H〉 =

∫

V

H ∧ H ∧ H +

∞∑

d=1

ndd3 qd

1− qd
= 5 +

∞∑

d=1

ndd3 qd

1− qd
,

The infinite sum represents world sheet non-perturbative corrections.

B-Model 3-Point Function on the Quintic Mirror V ◦

Let Ω be holomorphic 3-form on V ◦ and set θ = x d
dx , where x is the

complex moduli parameter. Then the Yukawa coupling is

Y = 〈θ, θ, θ〉 =

∫

V

Ω ∧ ∇θ∇θ∇θ(Ω),

where ∇θ is the Gauss-Manin connection. No corrections!
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A Mirror Theorem

Mirror symmetry gives a SCFT isomorphism that maps the A-model

of V to the B-model of V ◦. This induces an equality of their 3-point

functions via the mirror map q = q(x). After we do two things:

Compute the mirror map q = q(x) explicitly, and

Compute the Yukawa coupling Y = 〈θ, θ, θ〉 explicilty,

we will get the following theorem:

Mirror Theorem for Quintic 3-Fold

For the mirror map

q(x) = −x exp
(

5
y0(x)

∑∞
n=1

(5n)!
(n!)5

[∑5n
j=n+1

1
j

]
(−1)nxn

)
,

where y0(x) =
∑∞

n=0
(5n)!
(n!)5 (−1)nxn, we have

5 +
∞∑

d=1

nd d3 qd

1− qd
=

5

(1 + 55x)

1

y0(x)2

(q

x

dx

dq

)3
.
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The Picard-Fuchs Equation

Since V ◦ has only one complex moduli parameter x , the periods

y =
∫
γ Ω of the 3-form Ω satisfy the Picard-Fuchs equation, which by

standard methods is computed to be

0 =
(

x
d

dx

)4
y +

2 · 55x

1 + 55x

(
x

d

dx

)3
y +

7 · 54x

1 + 55x

(
x

d

dx

)2
y

+
2 · 54x

1 + 55x

(
x

d

dx

)
y +

24 · 5x

1 + 55x
y .

This enables us to compute the Gauss-Manin connection ∇θ, θ = x d
dx ,

with the result that Y =
∫

V
Ω ∧∇θ∇θ∇θ(Ω) satisfies

(
x

d

dx

)
Y =

−55x

1 + 55x
Y .

This implies Y =
c

1 + 55x
for some constant c to be determined.
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The Mirror Map

The Picard-Fuchs equation is hypergeometric in nature, which means

that one can write down some explicit solutions, including

y0(x) =
∞∑

n=0

(5n)!
(n!)5 (−1)nxn

y1(x) = y0(x) log(−x) + 5

∞∑

n=1

(5n)!

(n!)5

[ 5n∑

j=n+1

1

j

]
(−1)nxn.

Here, y0 is the only holomorphic solution (up to constant multiple),

while y1 has a logarithmic singularity at x = 0. Then:

The Mirror Map

q(x) = ey1(x)/y0(x) = −x exp
( 5

y0(x)

∞∑

n=1

(5n)!

(n!)5

[ 5n∑

j=n+1

1

j

]
(−1)nxn

)
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Remaining Topics

There is a more to say – mirror symmetry is a rich topic.

In the remainder of the talk, I will focus on four things:

Gromov-Witten invariants and rigorous nd

Givental’s version of the Mirror Theorem

Toric varieties and reflexive polytopes

Experimental evidence for string theory and mirror symmetry
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Gromov-Witten Invariants and Rigorous nd

The definition of nd as the number of rational curves of degree d on V

is problematic. The finiteness is the Clemens Conjecture, which

currently is known only for d ≤ 10.

The modern approach defines the Gromov-Witten invariants Nd of the

quintic 3-fold V using moduli of stable maps and virtual fundamental

classes (due to Kontsevich). One then defines nd via

Nd =
∑

k |d

n d
k
k−3.

What is Known

For n ≤ 9, nd is the number of rational curves of degree d on V .

For n = 10, the number of degree 10 rational curves on V is

70428 81649 78454 68611 34882 49750︸ ︷︷ ︸
n10

−6×17,601,000.

Mirror symmetry assumes P
4 has a generic complex structure. It isn’t!
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Givental Mirror Theorem

If H ∈ H2(P4) is the hyperplane class, we get two cohomology-valued

functions:

JV = etH5H
(

1 +
∑

d

Nd edt d

5
H2 − 2 Nd edt 1

5
H3

)

IV = etH5H
∑

d

edt

∏5d
m=1(5H + m)

∏d
m=1(H + m)5

Givental’s Mirror Theorem

JV equals a multiple of IV after a suitable change of variables.

No quintic mirror! No Picard-Fuchs equation!
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Missing Mirrors and Reflexive Polytopes

In the early days of mirror symmetry, physicists used weighted

projective spaces to create lots of Calabi-Yau 3-folds V for their

theories. Very often, these 3-folds had a mirror V ◦, such as the case

of the quintic 3-fold.

But sometimes the mirror seemed to be missing. Where were the

missing mirrors?

In January 1993, Witten posted Phases of N = 2 theories in two

dimensions, which used toric varieties to construct gauged linear

sigma models.

In October 1993, Batyrev posted Dual polyhedra and mirror

symmetry for Calabi-Yau hypersurfaces in toric varieties, which

showed that reflexive polytopes give mirror pairs. This provided

the framework needed to find the missing mirrors.
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Reflexive Polytopes

A lattice polytope P ⊆ R
n is reflexive if it contains the origin as an

interior point and its dual

P◦ = {u ∈ R
n | u ·m ≥ −1 for all m ∈ P}

is again a lattice polytope. Then P◦ is reflexive, so that reflexive

polytope come in pairs.

y

x

z

P

y

x

z

P°
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Calabi-Yau Threefolds

A lattice polytope P gives the toric variety XP with an ample divisor DP .

When P is reflexive, DP = −KP = anticanonical divisor of XP .

Hence XP is Gorenstein Fano. It is then easy to show that a general

member V̂ of the linear system |−KP | is Calabi-Yau (usually singular).

Since P◦ is reflexive, XP◦ is Gorenstein Fano and the general member

V̂ ◦ ∈ |−KP◦ | is Calabi-Yau. Thus a reflexive polytope gives a pair V̂ , V̂ ◦

of Calabi-Yau varieties (possibly singular).

In the 3-dimensional case, we have the following theorem of Batyrev.

Theorem (Baytrev 1993)

If P is a 4-dimensional reflexive polytope, then normal fans of P and

P◦ have refinements Σ and Σ◦ such that general members V ∈ |−KΣ|
and V ◦ ∈ |−KΣ◦ | are smooth Calabi-Yau 3-folds that satisfy

h11(V ◦) = h21(V ) and h21(V ◦) = h11(V ).

David A. Cox (Amherst College) Mirror Symmetry Feb 3, 2020 18 / 20



Missing Mirrors

In 1995, Candelas, de la Ossa and Katz used 4-dimensional reflexive

polytopes to supply the missing mirrors. There are 473,800,776

4-dimensional reflexive polytopes, which gives a lot of mirror pairs.

Plot χ = 2(h11 − h21) (horizontal) versus h11 + h21 (vertical) for all

known mirror pairs (including those constructed by non-toric methods):
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χ = topological Euler

characteristic

= central charge of the

Virasoro algebra

= ±2× number of

fermion generations
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Conclusion

String theory is still conjectural in physics. A proper experiment

would require a particle accelerator the size of the solar system.

Instead, physicists test string theory against the reality of

mathematics. Their theories make mathematical predictions, and

by proving these predictions to be correct, mathematicians

provide experimental confirmation of string theory.

String theory and mirror symmetry have evolved considerably

since the ideas described in this lecture. You will learn about

some these new developments in the reading seminar!
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