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Introduction

first of all, let me fix my terminology and set-up. I will
always be working over an algebraically closed ground field k. We

will be concerned almost entirely with projective varieties over Xk

{although many of our results generalize immediately to arbitrary
projective schemes). By a projective variety, I will understand
a topological space X all of whose points are closed, plus a sheaf
SX of k«valuea functions on X isomorphic to ;ome suﬁvariety of B®
for some n. By a subvariety ofimn, I will mean the subset
X © P(x) defined by some homogeneous prime ideal @ c k[xo,---,xn},
with its Zariski-topology and with the sheaf SX of functions from X
to k induced locally by polynomials in the affine coordinates. Note
that our varieties have only k-rational points — no generic points.
In this, we depart slightly from the language of schemes., Note too
that a projective variety can be isomorphic to many different
subvarieties of . an isomorphism of X with a subvariety of "
will be called an immersion of X in Ep.

Let me begin with an elementary but somewhat startling result:
Definition: For all 4, the d-ple immersion of B is the morphism:

n
54 IF-——>I§, N = ;d) -1

given by:



- 32 -

D. Mumford
o) o (M)
Bd(ao""’an) = (a 20 %,a )
where a(o),-.-,a(n) runs through the (n+l)-tuples a = (ao,---,an),
such that oy >0, Eai = d, and
n a
aa = TT aii .
i=0

Theorem 1: Let X C P be a subvariety, and let do be the degree of X,

For all d > do, consider the new projective embedding:

8
xep® —3 5,
Then the subvariety of IN so obtained is an intersection of quadrics.*

Proof: Let r = dim X. For all linear spaces L of dimension
n-r-2, disjoint from X, let HL be the join of X and L, i.e., the
locus of lines joining X and L. HL is a hypersurface of degree < do'

Then it is easy to see that

x= [ =.

LMt=g
In fact, if x € P'-X, let

. - {x} — »!

*When we talk about an r-dimensional} subvariety X of B being an
intersection of quadrics, we never mean an intersection of only
n-r quadrics (called usually a “complete intersection"). We just
mean that there is a large set of quadrics Q , a € 8, such that
x==(\Qa. Of course, S can be assumed finite.
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be projection with center x, Then 7(X) is an r-dimensional subvariety

of P™L so there exists a linear subspace M C -1 Aigjoint from

m(X)} of dimension (n-1)-r-1. Choose L such that m(L) = M, Then

x(HL

Thus X is an intersection of hypersurfaces of degree < do.
Therefore, for all 4 > do, X is the intersection of those hypersurfaces
of degree d that contain it. But by definition of Sq» if Hl c

is a hypersurface of degree 4, there is a hyperplane H2 < IPN
such that
-1

H = g "(H

1 d 2)'

Therefore, there is a linear space K C IPN such that X = sgl(K), or

sd(X) =KnNn sd(JPn).

To prove the theorem, it remains to check that s d( IPn) is an

intersection of quadrics., This follows from the remark:

For all bo, se. ’bN’
(*)
k

o i{m ;
such that b, = aa( ) > (1) 4 o(3) o o(x) (#)

There exists-a _,+-+,a bibj = b b‘ whenever

We leave this to the reader.
QED
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I want to make 2 remarks. Suppose by the rank r of quadric
we mean the rank of the corresponding symmetric matrix. Then the
proof of this theorem shows that X is actually an intersection of

quadriecs of rank ¢ 4, Suppose we make the definition:

Definition: A subvariety X C " is ideal-theoretically an

intersection of hypersurfaces H o--,Hm if set-~theoretically:

1’

= cen
X Hl n Hm

and moreover, every x € X has an affine open neighborhood U C "
such that the ideal I{(X) of X N U € U is generated by the affine

equations fl,-o-,fn of H ...,Hn_

l!
Lemma: If X is non-singular, then X is ideal~theoretically the

-

l’
n

1) X = H,

. . 1
i=1

intersections of H -o-,Hn if and only if

2) for all x € X,

n
T .= N T
x,X i=1 x,H1

(the intersection being taken in T, pn i here T
E
means Zariski tangent space).

We leave the proof to the reader, Using this, we can then prove a
variant of Theorem 1 to the effect that if X is non-singular, then

sd(x) is ideal-theoretically an intersection of quadrics.
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81. The cohomological method.

In setting up the concepts of linear systems and ampleness and
in the construction of projective embeddings, we have to make a
choice between 3 equivalent forralations — that of divisor classes,
of line bundles, or of invertible sheaves. It is well known that
on any variety X, the group of (Cartier) divisors mod linear
equivalence, the group of line bundles and the dgroup of invertible
sheaves are all canonically isomorphic. For our purposes, it is most

convenient to use the sheaves:

Definition: An invertible sheaf L on X is a sheaf of Sx-modules,

locally isomorphic to @x itself.

Two such sheaves L,,L, can be tensored to form a 5rd Ll®Lg; Gx

itself is an invertible sheaf forming a unit for this multiplication;
and for any L, Lt Hom(L,@X) is an inverse since 18L™) = 7 ler = &X.
The s~t of all invertible sheaves, mod isomorphisms, thus forms an
abelian group, called Pic(X),

T(L) or H°(L) will be the vector space of global sections of L.
If s € I(L), and x € X, then via an isomorphism L]U = leU in some

neighborhood U of x%, we can find a value s(x); and the conditions

s(x) = 0 or s(x) ¥ 0 are independent of this local isomorphism.
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Definition: The base points of T(L) are the points x € X such that

for all s € (L), s(x) = oO.

If T(L) is base point free, L defines a canonical morphism into
projective space. Let IP (T{L)) be the projective space of hyperplanes

in T(L). Then define
bt X — P (T(L))

by bL(x) = {s € F(L)‘s(x) = 0}.

This is easily checked to be a morphism. More explicitly, let

8 -++,8  be a basis of T(1). Define:

O)sl)

éL: X ——> 2"

by AL(x) = pt. with homog. coord.‘(so(x),s (x),---,sn(x)).

Definition: L is very ample if (L) is base point free and ﬁL is
an immersion (= an isomorphism of X with ﬁL(x)). L is ample if L?

is very ample for some n > 1.

Write I for I (T(L)) and suppose L is very ample. Then the
vector space T'(L) is canonically isomorphic to the space of homogeneous

coordinate functions on the projective space I, i.e,

r(r) = T(®w 6,(1)).
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And the kR symmetric power of T(L), which we write SkT(L), is
canonically isomorphic to the space of homogeneous polynomials of

degree k in the homogeneous coordinates on P, i.e,
k ~
s T(L) £ T(m, em(k)).

Thus the vector space of homogeneous polynomials of degrée k that

vanish on ¢L(X) is nothing but the kernel of the canonical map:
SkI‘(L) — I‘(Lk).

A strengthening of the assertion tnat éL(X) is an intersection of
quadrics is that its homogeneous ideal is generated by quadrics.

This is the same as asking whether the canonical map:
sK'er(L) ® Ker[S“I‘(L)—-; P(L‘)] — Ker[Skl"(L) — T(LK)]

is surjective for all k > 2.

Our basic definition is this:
Definition: Let &, be coherent sheaves on X, Define
GK(3,Q), A (3,6) as the kernel and cokernel of the canonical map o:

0 —» R(3,5) —» T(3)8T(g) —=> T(z85) —> & (3,56) —> o.

Thus if L is a very ample invertible sheaf, & (L,L) is the space
(a) of alternating elements of T(L)®T(L), and (b) of the quadratic

relations holding on éi(X).
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Definition: Let L be an ample sheaf on X. Then L is normally

generated if

@k

(L) —— (L")

is surjective, all k » 1.

This is clearly equivalent to the condition .&(L%,17) = (0),
i,j > 1. Note that if L is normally generated then L is necessarily

very ample too! In fact, consider the 2 morphisms:

HT(L"))

The n-ple embedding of the projective space P(V) of hyperplanes for

any vector space V is canonically a map

st BV) —> P (s™W).

Moreover, via the surjection

s'T(L) —————s (L"),

we can identify B T(L")) canonically with a linear subspace of

®(s"T(L)). Putting this together, we get a diagram:
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e (T(L"))
AN
X =s"r(1))
‘51,\; (/:’
®T(L))

It is easy to check that this commutee., Now for large n, L” is very
ample, hence ﬁLn is an immersion, so it follows from the diagram that

éL is an immersion too, i.e., L is very ample,

Definition: Let L be a normally generated invertible sheaf, Then L

is normally presenta2d if one of the 4 equivalent conditions holds:

(a) Ker[SQT‘(L)-—-—)I‘(La)] & I‘(Lk"g) oy Ker[skr(L)-—ar(Lk)]

is surjective, all k > 2

(8) o I[R(x,L) ® NL)*%1 —— ker[I(1)®* — 1(1¥)]
1¢icign

is surjective, all k > 2,

The above homomorphism maps an element a®b in the (i,j)th factor
to the element of I‘(L)®k whose i™" and jth components are

determined by a, and the rest by b.

(c) Tt e &(z,1) @ T(z3 ) —s & (zi,19)

is surjective, if i,j > 1.
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Here, if fa® ¢ ®(L,L) € T(L) & [(L), and ¢ € T(L™™1),
d € I’(LJ-l), then we map ¢ ® (Zai®bi) ® d to

E(aic) ® (bid) € I‘(Li) ® I‘(Lj).

(0) & (t1,27) & T(1¥) ——s ] (£},27%)

is surjective if i,j,k > 1.

It is not so obvious that all these properties are equivalent!
Thus to see (A)<&=3 (B), note that & (L,L) < I'(L) @ T(L) contains

the alternating tensors, so the image of

& [K(1,1) & I‘(L)k"2

1{i<j<n

]

in l'(L)k contains all the alternating tensors, So the image equals
Ker(I‘(L)k — I‘(Lk)) if and only if its image in Skl"(L) equals
Ker(SkI‘(L) ——->T(Lk)). But its image in SkI‘(L) is the same as the
image of the map in {(Aa).

(¢) ==> (D) follows immediately using normal generation and

{(D)== (C) follows by factoring the map in (C) thus:

rt ) o Q (1,1) @ T(1i™h) — i) eR(r,1d) — R (E,1).

Next, to prove (C)==> (B), factor I’(L)k ey I'(Lk) as follows:

To prove (B), it is enough to show that @{&(L,L)@I‘(L)k-e] goes onto
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the kernel at each stage of this sequence, Thus it is enough if

I‘(L)l—l®5§.(L,L) is mapped onto Ker[T(1') @ I'(1) —— I‘(Llﬂ')]. This

last space is & (L*,L), so this ontoness is part of (c).

Finally, to prove (B)==» (C), factor 1‘(]:.)k e, I‘(Lk) when k = i+j,
as follows:

I’(L)i+j On;o I‘(Li) ® F(LJ) on:.o F(Li+'j),

It follows from normal generation that we get a surjection:
Ker(Bea) —2BE2 o Rer(B) = @(Li,L‘J).

i+j~2} . The image of

But Ker(# c) is generated by o[R&(L,L) ® I'(L)
this last space in I‘(Li)er(Lj) is tune same as the image of

r(Li”l) ek (L,L) ® r(Lj'l), so {C) follows.

This at least gives us a nice definition to work with! It seems
easier to prove things about 4 first, and then to use these results

to obtain things about & . our first result is:

Theorem 2 {Generalized lemma of Castelnuovo): Suppose L is an ample
invertible sheaf on a variety X such that (L) has no base points.

Suppose ¥ is a coherent sheaf on X such that

Hi(8 ® L“i) = (0), i> 1.

Then (a) B}(3 ® 1) = (0) if i+j» o0, i3 1

and (p)8 (3o, 1) = (0), i

O
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To motivate this, look at the case of Castelnuovo's original
iewna: X = non-singular curve, Ul , b  divisors on X, ¥ = QX(%),

L = @X(m), In classical language:

(Z(L) has no - 1 Ul is base poinﬁ)
ase points def free

<H1(3 ® L-l) - (oEin (\\1 -V is non-speciai)

Translating the conclusion, we find:
_ . . _ the minimal sum
(/S(a,m*(o)) = (;uuzt_ e )

Proof of Theorem 2: Use induction on dim(Supp ). If

dim(Supp ¥) = 0, then choose s € T(L) such that s(x) # O for all

x € Supp{#). Then

I(3) o (six) = > (3 oL
xk

is an isomorphism, so certainly

r(3) ® T(L}) —— T(3 @ L%
k

is surjective. Therefore .J (3’Ll) = {0}. Also, all groups
H (¥ ® anything), i > 1, vanish.

Now suppose we are given an &, and we have proven the theorem

for all &*’s with dim(Supp & ) < dim(Supp &). I claim that there
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is an element s € T'(L) sufficiently “"generic" so that for every x € X,
if we choose an isomorphism L{U = QX!U near x, so that s can be
considered as a function, then s is not a O-divisor in the stalk

3x of &, To see, recall that by the Noetherian decomposition
theorems, for any cocherent &, there is a finite set of

irreducible subsets Z,,---,2 € Supp( &) (including the components

l’
of Supp(d), but possibly including some "embedded components" too)

such that the support of any element
a € I'(u,d)

is a union of some of the sets U N Zi' For each i, not all sections
s € T(L) vanish identically on Zi' Therefore there is an element

s € T(L) not identically zero on any z2,. Ifa € T(u,¥), then s must
be non-zero at at least one point x of Supp(a), hence

a ® s € T(U, #L) is not zero near x. Thus s has the required
property and the map & —> & ® L, defined by o +—>a ® s, is
injective.

1

It is more convenient to use the map & ® L7~ —— &, defined

by o —3>a®s. Let 3* pe the cokernel. Then for all i, we have

exact sequences:

I -] -3 o~ -1
(*) 00—t 2 gert L3 ert —o.

Note that dim{Supp F*) < dim{supp &). 1In fact, for all i, ®s is

an isomorphism on almost all of Zi’ hence Zi ¢ Supp(S*). There fore
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every component of Supp(s*) is a proper closed subset of some

component of Supp(¥). By (*)i, we get an exact sequence:

Hi(asL-i) N Hi(8*®L"1) ———a»Hi+l(3®L'i'l), iy
i Il
(o) (o)
hence Hi(3*®L-i) = (0). Thus the hypothesis of the theorem is valid
for 3*, so by our induction hypothesis, so is the conclusion. Going
back from ¥* to &, use the exact sequence:
-3

~141 ~i+1)

Hi(3®L )——-——-)Hi(3®L )—-—9!1(3 ®L

The 15¢ group is {0) by the hypothesis on &; the Brd group is (0)

by the theorem for ¥. so the Qnd is (0). Replacing ¥by & € L,

we continue in this way and prove by induction on i+j that
i J . .
H (g e®L')=(0), i+j> 0, i 1.

As for the £’s, look at the diagram of sclid arrows:

o -—a,r‘(m’l} ® T(1) -—->r(3) ® I'(L) -->1‘(8*j ® (L) ——>0

////////// ) J

r(sL) ———> T(F*CL) =3 O

M2

v L4

,L) £ 4(3,1) ——> 8 (3,1) ——0
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It has exact rows since H1(3®L“l) = Hl(s) = (0}, and exact columns
by definition. Define the dotted arrow by o b= &3, Then the
shaded triangle commutes, which proves that the map o is zero!
Since 4 (¥,L) = (O); it follows that .&£ (3,L) = (0). As we may

‘replace ¥ by 3 ® LY, i > 1, the rest of (b) follows too.
CED

A useful remark is that a close examination of this proof shows
a slightly more precise result. Namely, that if n = dim(Suép ¥);
and if sQ,-»--,sn € I'(L) are sufficiently "generic" eléments, then
in fact T(3®L) is spanned by the images éf (%) : (si‘k), for

0<ign.

Theorem 3: Let L be an ample invertible sheaf on an n~dimensional .

variety X. Suppose [{L) has no base points and

H"(Lj) = (o), i>»1, 3> 1.
: i j . . .
then .§(L',L7) = (0) if i> n+l, j3 1.
In particular, if i > n+l, 1t is ample with normal generation, hence
very ample.

Proof: Apply Theorem 2 to & = Ln+1. It follows that

A(1h,L) = (0), if i > n+l. Explicitly rizt) e (L) — ri*)
is surjective if i > n+l. Composing these maps,
I‘(Li) ® I‘(L)J ~—-———>I‘(Li+j) is surjective if i > n+l. Therefore

I‘(Li) ® I‘(Lj) —_— I‘(Li+j) is surjective too, if i > n+l.
QED
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Next we want to prove similar results about G{ . We need the
preliminary result:
H-lemma: If O 31 32 33 >0 is an exact sequence

of coherent sheaves, and T(32) ———>T(83) is surjective —— e.g., if

Hl(sl) = (0) — then for all invertible sheaves L there is an exact

sequence:

0 —>& (3,L) —>R(3,,L) —R(3,,1)—>& (3,,1)—>4(3,,L)—A4 (3,,1).

Also, even if r(ag) ——e»T(GB) is not surjective, the 15t 2 terms

form an exact sequence,

Proof: Look at the diagram of solid arrows:

0 —> R (3,,L) ~--mm > & (3,,L) =~=mm > &(3;,1) -~
AN
v ' 4 ' 4 \
0 —> T(¥,)8r(L) —> T(3,)8r(L) —> I(FPr(L) ——> 0/
J e R et e e et e oy § e o - g
-7 v v ~
[0 —s r(30L) —> r(3e) —s T(301)
\ v v 4
~
- J'?-x (3151‘) """ > ./3(3231‘) """ > /'S (3331")
v v l
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The rows and columns are exact, by hypothesis. By the so-called
"gerpent” argument, you get an exact sequence indicated by the

dotted arrows. QED

We apply this to prove:
Theorem 4: Let L and M be ample invertible sheaves on a projective
variety X, let & be a coherent sheaf on X, and assume:
i} T(n), T(M) have no base points,
i) w9 e tend) = (o) if 1,3 > 1.
Then the natural map:
K (&,L) ® T(M) ——> K(F E M, L}

is surjective,
[One can also check that the hypotheses imply that
k -ig. =3 . . s . .
H (L 7eM °) = (0) if X > 1, itk » 0, j+k > 0, i+j+k > ~1.

Therefore the hypotheses are stable under the substitution
Fr——> 3O®Lor ¥ ®N, However, we may as well stick to the
simplest case of the theorem, ]

25225: As in Theorem 2, we use induction on dim(supp %).

If dim(Supp ¥) = O, we get the diagram:
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1 o 0
v
R (3,L) ® (M) ——— K (384, L) g ®K(3,L)
d
I
N2
T(3)®T(L)®T(M) ——meme———, T'(F®M)OT(L) z T(#) ® (L)
8
T(3eL) ola{r(m) —s T(F ® L ® M) z I‘(Z;@L)
Y

where the isomorphisms P and v are obtained by choosing a section
¢ € I'(M) non-zero at all poants of Supp(¥), hence an isomorphism
of M and @X in a neighborhood or Supp(#). 8 and v induce an
isomorphism o. But in the map on the top row, ifpe (R (F,L), then
pes e A (3.l )® I"'(M) is taken to p& ® (3,L), so this map is sur-
jective, This proves, the theorem svhen dim(Supp 3- y=0.

In the general case, choose a good section s € I'(M) as in the
proof of Theorem 2 so as to obtain an exact sequence:

1_%s 3 F* > 0

0 —3 F O M

with dim(Supp ¥ ) < dim(Supp ). We obtain exact sequences:
i ti-Y ey ten™dy) — it (eter o)) — g+ (gertenIty,

The lSt and 3rd groups are O by hypothesis, so the 2nd is also. This
shows that ¥ satisfies the hypotheses of the theorem too. So by
the induction hypothesis, ® (3°,L) ® T(4) —> 59\(3*6?&\5, L) is

sur jective. Moreover, by Castelnuovo's lemma (Theorem 2), applied to



- 49 -

D, Mumford

-1 1)

% ® M~ ana L, S(¥em = (0) and Hl(3 ® M"l) = (0},

Applying the 6-lemma, we deduce that:
o —>R(38n11) —s R (5,1) —> R (F*,1) —> 0

is exact. Now consider the diagram of solid arrows:

0 —> R (2 enlL) e r(m) —sR(s,1)8 T(M)—>Q (3*,1)® T(M)—>0

l //////////// YJ’

0~ 1 (3‘8 9L)—~">G{(3m L)

If you define the dotted arrow by at——>a & g, it is clear that
the shaded triangle commutes, Therefore Im{a) < Im(8) and using

rhe surjectivity of v, the surjectivity of B follows.
QED

To apply this Theorem, we need another result:

Proposition: Let & Dbe a coherent sheaf, and L, M invertible
sheaves on X, If
a) R(3,1L) ¢ (M) —> K (F @M, L) is surjective

b) .8(3,1) = (0),

[

then
c) K(3,M) @ TI(L) —> R (F &1L, M) is surjective.

Proof: Use the diagram:
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° |
ML) ® K (3,4) —I—> R (L €3, n)

|

0 —>  (L,3)80(M) —s T(L)OT(3)@r(M) —L— T(1L8F) ® (M)

k | |

0 —> (L, 3 ® M)——> (L) ® I(3M) —> T(L ® F @ N)

By assumption, o and P are surjective. “Chasing" the diagram, one

sees quickly that v is surjective too.
QED

Theorem 5: Let L be an ample invertille sheaf on an n-dimensional
variety X. Assume:

i) I(1) is base point free,

1) ® ) = (o) if 1,5 1.

Then it follows that:
R 1t,u) & r(1¥) — R (1, 1)

is surjective, if i > n+2, j,k > 1. In particular, if i > n+2,
Li is ample with sormal presentation.
Proof: By Theorem 4,

& t,n) @ r(1) — R (11*,1)
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is surjective, if i > n+2. Iterating, we find that:

® (Lt,L) ® I‘(Lj) — R (Ll+j,L)
is surjective, if i > n+2, j > 1. Since P (Li,L) = (0), i > n+2
apply the Proposition to prove that:

R (tt,1l) @ r(1) — R (2*0)

is surjective, if i > n+2, j > 1. Iterating again, we get the

required assertion.
QED
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82, The case of curves,

For the whole of this section, X will be assumed to be a
non-singular complete curve of genus g. We want to strengthen
the results of 81 in this case. We need some more concepts and
definitions. A divisor (/[ is a formal linear combination Exrxixi
of points of X. For all divisors (1 , 8(Ul) is the invertible
sheaf of functions f which are regulat except at the xi’s, and at
x; have at most an ni-fold pole, if ni > 0, or must have at least
a. (-ni)-fold zero if n, 0. A fact that we need is that if an
invertible sheaf L has a section s with zerces ervzctly at L
of multiplicities Ny,eee,hy, then L & ({1}, with (T = Eni i If
L is an invertible sheaf, L(U1) stands for L @ 8{U.). QO will he

the sheaf of regular differentials on X,

Theorem 6: Let L,M be invertible sheaver on X such that
deg L » 2g+l, deg M > 2g. Then A (L,M) = (0).

Proof: Let 4 = deg L. Ul is to be a positive divisor of
degree d-(g+l) which will be chosen later. Then L{- Ul} is naturally

a subsheaf of L, and we get an exact sequence:

0 —> L(-U1) > L % A >0

where Supp L* = Supp Ul . The J.St requirement on UT is that
Hl(L(-U'()) = {0). Assuming for the moment that {/{ has this

property, by the 6-lemma of 81, we get
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A (-0 1) ——a L (L, H) ——— (L*,M)_

But it is well known that if K is an invertible sheaf on X with
deg K > 2g, T(K) has no base points. In particular, T(M) nas no
base points, and Supp(L*) is O-dimensional. So by Castelnuovo's
lemma, £ (L*,M) = (0).

Next, apply the Riemann-Roch theorem to L{- (1):

i

dim HO(L(-01)) = deg L(~U1) - (g-1) + dim HY(L(-00))

"

2.

Thus I(L(~0()) is a "pencil" and the ond requirement on U1 is that
it is base point free. Finally we want to apply Castelnuovo's lemma

to deduce that _£ (L(~(U1),M) = (0). For this we need only that
gt @ n(-0)™) = wl(m e L7H(UD) = (o).

This is the Brd requirement on Ut Putting all this together, it
will follow that _% (L,M)} = {0).

Can we find an U{ with these 3 properties? since Ul consists
in d-(g+1) > g points all of which can be chosen arbitrarily, it is
well known that for a suitable choice of Ul , &(U1) will be
isomorphic to any invertible sheaf K of degree d-{g+l). Now the
set of all invertible sheaves. K of degree d-{g+l) forms a projective
variety J, which is exactly the Jacobian of X except that J does not

have any natural base point on it to serve as the origin. It suffices
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to find a XK such that

1) wrext) - (o)
ii)  for all x € X, dim HO(L ® K"l(-x)) =1
iii) M e i1t e x) = (0).

Now if (i) is false, dim HO(L ® I<-l) > 2 by Riemann-Roch, hence
(ii) will be false for all x! Therefore it is enough to check (ii)
and (iii) for all x. But by Riemann-Roch,

1
(

dim HO(L®K " (-x)) > 1 <= dim Hl(mx'l(-x)) > 0

-1

= dim HO(OSL™"®K(x)) > 0

G 4 yl, e ,yg__2 such that

QR‘L'I

® K(x) = &(Zy,)
g ] Y- Yo o such that
-1
KeQerL (x-Zyi).
We have only g-1 variable points here, so the locus of K’s not
satisfying (ii) has dimension at most g-1. Similarly if

deg M = e + 29, we find:
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1 1

Hmertex) £ (c)er’aenterext £ (o)
Loy 3 yl’.."yk where

1

k = deg(ﬂG?M*l @ LO®K ) = g-l-e

such that

1

~ -1
e ®1 ® e
M L ®K C(zyi)

= 3 yl,u-,yk such that

1

KN M~ @ L(_Zyi).

Again there are at most g-1 variable points here, so the locus of K’s
not satisfying (iii) has dimension at most g-l. Since dim J = g,
almost all K’s do satisfy (ii) and (iii). Thus an U with the
required properties exists. QED
Corollary: If L is an invertible sheaf of degree > 2g+l, then L is
ample with normal deneration.

If the argument in the above proof is traced through, it is not

hard to show that it proves the following:

E s,,8, € (1)

3 t € (M) such that

[ks @® T(M) + k.5, ® T(M) + T(L) ® k.t]
1k 2 x k

— T(L @ M)

is surjective.
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Our argument is essentially the same as the classical argument used
to prove that if X is not hyperelliptic, then {1 is normally generated
(See Hensel-Landsberg). We can paraphrase this argument in our
language as follows:

We begin as before with an exact sequence:

0 —— Q(-U1) 0 a* 0

where we now assume that Ul is a positive cycle of degree g-2.
In order to apply the 6-lemma, it is not necessary that
Hl(ﬂ(—in)) = (0). In fact, it is enough if:

1
(

i) Hl(n(-UT)) e H (1) is an isomorphism.

This is the ISt requirement on Ul . We then deduce as before that
A (a(-00,0) — 4 (0,0) — £ (0%,0)

igs exact, Since T{f) has no base points, we know that 4 (Q*,O) = (0)
by Castelnuovo's lemma. By the Riemann-Roch theorem, it follows as
before that T(Q(-Ul)) is a pencil and our ond requirement is that it
is base point free, Unfortunately, we cannot apply Castelnuovo's

£ . 1 -1 1 .
lemma to prove (a(-01),Q) = (0), since H (0 ® Q(-U1)"7) = HT(8{T1})
is never (0). We use instead a direct computation of dimensions to
prove .4 (Q(-0),0) = (0)! Let s,,s, be a basis of T'(Q(-(1)). Look

1’2

at the map:
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Q 2
I‘(O)sl & 1‘(0)32 ——y (O (-0))
\_\‘W
dim = 2g dim = 2g-1

(The dimension on the right is computed by the Riemann-Roch theorem.)
We want a to be surjective, But the kernel will be isomorphic to
Since

i e} ® = W &
the spaces of pairs “’1"”2 € T(Q) such that w.l. Sl wg 82.

sl and 32 have no common zeroes, this implies that wl is zero at the

o i = ® (G -
zeroes ?)2 of 5,, i.e., w, =7 & s, where N € {a( 12)). Then u,

is necessarily -n@sl, so
Rer(a) = 1‘(0(-12)).
Since @02) £ a(-01), it follows that

dim Ker(a) = dim T(Q @ 0(-—()1)-1)

dim T(O{U1))

dim Hl(ﬂ(-(}()) = 1,

Therefore o is surjective, hence .4 (0,0) = (0).

Now let Q{-Ul) = K. K is a sheaf of degree g, and conversely
every sheaf K of degree g such that dim I'(K) > 2 has the property
dim I‘(Q®K'1) > 1 by Riemann-Roch, hence oex~t = 9(()’\); some U1,
hence K £ (- U1), some Ul . Therefore we have proven:

Theorem 7: If X carries an invertible sheaf K of degree g such that

T(X) is a base point free pencil, then .4 (0,0) = (o).
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The existence of such a K is not hard to show whenever X is not
hyperelliptic, but we omit this. The proof that A (O,Qi) = (0)
if i » 2, is even easier.

‘iheorem A for the vanishing of A is definitely the best
possible unless further restrictions are placed on L and M. For
.example, if 1. = ((P+Q), then although L is ample and T(L) has no
base points, éL(P) o éL(Q), so L is not very ample. Since 1 is
very ample, there must be sections s € T(LE) such that s{P) = 0,
s(Q) # 0, hence s ¢ In(T(L) ® T(L)). Therefore .4 (L,L) # (0):

We now go on to results about R for curves, I don't think,

unfortunately, that my results here are kest possible. I shall prove:

Theorem 8: Let L,M,N be invertible sheaves on X such that

degL > 3g+l, deg M, deg N > 2g+2. Then

K (1,M1) ® I(N) ———s K (I & x,M)
is sur jective,

From this we deduce immediately:

Corollary: Let L be an invertible sheaf on X such that deg L > 3g+l.
Then L is normally presented.

Proof of the Theorem: We shall use the following lemma:

Lemma: For all invertible sheaves N on X such that deg N > 2g+2 and

T(N¥) nas no base points, there is a decomposition:

= @ .0 ®
N =N N, k> 2
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where

(1) deg N, = g+, 1<igk-1
g+l < deg N‘k < 2g+1,
(2) I‘(Ni) has no base points.

{(3) 1f Iy (resp. JT%) is the variety of invertible sheaves
of degree = degree Nl (resp. deg Nl - deg N2)’ then

for all open sets U, © J U* < %, we may assume

1 1’

Proof: If deg N < 2g-+l1, then let k = 1, Nl = N, Now suppose

deg N = e + (g+1), g+l < e ¢ 2g+l. Then k = 2 and we must decompose

= = = T, i
N Nl%lz, deg Nl g+l, deg N2 e, Let J2 be the variety of

invertible sheaves of degree = e, Let Vi < Ji be the set of
invertible sheaves K such that Hl(x) = {0) and T(K) has no base
points. It is well known that Vi is open and non-enpty., Consider

the maps:

-1
* ~ ®
£ Jl e, JQ’ given by Nl s N Nl

g: Jl---->J*, given by Nlh———éNi'@N-l .

If identity points are chosen arbitrarily on J ,J%, then all these

1'%

varieties are canonically the same, and are nothing but the jacobian

of X. Then in terms of the group law on the jacobian £ becomes a map
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of the form x +—> a~x, and g is of the form x > 2x+b. Thus
. . . N . -1 -l %
both £ & 1 g are surjective., In particular, f (Vg) and g (U")
are non-empty. Now choose N, € U, nv,n le(Vg) n g-l(U*), and let
1

'N2 =N ® NI . fhen Nl and N2 have all the required properties.

If X > 2, the proof is similar, but even simpler.
QED

To prove Theorem 8, begin by decomposing the N in the Theorem

by the method of the lemma. It clearly will suffice to prove:

—_— R (Le®N, ® ... 0N M)

R (L ® ®...8® ®rT
(Léx Ny» M) (Ni+ 1 i+l’

1 l)
is surjective, for every i with O ¢ i ¢ k~1. Checking degrees here,

we find that we have reduced the Theorem to:
(a) 1f T(N) has no base points, g+l ¢ deg N ¢ 2g+l1,
deg M > 2g+2,and deg L - deg N > 2g, then
R(L,M) ® T(N) —— R(L ®N, M)
is surjective,
We now want to apply the Proposition in 81 to interchange M and N
in (A). Since Hl(LGN_l) = {0), hence 4 (1,N) = (0), (a) is implied
by:
(B) 1If T(N) has no base points, g+l < deg N < 2g+l,
deg M > 29+2, and deg L -~ deg N > 2g, then
R (L,N) ® T(M) — K (L ®M, N)

is surjective.
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Now decompose M by the method of the lemma. To prove (B) it will
suffice to prove:
(1) R(L,N) e I‘(Ml) — R (L ® M, N) surjective

(ii) <R(L®M1,N) ® T(Mg) ——s R (L ® M, @M, N) surjective

(k) Q(rem ®..0yM ., N) &I )—>R(LOM & ®N, N)

surjective,

We want to apply Thecrem 4 to prove these facts. Since T(N) and

T(Mi) are base point free, we need only check:

(1) wzexteu) = (o)
'aenten eu’) - (o)

® N~
L N 1 o

(ii) H

(k) plLex?te My @ BN @ M;-l) = (o).

Now deg(L®N~18MIl) > 2g-(g+l) = g-1, so if M, lies in a suitable
open subset of the Jacobian, (i) will hold. Secondly,
deg(L®N-l®Ml®Mgl) > 29 + {g+l)~-(2g+1) = g, so if M, ® M;l lies
in a suitable open subset of the Jacobian, (ii) will hold. Since

the lemma allows us to choose M1 and MIGM;l in any open sets,

(i) and (ii) can be achieved. As for the rest, if, for instance,

x> 3,

deg(L®N'l®I»il®Mg@M;l) > 29 + (g+1) + (g+1) - (2g+1) = 2g+1

so (iii) is automatic. The same holds for all the rest. Thus (B)

is proven, hence (A), hence the Theorem. QED
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€3, Abelian varieties: the method of theta-groups.

By definition, an abelian variety is a projective variety with

a structure of a group such that (x,y) b2 x+y and X > -X are

morphisms

XXX ——>»X and X —=X respectively. We first recall

various basic facts about invertible sheaves on such varieties.

(r.)

(11.)

N
For every X, there is a 2nd abelian variety X, called its

A
dual, and an invertible sheaf P on XxX, called the Poincareé
ze z 64 i i
sheaf such that P!Xx{o} o P‘{o}xﬁ ¢, which is
characterized by the non-degeneracy properties:
A
A= i =g ¢
(a) IfZ ©X is a subscheme such that Plsz < yp s Ehen
7Z = {0} with reduced structure,
: (o i =6
(p) ! Z ©X is a subscheme such that P!Zxﬁ 2 xks then
Z = {0} with reduced structure,.
If pic(X) ir the group of all invertible sheaves on X, there

is a subgroup Pico(X) characterized by the property:

L € pic®(x) €==%>T:L L, all x €X

A
where T X —>X is the map Tx(y) = X+y, PFor all a € X,

let P = p| an invertible sheaf on X. Then for

xxfal’
all a € X, P € pic®(X), and a —>P_ defines an
isomorphism of groups:

A
X & pic9(X).
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(III.) For all invertible sheaves L on X, and x,y € X,

3
o
®?
(]
n

™L ® 7L,
x Y
Therefore T;L oLl e Pic®(«) and there is a unique

A
homomor phism 6L: X —3> X characterized by:
P > el
#, (x) x
-(Iv.) The Riemann-Roch theorem for abelian varieties asserts:
if L = 6(D), D a divisor on X, then

x(L) = (p%)/q! = +/deg 2L,

If this number is not 0, L is said to be non-degenerate.

Then there is exactly one i, called the index of L, for

which H*(L) # (0). 1In particular, if L is ample, then

x(L) = dim T(L) > O,

(1)

1]

(o), i » 1.

These facts are all more or less well known, Detailed proofs can be
found, for example, in my book "Abelian vVarieties", to be published

by Oxford University Press in the series "Tata Institute Studies in
Mathematics." We require, in addition, another invariant of invertible
sheaves, which I call its theta-group. We treat this group first

set-theoretically:
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Definition: G(L) = the set of all pairs (x,8), where x € X and

$: L ——e»T:L is an isomorphism,
The group law is given by:

(x,;S) * (Y:*) = (X+Y: T;:é * ')

It is ezsy to see that if kK(L) = ker(ﬁL), then this groups fits into

an exact sequence:

T k(L) > 1.

1 —>x* -—’:“-—-a (1)

if i(A) = (0, mult., by A),

m(x,8) = x.

Moreover, i{kx™) commutes with everything in G(L). If, instead of
using inverti. le sheaves, we spoke of line bundles, G(L) would be
just the group of automorphisms of L that cover translations of X,
Or if we use the language of divisors and divisor classes, then:
G(®x(D)) = the set of pairs (x,£), £ € kx(X), such that
T;lD

((£)

D+ (f)

divisor of poles and zeroes of f).

]

The group law in this version is:

(x,£)  (v,9) = (x+y, T;f'g)-
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This group is well known in one case: if L € Pico(X). In

this case, éL = 0, so K(L) = X and (L) is an extension:

1 — k% ——— G(1) X 1.

Serre has studied this case, and has shown that G(L) is abelian,

has a natural structure of algebraic group itself, and that
L —> G(L)

defines an isomorphism:

Pic®(x) —> Ext (X, G ).

One can describe the non-commutativity of G{L) conveniently

1

as follows: look at the commutators xyx y‘l. since K(L) is

abelian, ﬂ(xyx_ly_l)

*

= 1, and xyx"ly-l € x*. Moreover, since

x* c center (G(L)), if we alter x or y by an element of k¥,

1

XyxX y'l does not change, Therefore there is a map:

e.: k(L) x x(L) —_—x"

1

such that xyx y"l = e(mx,ny), all  x,y € G(L).

It is easy to check that e is bi-multiplicative and skew-symmetric.

In treating characteristic p, we need more than a set-theoretic
group G(L) we need a full group scheme G(L). This is defined by
asking that the S-valued points of G(L), for every scheme S/k should

be functorially isomorphic to the groups of pairs (x,4), where x is
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an S-valued point of X, and if Tx: XX ———>» X%xS is translating

by x, then
. Y *
6: L ® S-——->T(L®os)

is an isomorphism. It fits into an exact sequence of group schemes:

i n
1 > G > ¢(n) > K(L) > 1

where T is smooth and surjective, and ﬂan is the kernel of éL in
the category of group schemes., For details, see the last § of my
book on Abelian Varieties.

The theta-group G(L) acts in a natural way -on the cohomology
groups Hi(L). In fact, if (x,4) € G(L), then define the automorphism

of Hi(L):

. T , i .
Vg B0 > wa) L ).

This gives a representation of G(L) and it works equally well for
group schemes or for ordinary groups.

I propose to divide the rest of this section in half: I shall
look first in characteristic O, where only the set-theoretic G(L)’s
are needed, and prove a theorem for these; I will then discuss the
extension to characteristic p.

So let char(k) = 0 now, First we need some pure group theory:

Let K be a finite abelian group, and let § be a central extension:

1 > x* G S K 1.
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Call G non-degenerate if k* is exactly the center of G. Then if G

is non~degenerate:

*

N
(1) explicitly, G has the form G £ k™ x A x A, where A is

A
a finite abelian group, A = Hom(A,k*), and multiplication is
(x;xyi)’(u;Y)T)) = (Mﬂ?(x), X+y, €+n)-

(2) & has a unique irreducible representation V in which k*
acts by its natural character. All such representations
are sums of V with itself. For k*xAxg, this representatic..
can be realized by:
Vv = k-valued functions on A

Uin,x,6)t (v) = »e(y)-£f(x+y), Y £ €v,

(3) If H <G is an abelian subgroup such that H N kx* = {1},
then we can decompose the irreducible representation V in
(2) according to the characters of H:

V= o V

Then each V. is non-emnty, and if G' is the centralizer

A
of H in §, then

6 /inx)"toxlx € H)

acts on V is again a non-degenerate extension, and Vk

7\)

is its irreducible representation.
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This is all elementary group theory and is easy enough to prove.
(See my paper "On the equations defining abelian varieties",

Inv, Math,, vol. 1), The Key result is:

Theta-structure theorem: If L is non-degenerate of index i, then

G(n) is a non-degenerate extension and Hi(L) is its unique irreducible

representation, with k¥ acting naturally.
We now prove in characteristic O:

Theorem 9: Let L be an ample invertible sheaf on an abelian variety X.

A
Then for allo,B € X, all n,m > 4

S@atep,1"ep ) = (o).
a B
Proof: We require the preliminarv fact:

Lemma: Let L and M be invertible sheaves on an abelian variety
such that TI(L) # (0), T(M) # (0), and L ® M is ample. Then

Z T(rep ) ® I(M®p ) —— T(18M)
aek

is surjective.

Proof of lemma: If W is the image, let us show that W is

invariant under the action of G(L®M). Note that if x € X{18M),
then

BL(6) + By(x) = fygpy(x) = .

Therefore if B =a + 5L(X) =a - éM(x)’
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T™(L®p )L ® [T L
X o X

and

n

™(M ® @ [T*"M @ M 1] @
x(M ga) M [TXM M ] P,

FMer (x) O

M -l

M ® P -

Therefore we get a diagram:

l‘(wpa) ® I;(MQP..G) ———> T(1&)

T* * ¥
X X xX

T(T} (18R ) )eT (1) (M8P_ ) )—> T(T) (18H))
S Sl S

r(LepB) ® I‘(Map_a) —eey - T(L8M)

In other words, under the action of an element (x,4) € G(rLem)
on I'(1®M), the image of I'(L®Pa) ® I‘(MOP_Q) is taken into the image

of I‘(L@PB) ® T'(Mep_ Therefore W is G(L®M)-invariant.

B)'
Now since T{(1éM) is G(1L®M)-irreducible, either W = (0) or
W= T(reM). But if s € (L), s ¥ 0 and t € T(M), t # O, then

s® € T(L8M) is not 0: so W ¥ (0). QED



“ 70 -
D. Mumford

Returning to the theorem, we use the lemma to reduce the proof

of the theorem to the special case n =m = 4, In fact, consider the

diagram:
n m-1 2 n+m-1
Z*r(x. ®pa)er(L epa+y)®r(L®p_Y)_—-> z (L @pa*’sw)ar(wp_y)
¥ vEL
b c
n m n-+Hm
(L epa) ® (L @ps) 3 (L ® Pa+3).

By the lemma, ¢ is surjective, By induction on n and m, a is
sur jective. Therefore d is surjective.

Now assume n = m = U4, We must show that the map:
T r(L)“@p ) @ I‘(Lu@P ) — 1‘(L8®P )
a 8 o+B
is surjective. We need first some simple remarks. One is that if
L is any non-degenerate sheaf, then there is a natural isomorphism:
Wrep)e=qL), allac L.

In fact, consider the diagram:

1 —x* %(z,) T 5x >1
‘tﬁ\ 8]
~
a \\K(L)

Since k¥ is a divisible group, and Q(P&) is abelian, it is easy to

check that there is a homomorphism Py such that ﬂ'pc = id*., 1In other

*I1f O—»A—> B—>C ~—30 is an extension of abelian groups, then it
splits whenever A is divisible,
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words, the extension Q(Pa) splits over K(L). Then for all

(x,8) € G(L), where g: L --~>'1‘;L is an isomorphism, we get an
isomorphism

geoe (x)

® . *Le
Le&Pr, Tx(L pa),

hence an element (x,é.pa(x)) € Q(L @ Pa)’

v

The second remark is that T is, in a certain senee, Q(Ln)-linear.

Tn fast, define B5: Q(Lu) e Q(I-8) by

o(x,8) = (x,0°°)

where ,6’2: L8 -——-—9‘1‘;148 is just &6 © 4,

Note that 6 fits into a diagram:

1 X* 3 Q(Lu) — K(Lu) — 1
i)mg 5 n
v
1 k* 6(&8) > r:(LS) — 1
n
X

Now choose splittings:
(387
p,: K(27) ——G(p,)
Pt K(L8) —s Q(r_)
8 B
. rd faa:
and let pm,pB induce a 3 splitting:

. 8y
Pusp’ k(L") —> Q(P:MB)'

Use Py PgsPy . to define isomcrphisms Q(Lu) g Q(Lhﬁ’l’a) =3 Q(Lu@?s}
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and Q(L8) S Q(L8®gz Then it is immediate that via 5, T is

+B)'
Q(Lk)-linear.
The next step is to split Q(Lu) over X2, the group of points

of X of order 2:

1 k* et ——s k(rt) —s 1
K\ U
P \\\X

2
As in the case of Q(Pa), this is possible if we check that the

subgroup ﬂ’l(x2)

is abelian. But K(Lq) = Ker($ 4) = Ker(u-éL),
L
so x € K(Lu) if and only if 4x € k(L). In particular, X, © K(Lq).

Therefore, if x.,x, € X, and x_ = 2y2, Yo € Xh’ and

1’72 2 2
eLu(xl’xg) = eLU(xl’QYQ)
= e ,(2x,,v,)
LIJ 1742

fl

e (0,v,) = 1.
L4(0¥2

Thus n'l(xg) is abelian and p exists. We may now decompose all

3 yector spaces under the action of the abelian group p(Xg):

y
(L ®pa) = z%? E,
2
h
{rer, ) = &, F,
g Ps%
2
I‘(L8®P )= @.6G
a+ & A
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Note that T(E‘ ® Fm) <G » Since T is, in particular, Xg-linear.

4 +m
Next, I claim that in Q(LB), 6(Q(Lu)) is the cent-alizer of

6(°(x2))‘ Since 6(Q(L4)) is exactly the inverse image ﬂ'l(KiLu))

in Q(L8), and since eL8 computes the commutsicrs in Q(Lg), this is

equivalent to saying: VY x € K(L8)
(") xex@h) eme glay) =1 .
L

b
But if y € X, then y € K(L8)<==9 2y € .1 ). Sinece X is divisible,
K(Lu) = 2'K(L8). Therefore, if we abbreviate K(LB) = K, (*) comes down

to the assertion:
(%) ¥x €k, % € 2K &3 e(x,y) = 1, all y € K such that 2y = O,

Since Q(LS) is a non-degenerate extension,e is a non-degenerate
skew-symmetric form on K, and (*¥) is clearly true.

We can now apply the )rd set of statements about non-degenerate
extensions that we listed above. We deduce:

1) that each E,,F,,G, is non-empty,

2) that G, is an irreaucible E(Q(Lu))-module.
Tne theorem now follows. By (1), choose s € E,, t € Pm with
8 # 0, t # 0. Then T{s®) is the section s®t ot L8 ® P, .g» Which
is not zero. 8o the image of 1 contains at least one non-zero
element of G,, for each 4, But the image of T is invariant under

5(¢(1*)), so by (2), it contains all of G,. Thus T is surjective.

QED
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Now consider the case char(k) = p ¥ 0, To make the proof work
we must use the full group scheme Q{L). First we need some theory

about group schemes ¢ which are central extensions of the type:

1 ;Gm § K 1

where K is a finite commutative group scheme. As before, we call §

non-~degenerate if «m is the full scheme-theoretic center of §

{(i.e., ¥ S-~valued points x of G, if x commutes with all S'-valued
points v of G for all S'/S, then x should be a point of Gm). There

is no simple structure theorem for such §’s, However, they do satisfy:

(2') G has a unique irreducible repreéentation V in which
Gm acts by its natural character. All such representations
are sums of V with itself,

{(3') 1If #H < G is an abelian subgroupscheme such that
HNG = {1} scheme-theoretically, and if R = T(GH)

regarded as a representation of H (the “"regular

m

representation”), then V S'RH

for some m as an H-space,
In particular, for all characters A: H ——> Gm, the
eigenspace Vx <V for A is non-empty, Moreover, if

G' is the scheme-theoretic centralizer of H in §, then
-1
G/ {n(x) +x|x € H]

acts on V is again a non-degenerate extension, and VR

7\’

is its irreducible representation.



- 75 «

D. Mumford

Note that in (3') v @ &,, but if char{x) |order (H), it is possible
that v ;2 ®V,. In compensation, we have the extra fact, V & R;“I.
Next, we still have:

Theta~structure theorem: If L is non-degenerate of index i, then

G(L) is a non-degenerate extension and H (L) is its unique irreducible
representation, with Gm acting naturally.
The proofs of these facts are unfortunately, not yet published.

Now let's generalize the proof of Theorem 9-to g:har’(p).

(I.) The lemma remains true, However to prove it, it is necessary
to show that for all rings R/k, all R-valued points o of
G(1eM), the automorphism of the R-module I'{L®M) i R induced
by a takes W®R into itself, This follows as before provided

that we first prove the following:

A
For all R-valued points a of X, if Pa is the invertible
sheaf (1xa)*P on XxSpec(R), then the image of the map:

(*) T(pjLer ) ® I(piMeP_ ) —> T(p](L6M))

|
I‘(L&ri)% R

is cvontained in W i? R.

First if R is a finitely generated integral domain over Xk,
then the intersection of the maximal ideals in R is (0): so to

prove that an element x € T'(L®M) % R is in W f R for such an R,



(1x.)

(rr1.)

(zv.)
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it suffices to show that for all homomorphisms g: R —> Xk,
the image 1 ® g{x) € I'(LeM) is in W, And this is just a
case of (*) for a k-valued point of X, i.e., it is part

of the hypothesis, But since X is an integral scheme of
finite type over k, for any R, and any R-valued point o of X,
a is induced by an R'-valued point B of X via a homomorphism
R' —3 R, with R' an integral domain finitely generated

over Xx. And if (*) is true for B, it follows immediately

for a, This proves (*) in general.

Once the lemma is proven, Theorem 9 is reduced to the case

n=nm= 4 exactly as before.

A
Next, isomorphisms G(L) ¥ G(L ® Pa)’ a € X, L non-degenerate,
can be set up exactly as before. We need only the well-known

lemma:

Lemma: If O -——9(!“‘ > G 4 0 is an abelian

extension, and K is a finite group scheme, then § & Gm X K,

Morecver, we get a homomorphism of group schemes
6: Q(Lu) — Q(LS) exactly as before, and T turns out

again to be Q(Lu)—linear.

Now, if char(k) # 2, the rest of the proof works over k

without alteration: Q(Lh) splits over X_, the vector spaces

2 E
T( L)‘@Pa) , T LuOPB) , I L8@Pa+s) split into eigenspaces, and
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we apply statement (3') about the group theory of non-degenerate

G’s. However, if char{(k) = 2, X the kernel of multiplication

2)

by 2, is never a reduced group scheme. We can still split Q(Lq)

over X,, and S(Q(Lu)) is still the centralizer of 6(9(X2)) in

Q(LB), but since the representations of X, are not completely

2

reducible,

i o
' ®p) @&, E etc.
ol # 1R, 47

We must finish the proof in a new way. Let W = image of T, Let
8 .
wt < ™(L'® Pa+B)* be the space of linear maps that kill W, Assume

W ; T(L8® P hence W' # (0) Now W and hence W™ is invariant

+B)’
under the action of Q(Lu), hence of the action of p(Xé). Therefore

A

W contains an eigenvector for at least one character 4 € Qé. Let

Gh < T(L8 ® P, }* be the eigenspace for the character 4. Now

4 +B
T(L8® Pa+8)* is an irreducible representation space for the opposed

group to Q(L8), i.e., with multiplication reversed, and in this
representation Gm acts by its natural character. Therefore applyiny
statement (3') to this opposed group, it follows that GI is
b, . i *
G(L")-irreducible. Therefore W™= 2 G,.
L
Now we must construct something inside W, By {(3*') for G(L'),

I 4
T(1."® p_) contains a non-zero p(X,)-invariant t. For all s € T(L ®Pa)’

,:)7
, 3 , .
s # 0, the element T(s¥t) € T(L” @ Pa+8) is not zero, so 7 defines
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an isomorphism of T(Lu8Pa) ® s with a subspace w C W, As a

representation space for p(Xg), WO is therefore isomorphic to

F(L4®°a), hence to Rg, where R, denotes
of X2’ Since R2 is an injective object

representations of Xg, it follows that:

~

3

st

I‘(L8®p L) FwW e

where W 1is also X2~invariant. Now the
eigenvectors for every character of X, :
it

* . . N
x € Wo which is an eigenvector for the

8 .
linear map on I(L™® 23+B) that is zero

the regular representat’on

in the category of

dual space to R, contains
o
so there is an element
character 4. Extend x to a

~ *
on W . Then x € G,;, but

x4 0onv, i.e., x € wl, This is a contradiction.

QED
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§., Abelian varieties: the method of the variable pencil.

First of all, we need some more results about the index of
invertible sheaves. For proofs of these results, see my bosk on
Abelian Varieties and the appendix to this paper by George Kempf.
Definition: Let L be a degenerate invertible sheaf on an abelian
variety X, Let K = X(L)}%, the connected component of K(L), ¥ = X/K,
and W: X —> Y the canonical map. Then there is a non-degenerate

A
sheaf M on ¥ such that L ¥ P% ® m¥M, some a € X (cf. appendix)., Ve

define index (L) to be the interval:
[index (M), index (M) + dim X].
The following result is proven in the appendix:

Proposition: If i € index (L),ythen H (L) = (0).
Now suppose 1L and M are 2 invertible sheaves on X, and L is ample.
Consider the collection of sheaves Lp®Mq and the polynomial:

p(p,q) = x(P @ nY),

The following theorem is proven in 816 of my book and in the appendix

to this paper:

Theorem: If g = dim X, then there are a ,a  ER, a, >0, >ec>

l?.. s g
such that

g
P(x,y) = TT (x -ay).

i=1

Morecrrer, for all p,g € Z, g > O, if O e =9y = %,
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[¥3 then

B
i>q/a

i+k+1’
index (LP @ M9) = [i, i+x].

The precise result that we need is slightly stronger. I want
to assume only that T(L) # (D) (i.e., L = m™L_ for some

m: X~ X/K, L, ample on X/K). In this case, I claim:

Theorem: Suppose L and M are 2 invertible sheaves, T(L) # {0) and

M non-degenerate. Then

r
Plx,y) = TT (x-ay) -y’ "
i=1

for some r and some oy € IR with oy > e _>_(1r. For N >> 0, let
. N - - _
i = index (L"® M). Then for all p,q, g > O, Aif B = = Oy = p/qa,

a.>2>a then

i” q7 %isk+l?
index (1 ® M¥) = [ 44 , & +Xx +1].
This theorem is deduced easily from the 15¢ one, by
P
introducing an ample L1 and considering all the sheaves Lp%ll&dq
P
and the polynomial: P(p,pl,q) = x(1P ® Lll o M7),

We omit this step.

The purpose of this section is to prove:
Theorem 10: lLet X be an abelian variety, L an ample invertible sheaf

. n . . .
and n > 4 an integer. L defines an inmersion:

gfn: X ——> @ (T(L7)) .
L
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Then ¢Ln(x) is ideal~theoretically an intersection of quadrics of
rank < k4,

Proof: First, let's construct a set of quadrics containing
8 {xX). once and for all, fix p and q, p,q > 2, such that n = p+q.

Ln
Consider the map:

(P ® p) @ T e p) —> (L"),

If s € T(LP®PQ), t € T(qup_a), let the induced section s®t of
F(Ln) be denoted <s,t> to prevent a confusion of notation. Thnen

for all s,,s, € F{Lp®Pa), t € T(Lq®P~a), we get 4 sections of L':

2 1°%

<Si’tj , i, = 1 and 2. 1In T(Lgn), we get an identity:

<s,,8.> ® s Lt

$8y,%0 5 > = <Sl,t2> ® {52,t1>.

2

Therefore

= < e s - ) A
o Lt pm,t, T LTt - <8R, € K @),

n
If Q is the quadric in P (T'(L")) defining by g = 0,
S10t1080%p S10%10820%

then we will actually prove:

% n(X) is the ideal-theoretic intersection -of the quadrics
1 ]

(*)
Q for all a,s.,t,.
sl,tl,s2,t2 1771

For most of this proof, we will deal with the fact that g n(X) is
L

the set-theoretic intersection of these quadrics. At the end, we

will indicate the easy extension of the method to proof that g n(X)

L
is also an ideal-theoretic intersection.
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The first step is to translate (¥*) into an assertion on X
itself, not involving PI(L")). The points of ® (T(L™)) correspond
to non-zero linear maps 4: rL") —s k, modulo scalars. Fix one
such 4. Then it is easy to see that the point defined by 4 lies on

Q if and only if
S1stys8pets

. , - )
4(<sy,t > ) dasy,t>) 4csy,t>) (<52’t1>)’

Moreover, it is elementary linear algebra that this holds for all

sl,tl,s2,t2 if and only if there are linear maps:
. Pa
m ¢ (L Pa) — %
. dg —_—
n,: (L p__a) > X
such that:

- . P
Acs,>) = ma(s) na(t), all s € T{L ®PQ)

t € I‘(Lqep_a).

On the other hand, what does it mean to say that the "point" & is

in § n(x)? This means that there is a point x € X, and an isomorphism
L
Ln 4 GY near x, such that, evaluating sections by this isomorphism:

4(s) = s(x), alls € INCA

Thus (*) comes down to the agsertion:

If 4: P(Ln) - k i8 a non-zero linear map. such that for all

a € X, there exist linear maps m_ : (L ®Pa)—-> X,

<

(**) n,: T(Lq®P_a)—~e=k for which 4£(<s,t>) = ma(s),na(t), then for

some x € X, #(s) = s(x) all s € ™.
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In order to prove (**), the basic idea is to treat all o

simultaneously, i.e., to put the ma’s and na’s together into a

single homomorphism, In fact, consider the invertible sheaves:

- A
p‘l*Lp ® and p*l*Lq8pl on X X X.

These have the property:

*1P > 1Pep ; p*rep l| =19
PlL ® P‘Xx(a) L™®F,s Pl ®p xx(a) Lmer ..

Define _ *. Po,
E, = Py ,(p)L7°P)

F
g

3

*: e ‘l\
Py L (PIE®P 7).

Since the higher cohomology groups of Lp®Pa, Lqﬂp_q are zero, Ep

and Fq are locally free sheaves on 5§ such that

B k() = r(LPwp_); Fq@k(a) = T(L%P_a).

There is a natural pairing:

E, 85% Fy >pg’*(p§_Ln) = T(L") @ 6.

This is the globalized form of the individual pairings

F(Lp®gm) ® T‘(LCLS*PLOL) —-> ™(L"). 1In order to go further, we need:
Lemma 1: If 4: T(1") —= X satisfies the condition of (**), then for
all o, 4 does not vanish identically on the image of

P de R n,
(L ®Pa) ® T(L P_a) in T(17).
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We will prove the lemma later. Assuming this, we next globalize
the m, and n, as follows: I claim there is an invertible sheaf K on
§ and surjective homomorphisms:

m:A Ep —> K

n: P ——> g1
q

such that the diagram:
n
E ® JESSRUCHENENVISC S, ® 6
oRE (L )k o

m®n l&@l

K@K"l

2
by

commutes, To see this, consider the composite map:

421

]
' > I

n
E® ——> T(L & 6a
oy (™) 2

It induces a map of locally free sheaves:

v, ®
m': Ep ——3 Hom (Fq’ ﬁ) .

By the hypothesis in {**), this map, after taking ®k(a), is always
of rank O or 1; by lemma 1, it never has rank O, Therefore, its
image is an invertible subsheaf K of ggg(Fq,Gg)which is locally a
direct summand. m gives a surjective homomorphism m: E ——> K,

On the other hand, the inclusion of X in ggm(Fq,@Q) induces a

sur jection:

-1
. = o, ] ] =
n: Fq Hom(Hom(Fq, Q), &) ~—> Hom(X, Q) K .

It is clear that the sheaf K and the homomorphisms m,n make the

diagram above commute.
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To motivate the next steps, let's imagine that (**) is true
and see what K, m, and n ought to turn out to be. For all x € X,
A
let Q=P 4. Then Q_ is an invertible sheaf on X and, if we
x {x}xxt x
pick an isomorphism LR—:—é OX in a neighborhood of x, then there is

a natural restriction map:

*LPep — - p*LPe AT
PR R > PILRR G T Pk

A
This induces a map of locally free sheaves on X:
X 7p X
which is a global form of the linear maps:

Ep e x(a) = T(LPQPG) evaluation at x x.

Similarly there is a map:
s : F ——»Q

wnich is a global form of the linear maps:

Fq & x(a) & T(ngp—a) evaluation at x X.

Therefore, what we want to prove is:

K =Q_ , for some x € X
(***) X
and m is a multiple of L n of S -

If we prove (***), then it follows immediately that 4, as a point of

n(F(Ln)), equals g n(x). In fact, choosing an isomorphism of L” and
L

8 near x, let 4': (™) — x by the evaluation map s F—> s{X).

X
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Then what (***) asserts is that the 2 composite homomorphisms:

il
L n ——
W i E ®F —m 3 T(L ® 62 6A
S ()kXW

differ by a scalar., Say L = A.L'. Then on the image of each map

r(zPep ) & r(r¥ep_ ) —— T(1"),

4 = A.4'. By the lemma of 83, these images generate F(Ln), so
4 = A, 4" on all of T(Ln) and the Theorem is proven.
To prove (***) we proceed as follows. First apply Serre

A A
duality to the morphism % XXX ey X 3

i

A A *. P,
(X, Hom(Ep,K)) (X, Hom(pQ’*(plL ®p), K))

n

A - -
r(X, R (p*r Pepleptk))
Po x 1 2
3

Since all the cohomology groups of the restriction

p 1P e pt

- th
® p* = P&
1 pEK‘Xx{a} L P—a are zero, except for the g group,

1

i *r =Pap~le. * - .
R 92’*(plL PT®pK) = (0), i#g.

Therefore, we conclude by the Leray spectral sequence that:

A A - -
(X, Hom(E_,K)) = HI(XxX, pL Pep~!

® *
p pQK).

Similarly:
- ~ A - -
(%, Hom(Fq,K l)) = n9d(xxx, pIL %ngx l)

A
hence by Serre duality on XxX:
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A — A —
(X, Hom(Fq,K hy* 2 p9(xxx, p;Lq & ple p;K).

Therefore, we have at our disposal the 2 apparently meagre bits

of information:

A -
Y (XXX, piLm 2 ple p;K) # (0), for m= -p and q.

But, amazingly, these facts turn out to trigger a Rube Goldberg-like
set of cochomological implications that we will describe later, We

summarize this part of the proof for now in:

. Fol
Lemma 2: Let L be ample on X, K any invertible sheaf on X, If there
exist integers a,b > 2 such that

A -
#(0dk, piu" @ 7! @ p¥k) # (o)
for m = -a and b, then, in fact, for all m:

i) p;Lm ® P-l ® p;K is non-degenerate of index g,

e prx) =1,

. . g*m®—
ii) dim H (plL P s

~ A
iii) K € pic?(X).
A
But by the theorem of biduality, the invertible sheaf P on XxX makes

f A
X into the dual X of X with Poincaré sheaf still P. Therefore, all

A

. . © ; . ~
sheaves in Pic (X) are isomorphic to Qx, some x € X, hence K = Qx’

some X € X,
finally to show that m is a multiple of ro» and n is a multiple
of S, it suffices to prove that
dim T(%, Hom(E_, X)) = 1
aim (%, Hon (7 _, k1
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But we saw above that these dimensions equal

A - -
dim HI(XxX, pjL Pegple p;K)

1

and dim Hg(XXQ, p;Lq @ p T ® pZK)

and these are both 1 by lemma 2. This proves (*¥¥)!

We now go on to the lemmas:

Proof of lemma l: Suppose 4 = O on the image of

F(LPQPQ} ® T(Lq®sz). Since 4 is not zero everywhere, and since
P 9 . n ;
(L ®PB) ® T(Lep B) generate I'(L') as B varies, choose a point

A
v € X such that
) T(LP® ® (1%
#Oon (L Paw) (L P )

By the hypothesis on 4, 4 on this last space is of the form m@n,
where m i 0O and n i 0. By the same reasoning, for almost all

A
b € X,

p-l g ®
n£o on T{L puwm) L Dp_ﬁ) N

A
and again for almost all 5 € X

Q"lgp

nZ0 on T(L ®@ (L & P-Y

41+6) —6)'

Choose a & for which m £ 0 and n £ ©0. Then it follows that # £ O

on the image in (L") of:

(1P~ 1ep

@ T(1® ® a-lg
a+v+5) I 9-6)) [riz Pa

) & T(ee_ Il

But by interchanging the Rnd and Mth factors, this image is the same

as the image in T(L") of:
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(P tep ) © T(1ep_

. -1
® 9 tep & T(1R
a+y+b ! [T(z ®1a3+5) n(1 9-5)]‘

’Y-S)
The map of this l4-way tensor product into T(Ln) factors through
T(Lp®g3) ® T(Lqﬂp_a), so this contradicts the assumption that

4 = 0 on the image of this space in r(L").

QED

Proof of lemma 2: This is where we will use the theorem guoted

i A -
in the beginning of this section. First we compute HH(xxX, p @ piK l).

Apply the Leray spectral sequence:

i, A i - i+ A -
B (X, RJp2 L(P) @K L =6k, p o PAK 1y,
3
But, as is shown in my bock, 813:
J _ .
R'py 4(P) = (0), 1i<g
g =
R pe’*(P) - k(o)'
Therefore:
i+9 A * -1 (O)) i O
H (XXX, P®p2K ) = A -
H (X, k(o) ® x 7), i o0,

l) = (0) if i # g, and is l-dimensional if i = g.
1

Hence H (XxX, p®pZK"

By Serre duality, the same is true of P~ ® pSK. Now consider

the family of sheaves:

-] * q
M = p*LP ® (p™" ® p¥k
o.q = Pl ( ® p K)

and their Euler characteristics:

p(p,q) = X(Mp’qf)
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We know by the above computation and by our hypothesis that:

MO 1 non-degenerate, index = g
3

n g € index (Mb l)

i )
g € index (M~a,1’

It follows from the Theorem that P(x,1) has no zeroes in the open
interval -a < x < b. Byt now P(x,l1) is a real polynomial of x such
that
i} P has only real zeroes,
ii) p(o) = (-1)9,
iii) P has no zeroes with ~a ¢ x < b.

iv) P{n) € @, for all n € Z.

But {i) implies that P has a unique local maximum or minimum between
- + .

any 2 zeroes: let -1 < O ¢ B (a,ﬁ € R ) be its zeroes of smallest

absolute value. Since -« < 1 < B, and [P(1)] » 1 = [P(0)]|, P must

have a local maximum or minimum between G and B; since -w < -1 <53,

and |[P(-1)] » 1 = |[P(0)], P must also have a local maximum or
minimum between -c and 0. This is a contradiction — unless P ig

constant.
Applying the theorem again, it follows that

M non-degenerate
p,q

i

(1I) index (Mp )

>

g

1

i

daim HI(M_ )
Psq
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for all p,q € Z, g # 0. This proves (i) and (ii) of the lemma. To

prove (iii), apply the Leray spectral seguence:

F = ri -1 R *\
1f 3 =R pl,*(P pgi’), then

Li_ i Mmoo om s itj,, B m o, -1
Ej"=n"(x, L ®djj===%>}{ (xxX, p’{L ® P ® piK) .

In particular, since L 1is ample, EzlJ =(0) if 1i>0, m>>0, hence
the spectral sequence reduces to

Ve~ j A ~ .
o(x, 1" e Ej ) F (X, p’l‘Lm 2 pl & pgx)) if m >> 0,

Therefore because of (1I) the whole sheaf }j must be zero if j<g . The

spectral sequence now reduces to
> r A _
Hl(x, mesa&g) = Hl*g(xxx, piLm ® p 1 ® p;K), all m |

hence
(1" ® &) = 1, allm,
g
This shows first that Supp(gg) is O~dimensional, since its Hilbert
polynomial is a constant; and second, that dim Ho(3q) = 1, hence
39 = x{x), some x € X,

Now recall from EGA, Ch. 3, 87 that the cohomology of P_lﬁpgK
along the fibre {x}XQ of 2% is computed from the higher direct images
by a séectral sequence:

]

Tor x(k(x), rJ (P~1®P*K))m H
-] pl % 2

i+ =lg % .
(P7®p K| (1%
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z ""l * ~ ‘l 3 = .
Since P~ ® pQK'{x}xﬁ ¥ "® K, and since (0), 3 < g, we find

J
: 6
B (ot @ K) & Tor X (k(x),k(x)).

Thus Hi(Q; @) # (0), for all i, For i = O, this gives
P(Q;lox) # (0), and for i = g, this gives (by Serre duality)

-1 ~ o
T(QxOK } # (0). Therefore K = Q, hence K € Pic (ﬁ). QED

This completes the proof that ¢ n(X) is the set~theoretic
L

intersection of the quadrics Q To prove that it is also

81:81+855%;
ideal-theoretically equal to this intersection, it is enough, as we
remarked in the introduction, to prove that for all x € X, the tangent
space to % n(X) at x is the intersection of the tangent spaces to the
L

quadrics Q at x., Equivalently, let R = k[G}/(Ea): then

s, ,t. ,s8,,t

1’71722
we must prove that for all R-valued points x of T (I(L™)), x is in
éLn(X) if and only if x is in all the quadrics. But such a point x
is defined by a k-linear map 4: T{L") —=R such that Image(4) ¢ k-¢.
Translating suitably the conditions that x is in ¢ n(X) and in the

L

quadrics, we find that the assertion to be proven comes out as:
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1f 2: T(L™) —= R is a k-linear map with Im(4) ¢ kx-€, sugh
A
that for all a € X, there exist linear maps m_: T(Lpﬁga)——> R
(**)
and n_: T(Lq®P‘a) ——>R for which #4(<s,t>) = nb(s).na(t),

then for some R-valued point x of X, 4(s) = s(x), all s € T(L™).

This is proven by a straightforward generalization of our proof
for k-valued points. Lemma 1 is unchanged and one finds first an

AY
invertible sheaf K on XxSpec(R) and surjective homomorphisms:

m: E ® R ———>3K
P k

-1
s ®
n Fq X R e, K
R .
on X % Spec{R) which globalize m, and n . For all R-valued points
A
x: Spec(R) —> X of X, define Q on XvSpec(R) to be the pull-back of P

s . ®
by x % li' We get restriction maps rx Ep % R —> Qx’

s Fq ®k R —~—e>Q;l as before, and (**) reduces as before to:

I

2 Qx’ for some R-valued point x of X, and m = H-rx,

(***\

=
it

v-sx for some units u,v € R,

Fut by our proof for k-valued points, we know already that

~ . . ) . . O
KIX = Q. for some k-valued point x  of X. Therefore, since Pic
o

. o s : . s S
is an "open” subfunctor of Pic, and since X is the dual of X, it
follows immediately that X ;'QX for some R-valued point x of X. To

prove the rest of (*¥*X) it is onlvy necessary to check that
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w

(% x spec(r), Hom (EP,K)) =4

(% x spec(R),

m

n
w

Hom (7 k™))

Then since the restriction m, of m to X is a non-zero multiple of
r, s m must be a unit times X and similarly for n.
o
Ags before, we compute:
4 ~ G B #y =P, % =1 *
T(Xxspec(R), Hom(Ep,k)) = B (XxXxSpec(R), 248 ® PP @ p231() .

We can then apply the remark:

If L is an invertible sheaf on ZxSpec(R) such that
i
Hi(L!z) = (0), i #4i_, then HY (L) = (0) if i # i and H °(L) is a

free R-module.

This completes the proof of Theorem 10.
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Appendix’ by George Kempf

b
Let X be an abelian variety, L an invertible sheaf on
X, = connected component of K(L), and p: X —> X/Y the canonical
map.
Theorem 1: (i) If L{Y is non-trivial, then Hi(X,L) = (0), all i.
(ii) 1f L!Y is trivial, there exists a non-degenerate
invertible sheaf M on X/Y with L = p*™™, and if i = index{M):

i i i-1i
H'(X,L) T H °(x,M) ¢ H °(v,8,), all i.
Proof: The theorem follows from:

* ~ P
Lemma 1: TxLlY s L}Y for all x € X, and

Lemma 2: Let P ~—EL—>Z be a principai homogeneous space (in the flat

topology) with structure group Y, an abelian variety. Then

i ~ i
] = ®
R. £,( ?) H (Y,GY) ; SZ.

By Lemma 1, we see that L]Y € Pic®(Y) and also that

L!x+Y = Lip'l(p(x)) is isomorphic to L}Y. Now if L‘Y is non-trivial,
then
i i, ~1
0) = H(Y, L = H L
(0) = B (¥, Lly) = B (pT (p(x)), LI _1(,x)))
for all i {see Mumford, Abelian Varieties, 813). By the theorems on

cohomology and base extension, Rlp*(L) = {(0) for all i, ‘The Leray

spnectral sequence then implies that Hl(X,L} = (0) for all i.

* The results in this appendix were independently discovered by C.P.Ramanujam.
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If L is trivial, hence L is trivial, the see-saw
ly ’ lo=1(p(x)) ’
principle shows that if M = p*(L), then M is an invertible sheaf

such that L = p*(M). This M is clearly non-degenerate., Note that:

i i
R p,(L) = R p,(p*M)

1p(6)@ M
R Pel®x gx/y

B (Y, ) % M (by lemma 2).

iy

]

Therefore
m) (x/¥, R'p (L)) T H (v,8,) & B/ (x/¥, M),

and this is zero unless j = io’ the index of M. Thus the Leray

spectral sequence shows:

.
%p, (L))

i-i i
H °(Y,®Y) 8 B (x/¥, M).

)

- i i
B (x,1) B °(x/Y, R

R

Proof of Lemma 1: If m: XXX —> X is the addition morphism,

“lg p;L_l on XXX is trivial when restricted

we know that m"L ® p;L

to ¥YXX. Define s: Y —>¥YxX by s{y) = (y,x). Then

*, & . -1 wo =1
® & )
s (m"L ® piL Pk 'YXX’
“o*nl 2niles
Ty ® Ly @8
is also trivial. QED

Proof of lemma 2: Since P X, P 5 Y x P, it will suffice

to prove the stronger:
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Suklemma: Given f: X ——> S a morphism of schemes /k such that
there exists m: S' —> S where 1 is faithfully flat and

wx(ers,) A with the property:

”m

q ¢,Y and a diagram XgS' o~ ——
k
13
£ J’ Lpe
S ] s 1]

where Y is proper over k. Then we have an isomorphism
i i
6 )= 6)e6
ROE,(0,) FH (v, 6,) 86, .

i ~ i R

Proof: m*(R f*(sx)) R f*(OXés,) since S* —> S ig a flat
: i [ g i

base extension and R f*(sst,) £H (Y,OY) iﬁ( 8_, Yecause of the

S

existence of @, Because H (Y,8 ) is finite-dimensional,

le;(sxxS') is a vector bundle. Hence le*(ﬁx) is a vector bundle
S

because T is faithfully flat, Now we define an isomorphism

i ~ *_i .
R f*(GX) —_— T R f*(GX) {since ™S, = OS)

h]

m [ (v,6,) 6]

n

H'(r,8,) 8 6 " )
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Theorem 2: Let I and M be invertible sheaves on an abelian variety X,

with L ample. Let

n
PL’M(n) = x(1L"em).

Then (i) all the roots of P, are real and dim X(M) is the
E ]
multiplicity of O as a root,
(ii) Counting roots with multiplicities:

Hk(X,M) = (0), if 0 < k < number of positive roots

Hg-k(X,M) = (0), if 0 < k < number of negative roots.

Proof: The theorem is proven in Mumford, Abelian varieties,
§16, for M non-degenerate. It is obvious when M € Pic®(X) because

in this case

x(z™)

o
—~
o]
St

"

= M X =2 = * ® *
and X = K(M). Now suppose X X %,, L = pJL, ® pjL, and

M= p"]':Ml @ p;M2 where M, € Pico(xl), M, is non-degenerate on %,

and Li is ample on Xi' Then by the K#nneth formula,

(1) () = By ()ory ()

and K(M) = K(Ml)XK(MQ). So in this case the theorem follows from the
above special cases and the Kinneth formula.

We shall reduce the theorem to this case. Suppose f£: ¥ —>X

is an isogeny. Then
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= deg £ . PL,M(n)

(2) Pf*L,f*M(n)
Ly the Riemann-Roch theorem, and dim K{f*M) = dim K(M). Therefore
assertion (i) is invariant under an isogeny., Let Y be the identity
component of K(M) and let 2 be a complementary subvariety for ¥ in X
We have an isogeny f: Y. Xx.Z —>X, Now Y C K(f*M) and if

M, = £5(M € Pic®(Y) and M

1
. *. @ ¥* .
is of the form lel p2M2 where M

then as in the proof of Theorem 1, M

sl
)‘Y: 1

> is a non-degenerate invertible

sheaf on Z. The next problem is to see that the theorem does not

depend on tha ample L. Then we can replace f£*L by p;Ll®p2L2 and we

have reduced the proof of (i} to a case where (i) has been proven.

Claim: PL M and PL“ M have the same number of positive, zero, and
—— st - Foogke T e

negative roots {counted with multiplicity).

Let & (resp. 8') be the smallest positive root of P (resp. P, ).
L,M L',M

Let a (resp. a') be the number of positive roots of P (resp. P ).

L,M L',M

Then

a = number of positive roots of PL M(t+e), if0<Ce b
’

a* = PL,’M(t+e ), if 0 < €' < B,
g r r
But s°p, {n+%)=p (n + %)
L,M s LS S s
- X(Lns-!-r & MS)

sn r s
x(L7" @ (LTem”))

i

= P, preys(sn)

- &9
S PL,Lr®MS(n)'
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So if 0 < s < 0, then L"®M" is non-degenerate and

a = number of positive roots of PL,LrGMS

index (LISMS).

]

Now let N be large enough so that (L‘)NQL-I is ample and choose r

Nr =
and 8 so that 0 < x/s < B, 0 ¢ i; < &', Then

index (Lr®Ms)

a =
2 index (((L')N®L'l)r ® 15 @ M®°) (by Th. for non deg. M)
¥
= index ((L') “&N®)
; a',
By symmetry, it follows that a = a'., The claim is proven similarly

for the multiplicity of O and the number of negative roots.
To prove (ii), we may assume that M = p*N for a non-degenerate
N on X/Y, since otherwise i1 has no cohomology at all. We have the

commutative diagram:

Y XZ -————-42—————5 X
P
7 3 —n, X/Y

for some isogeny g. Then g”N is non-degenerate and index (g¥*N) =

index(N). So:

numbher of pos. rts of ?L,M = nunber of pos, rts of Pf*L,f*M {pry formula 2)
= number of pos. rts of P (by formula 1)
L], ,g*N
= index g*N (Th in non-deg. case)

]

index N,

Now {ii) follows from Théorem 1. QED



