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GORENSTEIN IDEALS OF HEIGHT 3

David A, Buchsbaum and David Eisenbud

PREFACE

This paper is an early version of *Algebre structures for fi-
nite free resolutions, and some structure theorems for ideals of
codimension 3" that appeared in the American Journal of Mathema-
tics (99). The work was actually done in the Spring of 1973. The
printed version is considerably more complete; so the reader may
well ask why this preliminary version should now appear,

The main theorem in this paper is quite simple: Goremnstein ide-
als of height 3 are always generated by Pfaffians of a suitable
matrix, In this form, it has had ressonably wide application, most-
ly in providing a convenient class of examples on which conjectu-
res could be formulated or checked. But the proof given in our fi-
‘nal version was based on technical multilinear algebra of a sort
which is unpleasant to read, whereas, in this early version, the
technique was suppressed to a certain extent to allow us to give
a more relaxed exposition.

Several people who liked the naive approach of this early ver-
gsion have suggested that it should, finally, appear too, and the-
se notes seem a plausible format in which that can happen,

' Several people have done further work related to this paper
that seems to us quite significant. Among these, Avramov has shown
that there is a real obstructions to the asssociativity of the al-
gebra structure on & resolution [ Am, J. Math.103 (1981) 1-31] and
Kustin and Miller have shown that it vanishes for resolutions of
Gorenstein ideals of codimension 4 [Math, Z. 173 (1980) 171-184},
and, in a series of preprints, have worked out a piece of the cor-
responding structures theory for codimension 4 Gorenstein ideals,

Recelved February 1,1982

Both authors were partially supported by the HSF during
the preparation of this paper,
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§0= Introduction

‘In [SER, Prop 3], Serre proved that if R is a regular local
ring, and if I is an ideal of R of height 2 such that
R/I 18 Gorenstein, then I can be generated by two elements.
'Serre aiso remarked that the corresponding statement for height 3
ideals is false, The purpose of this paper is to prove the struc-
| ture theorem that does hold for the Gorenstein ideals of height 3,
namely that these ideals are characterized as the ideals of Pfaf-
fians of certain alternating matrices (Theorem 4; see below for de-
finitions), From this it follows, for example; that the minimai
number of generators of such an ideal must be-odd. Fundamental to
our proof is the fact that a minimal free resolution of any cyclic
R-module can be eﬁuipped with the structure of a {not necessarily
assoclative) graded commutative algebra,

Our structure tﬁeofem is modelled on the theorem of Hilbert that
characterizes the ideals I of height 2 in a regular local ring

R such that R/I 1is Macauly, as the i1deals generated by the

n x (n-1) minors of certain matrices, In its modern form,
this theorem actually shows that ideals of hoﬁological dimension 1
in any noetherian ring can be similarly characterized. [Bef. HIL,
BUR, B-E 3]. (The same proofs also yield a global version; the re-
sult 1s generally known by the slogan "Macasulay subschemes of co-
dimension 2 of a smooth scheme are determinantal", and attiibuted
variously;j Like the result of Hilbert, our structure theorem ad-
mits an extension to all local rings, which we will describe below,
though we have not been able to globalize it,

We will follow Bourbaki's terminology in saying that the height
‘of an ideal I of a noetherian ring 'R is the minimum of the
dimensions of the local rings B? where P runs through the
prime ideals containing I . The grade of I is the length of
a maximal R-sequence contained in I (Bourbakl calls this the.
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I-depth of R).

We will say that the ideal I 1n the local noetherian ring R
is Gorenstein of grade k if

a) grade I = k = hd R/I {(where hd denotes homological
dimension). '

b) Extg (B/I,R) ¥ R/I.

As is easily seen, this is equivalent to the requirement that
the minimal free resolution of R/I have the form

¢

" _
F:0—>R-—PP, 1> ,..,~>F;—> R  eand that F"= Homy(F,R)

% .
be a resolution of Coker( (Pk). It is a theorem of Serre's (BASS,

TH. 5.1] that an ideal I of a regular local ring R 1s Goren-
stein in this sense if and only if the factor ring R/I is a Go-
renstein ring. Our structure theorem actually characterizes the Go-
renstein i1deals of grade 3 in any local ring,

The structure of. Gorenstein ideals of grade > 4 remalns a myste-
'ry. 0f course, any complete intersection -~ that is, any ideal I
which can be generafed by {grade I) elements - is Gorenstein., It is
imown [B-E 2 and KUN| that a Gorenstein ideal of grade x ina
local ring cannot be minimally generated by k + 1  elements,

As was mentioned above, our structure theorem implies that any
Gorenstein ideal of grade 3 has an odd number of generators, It is
easy to show, using that theorem, that every odd number 2n + 13> 3
is actually achieved (see Section 5). It follows that for any k
and n> 0 there are Gorenstein ideals of depth k  that are
minimally generated by Xk + 2n (n > 0) generators.

It is known that if ¢ is a square nx n matrix of indeter-
ninates, then the ideal generated by the pX p minors of &
is a Gorens%e_in ideal of grade (n - p + 1)2 s minimally generated
by ( ;)2 eiements ([G-H] for p=n-1 , [SV.&] in general),
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Thus, for example, it is known that the minimum number of generators
of a Gorenstein ideal of grade 4 may be any even number 2 4 , or
any perfect square. 5 is known to be impossible, but there are
examples, due to Hochster, Kunz and Herzog, with 7, 11 and 13 ge~
nerators, 1t seems reasonable to guess that there should be Goren-
stein ideals of grade 4 mirimally generated by any number of gene~

rators 2> 6.

The structure theorem presented here can be used to 'iift' (in
the sense of Grothendieck's lifting problem -~ see [B-E—Q])
four generator ideals of height 3 in a 3~-dimensional Gorenstein
ring and Gorensteln ideals of grade 3 in any ring.

We will now describe the contents of thia paper. _

In the first section we show that any free resolutlon of a cyc-
lic module has a graded commutative algebra structure, for which
the differential of the resolution is a derivation (the algebra is
only homotopy-associative), and we deduce the fact we will need
about the algebra structure on a resolution of a Gorenstein ideal:

"multiplication into the top degree™ induces an isomorphism
between the resolution and its dual, Sections 2 and 3 review the
tools needed for the main theorem, and contain no proofs, Section 2
is devoted to a criterion for the exactness of a complex [B-E i],
vhile Section 3 is devoted to some facts about linear algebra which
were probably familiar to Cayley [CAY].

The fourth section ia devoted to the structure theorem itself,
The theorem is applied in Section 5 to give two classes of examples
of Gorenstein ideals of height 3,

We wish to express our thanks to S, MacLane, who clarified the
material in Section 1 for us,

We have recently learmed that Watanabe [WAQ] has independently
proved that Gorenstein ideals of grade three are minimally genera-—

ted by an odd number of elements, and conjectured that this pheno-
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menon should be connected with skew-symmetry, as we have shown.

§1, Coormutative algebra structures on resolutions
d d
et R Dbe a coomutative ring, and let 2 ...]‘:‘2 —>P, —>R
be a projective resolution, with Py = R. We define the symmetric
square S,(B) %o be '

where M 18 the graded submodule of P @® P generated by

{f g -~ (-1 )(deg £)(deg g)g ® f’f,g homogeneous elements
of _P_Io
Of course P@®P 1is not only a graded module, it is a complex
with differential

O g) = dt®@e + (-1)3%€ T a5,

It is easy to check that d(M) ¢ M, so S,(B) inherits the struc-
ture of a complex from P &)P. Moreover, each component of 32(_1?_)
is a projective R-module since for each k we have

S,(R), = ( I P:'_@Pj) + Ty

143=k
1<)

where

0 if k 1is odd,
2
T, = Aija if k  i8 of the form 4n + 2,

Sz(Pk/z) :lf. k is of the form 4n.

Thus 32(-]-?-) is a complex of projective R-Modules, and is isomoxr-
phic to .P in degrees (O and 1. By the comparison theorem for
projective complexes, there exists a map of‘ complexes Szﬁg) P
which extends the equality in degrees Q and 1 , shd the map ¢
may clear.;ly be chosen so that the restriction of ¢ to

34




(@ =ROE < S5(R)), 18 the canonical isomorphism

REDP e > By o If we write feg = ¢(f®g), where f,g€ P, and

fE & is the image, in 82(3), of £® g , then the conditions
~ that the map |
mst satisfy are essily seen to be equivalent to the statement
that ¢« makes E 1into a (non-associative) graded commtative
differential algebra, with differential 4 ,
and with structure map BR—>F given by the inclusion into degree Q.
FPurthermore, it follows from the homotopy uniqueness of ¢ that
this algebra is homotopy associative. If Py = 0 for 12> 4, it
is easily seen that E 1is actually aaaobiative.

We now specialize, and suppose that R 1is a local noetherian
ring, that I is a Gorenstein ideal of R of depth n , and that

4 dy

PO—>F, —>F P> R

is a minimal free resolution of R/I , equipped with a multipli-
cation +:2 ® F ->F , as above, Since I 1is Gorenstein, we may
make the identification P, = R , so that, for each k=n ,

the map P ®Fn-k_>Fn = R induces a map

"
BtP 2Pk o

Theorem 1; For each k<sn, s, 18 an isomorphiem,

Remark: Let K be the residue fleld of R , The multiplication
we have defined on P induces the usual algebra structure on
Toxﬂ(R/I,K). Thus our theorem extends fhe result of E&-G] who
proved that if R is regular, and R/I 1s Gorenstein, then
Tori(R/I,K) is a "Poincare algebra"™ - that is, the pairings

Torg(R/I,K) ® Torh , (R/I,K)—>Torb(R/1,K)
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are perfect (where n = depth I = hd.BRII). 0f course, if B is re-
gular, our theorem can be deduced immediately from this one, but

our proof is considerably simpler.

Proo? of Theorem 1: We claim that the following diagram commutes

up to sign:

40 4 dy

®n-1 B2 %4
L3 e o
4 dne1 , 4y

v v v
* ~ "< ad
F:0->R 5Py =D eeaDF P P, —>F

FOI‘, ir f & Fk » g an"k"’.' 1 then .f-g ePn‘l't = 0 ’ 80
0 = d,,,(28) = 4 (£)eg + (-1)Led (&),

o
or  dy(f)eg = “Led . 4(8)
Consequently,

(5,18, (£))(8) = 4, ()-8
=tLedn 11 (8)
= 8 (£)(d,_,.,4(8))
- & (e () (E) .

F .
Thus Bi-19k =td‘n-k+1‘ak s 88 required.

Now, since I 1s Gorenstein, both F and P*are minimal free
resolutions of R/I and it follows that any map of complexes
2-—)?_"" which extends an isomorphism in degree 0 must be an iego-

morphism. Thus each 8, is an isomorphism,
N ’

36



§2, How to prove that a complex is exact

The proaf of our main .jzheorem on Gorenstein rings hinges on

showing that a certain complex contructed from an alternating ma-
trix is exact. In this section we will review the technique that
we will use to prove this exactness, and state one further necessa-

ry result on complexes,

Let R bYe any commutative ring, and suppose f:A—>B 1is a map
of R-modules, We define the rank of £ t{o be the largest int'eger k

: k
such that the k' exterior power Af # 0. For any integer j>O0 ,

the map /{f:iA—P/j\B induces a map /ilA x dB’*—?—)R s Where » de-~

notes Homp(-,R), as usual, We will associate to f an ideal
I(f) S R by defining

.k k
I(f) = Image(AA X AB)* —>R) for k = rank £ ,

If A and B are free modules with given bases, and f corre-
sponds to a matrix ¢ , them rank f is just the size of the
largest nonvanishing minox of ¢ y B0d I(f) 1is the ideal gene~
rated by all the (rank f) > (rank(f)) minors of ¢ . (I(f) may
thus be viewed as the smallest non-zero Fitting ideal of Coker f,)

If I is an ideal of R , we will write VI for the radical
of I,
Bow let R be 8 noetherian ring, and let

4 4
n 1

be a complex of finitely generated fi'ee R-modules. In this paper,
we will use the following two results:

1
Theorem 2,1, The complex (¥) is exact if and only if, for all

k21,
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1) rank f, +rank f, ., = rank P, and
2) grade I(:L’kl > ke
Proposition 2,2, Suppose () is exact, Then for each k ,

VIee,, ) > /e,

Theorem 2,T 18 a special case of the main theorem of [B-E—1],
and Proposition 2,2 occurs as Theorem 2,1 a) in [B-E-_ﬂ .

§3, A little linear algebra
In this section we will briefly review the results on Pfaffians

that we will need, Por a modern, basis~free treatment of these mat-
ters, which also works for projective modules, see [B-E-Jg. An
exposition which uses bases, but which contains more, may be found

in [HEY].

Let R be a commtative ring, and let ¥ be 8 finitely gene~

rated free R-module, A map £:F—oF ™ 18 said to be alternating
if with respect to some (and therefore with respect to any) basis
and dual basis of P and P’ , the matrix of f is skew-symmetrioc,

and all its diagonal elements are QO .

Choose a basis of P , and ldentify £ and the matrix of f
with respect to the chosen basis of P and the dual basis of P™S
Suppose £ 1is alternating. Then

3,1) If rk P =n is even, there exists an element PL£(f)&R,
called the Pfaffian of £ , which is a polynomial function of the
entries of f , such that det(f) = (B£(£))2.

Let ¢1.‘l be the
(i,j)th entry of £ with respect to the chosen bases., For
151 ¢ jgn, let 1’13 be the matrix obtained from £ by de-
leting the ith and Jth rows and colwms, Suppose that n is
even, Then for any i, 3si<€n, the Pfaffian of f can be compu-
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ted from the formulas

3.2) PE(f) = ;]Zfi (-\-1)3 ¢ijrf(fij) »

(see [:BOU, Exer, 5, Do 86}).
Given eny free summand G of F , generated by an even number
2k of the basis elements &5 of P , we say that the Pfaffien

of the composite map

inclusion £ (inclusioh)‘
¢ ——>F —>P™ >6%

is "a Pfaffian of £ of order 2kv, We denote by Pf, (f) the
ideal of R which is generated by all the Pfaffians of £ of or-
der 2k, If 2k>n , we set Pf2k(f) = 0, We will denote by It(f)
the ideal of R .genqrated by all the minors of £ of order ¢ .

We now have, for each k ,

Ty 4 (f) S B, (),

3.3)
Py (£) 2 T, (£)2(Py () where X = (7) +1 .

Remerk: There are in fact more precise formulae which express the
minors of £ in terms of Pfaffians of f . See [B-E-4 ] or [HEY]
for details.

3.4) It follows from 3.3) that if f is alternating, and
rk £ = 2k-1 18 an odd number, then I(f) = IkaT(f) is nilpotent,

Now auppose that n 18 odd, Thenlwe have

3.5) rk(f)<n-1 and I (f) =(Pf, ,(£))? .
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§4. The Structure Theorem

Throughout this section, B will denote & noetherlan local ring
with maximal ideal J .

Theorem 4, 1) Let n =23 be an odd integef, and let F be a free
R-module of rank n, Let f:P—>F™ be an alternating map of

rank n-1 whose image is contained in JF™, If P, _4(f) has
grade 3, then Pf ,(f) is Gorenstein, and the minimal number of

generators of Pf _.(f) is n., .

2) Every Gorenstein ideal of R of grade 3 arises as in 1).

Corollary: The minimal number of generators of & Gorenstein ideal
of grade 3 1is odd,

Proof: This follows from part 2) of the theorem, since only
odd n are considered in part 7).

Remarks: 1) In the proof of part 1), we will construct a complex
whose existence shows that if P is a free module of odd rank n,
and f£:P—>F  1s an alternating map of rank n - 1, then

grade (Bf,_,(f)) < 3.

2) One further question that can be raised in connection with

- Theorem 4 is the uniqueness question: what can be said about two

meps £ and f£' , both satisfying the conditions of part 1) of
the theorem, and having

Pf, _((f) = Pf,_,(£7) 2

In case R 1s complete and 2 is a unit in R., the most desi-
rable conclusion heolds: there exists an automorphism &a:F—>F
such that

f' = a“f&.
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I#f R 1s not complete, we have not been able to show the existence
of such an a; but neither have we been able to find a counter-

example, \‘

Proof: 1) Choose a basis for P , a dual basis for ¥’%, and let ¢
be the mﬁtrix of £ with respect to these bases, Let )r; be the
Pfaffian of the aiternating matrix obtalined from 95 by deleting
the ith row and the ith column, and let _g:R-—?E be the map
whose matrix, in terms of the given basis of F 1is

N
i
¥=| %
'Y;,

L ]
-

Tu

Then, by virtue of the formule for the expansion of Pfaffians along
a row (i,e., formula 3.2), the ith coefficient of ﬁg is the
Pfaffian of the n +1 by n + 1 matrix obtained from f by re-
peating the ith row and the ith column; thus ¢r= Q.
Since,,.¢>*= -¢, we also have

Y= -y P= - "= o

so that

(¥) o->a Lo s

is a complex, We will prove that this complex is exact. Since
Coker g¥= R/(Pf,_,(£)), this will show that Pf,_,(f) is &
Gorenstein ideal,

To prove that *) 1is exact, we invoke Theorem 2.1, The condi-

tion on the ranks of the maps is easily checked, For we have assumed
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that rank f = n -1 , and by 3.5) the square of the ideal genera-
ted by the entries of X is In_1(f) #Q0, 850 rankg=1,

To check the second condition of Theorem 2,1 is even easier. For
we have I(g*) = I(g) = Pf, ,(£) , and I(£) = (Pf__,(£))2, which
has vthe same grade as an_1 {f). Since we have assumed that PLo 4 ()
has grade 3, condition 2 of Theorem 2.1 is also satisfied, so that

(*) is exact.

2) Next, suppose that I 4s a Gorenstein ideal of grade 3,

and let
£ £ £
3 2 1 _
( * ") 0—>Fy; —>F, —>F, —>E—>R/I—>0

be a minimal free resolution of R/I . We have seen in Section 1
that (*’) has the structure of a differential graded commutative
algebra, By Theorem 1 the multiplication in this algebre gives a
perfect pairing ¥,® ¥, —> Py o If we identify F, and R, then
this pairing yields an identification of P, with P, We will
shqw that with respect to this identification, f, is alternating,

n

Let ei}i—-d be a basis of F, , and let {Ej_ 111'1 be the dual
‘basis of P;. Let p ’{¢1ji be the matrix of f, with respect
to the basis ieif and -{_&1} + We want o show that '¢ii - - ¢ji
and that ¢ii = O, But ¢13 = (fz(ej))(ei), where we regard ta(ej)
as a functional on F,ye Of course, we may regard this lest term
88 & product with respect to the algebra structure of (*™ and
write

¢id = (f5(e5))ee; €7, =R,

Applying f, , and using the formula for the differentiation of
a product, we get

3¢ Pyy) = Titaeg) ey + fyle) Tle;) = 2y(ey) Ty(ey)
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since f,f, = 0, But we knmow from Section 1 that the product
in (**) 1is strictly skew-commtative, Since fz(ej) and tz(ei)
both have degree 1, we see that

£,0 ) = - 2530 Pyy) and
£4( ;1) = 0.

Since 1’3 is a monomorphism, if_ follows that

¢1J = - ¢;ﬂ. and ¢11 = O,

Thus tz is alternating.

We now show that Pf,_,(f,) = I, First of all, we have
rank £, =n - 1 bx Theorem 2,%, and depth I(ra) 3 by Proposi-
tion 2.2, Consequently, it we view £, as a map from F, to
P.l = l'z s then !'2 w:|.11 satiafx all the conditions of the first
part of the theorem, 4s in the proof of the first part of the theo-
rem, we can construct a map g:li—?E‘E 8o that
is exact, and so that I(g) = Bf,_.(f). Since both g and f‘l
are kernels of fz = - %, 5 we see that there mst exist a unit
u 6B such that f£"=gu, f£; =~ug™, and I = Pr_,(f), This

concludea the proof,

§5, Some eiamples of Gorenstein ideals

a) Generic Gorenstein ideals of height 3,
Let k be a commutative ring, and let G, (k) be a generic
alternating (2n + 1) X (2n + 1) matrix over

ST rprpypeeey LN
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0 Ep e e Xyomyg

Gn(k) . . - .
¢ « Xon 2n#t

“Xi2n41e.. 20 2n41 | o

Proposition 5,1, Let k bea field, Por every n >1 , Pfaffian
(Gn(k)) is a Gorenstein ideal of height 3 in Bh(k) s 80 that
%(k)’/szn(Gn(k)) is a Gorenstein ring, Moreover,
R,(k)/Pf, (G (k)} is a normal domain, non-singular in codimension

6.

Proof, By 3.5) and the fact that G (k) is "generic®, we have
rank Gn(k) = 2n, Thus part 1 of Theorem 4 shows that Pon(Gn(k)) ,
is & Gorensiein ideal if it has grade 3. Since Bh(k) is a Macau-
lay ring, grade (Pf,, (G, (k})) = height (Pf, (G (k))).
However, it is known [ROO,p. 196_] that

height (Bf, _,,(G (k))) = (€+ 1)(2€+ 3).

In particular, height (Pon(Gn(k))) = 3, Thus we have the first
assertion of Proposition 5,.1.

To prove that S = Rn(k)/Pon(Gn(k)) is a normal domain, we
will use the Krull-Serre characterization EmAT, Th. BQJand verify
the criteria 3, and B, Since S 1is Gorenstein and thus, in
particular, Macaulay, we need only show that Ry holds for 8§;
that 18, that every localization of S at a prime of height 1 is
regular. What we qill actually see ig that if P is any prime not

Y
\

containing I = Pon_z(Gn(jk))/Pfan(Gn(k)) s then Sp is regumlar,
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Since height (szn_z(an(k))) =10 , the height of I is 7 s=o
this will show that S is non-singular in codimension 6 as well,

Tet A beany (2n - 2)x é2n - 2) Pfeffiasn of Gn(k) and
let U be the multiplicatively closed set generated by 4 . It 18
not difficult to see that Rn(k)U/Pfan(G (x)) 1is isomorphic to

Bh(k)ull’fz(ﬂ.‘(k)). Por, assume that A is the

(2n - 2) X (2n -~ 2) Pfafﬁan of the submatrix of G (k) obtained
by omitting the first three ¢columns snd rows, Since A 18 inver-
tible in %(k)g., Gn(k) may be transformed over Eln(ls:)g to

0  ¥2 Y13

O

'V1a_ o Y23

“T43 V23 0
0 01 1
| -11 0

where the yij are polynomials of the form
.yi;] = x._m 4 (higher order terms),

¥e therefore see that Bh(k)uinanmn(kn is a localization of
a polynomial ring., Thus if P is a prime of 3 not containing
all the Pfaffians of order 2n - 2 of %(k) ’ .then one of these
Pfaffians ig invertible in Sy 8o that S5p is a localization of
a regular ring., This shows that S is a normal ring.
Since Przn(Gn(k)) is a homogeneous ideali,.Spec S 1is connected,

g0 S is a normal domain, non~singular in codimension -6.

b) As was mentioned in the introduction, t_his investigation
began from a desire to known about the Gorenstein ideals of

height ( = depth) 3 in regul_ar' local rings. In particular, we may
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consider rings of the form k[_'[x,t,zj] y» Where k is a field

and X, ¥, Z are indeterminates, By part 2) of Theorem 4.1, any
depth 3 Gorenatein ideal in this ring must have as its minimal
numbey of generators an odd number .>, 3. We now give an example

to show that all these odd numbers do occur,

Let n>>3 be odd, and let R = k[[X,Y,z]]. Let H_  be
the n X n nmatrix of the form: '

I 0.......0 z

0 Y ooeoooseZ O

X 0. . .

N 2 .
. - 0., .
. ~Z e .
. . .
. . X o
o -z ~x 0 ¥
T 0 .eeeea.0-X O

Proposition 5,2, 2 S (Hn) is 8 Gorenstein ideal of height 3
in R,

Proof, An easy computation shows that Pf,_;(B;) contains
powers of X, Y, Z, Thus height (Ptm__1 (H,)) = depth (Pf _, R, )= 3,
and an application of part t of Theorem 4,t finishes the proof,
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A NOTE ON ALMOST COMPLETE INTERSECTIONS

3 -

p

Pet@r Schenzel

In the following let R be a local noetherian Gorenstein ring with

d = dim R . We denote by M resp. k its unique maximal ideal resp.
its residue field. An ideal I cR of height g is called an almost
complete intersection (resp. a quasi-Gorenstein ideal), if the minimal
number of generators u(I) of I satisfies .u(I) € g+1 (resp.the
canonica} module KR/I - Extg(R/I.R) of R/I 1is isomorphic to R/I).
In this paper we want to establish a duality between almost complete
intersections and quasi-Gorenstein ideals. To this end we recall the de-
finition of linkage. Two ideals I,J¢R are linked by a complete
intersection x of height g , if (a) I,T7 are of pure height g
with x ¢ InJ , and (b) I=xR :J and J = xR : I , compare

Peskine and Szpiro [6].

Proposition 1.
a) Let I,JcR be ideals linked by a complete intersection x . If

J is a guasi-Gorenstein ideal, then I is an almost complete inter-
section.

b) Let .I be aﬁ almost cavplete intersection of pure height which is
& generic complete intersection. Then th;re exists a complete inter-

section x c¢I , such that I and. J:a_ER t I are linked, and J is

a quasi-Gorenstein ideal.
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