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ANGULAR MOMENTUM, CONVEX POLYHEDRA
AND ALGEBRAIC GEOMETRY

by M. F. ATIYAH"

1. Introduction

The three families of classical groups of linear transformations (complex, orthogonal,
symplectic) give rise to the three great branches of differential geometry (complex
analytic, Riemannian and symplectic). Complex analytic geometry derives most of its
interest from complex algebraic geometry, while symplectic geometry provides the
general framework for Hamiltonian mechanics.

These three classical groups "intersect" in the unitary group and the three branches of
differential geometry correspondingly "intersect" in Kahler geometry, which includes the
study of algebraic varieties in projective space. This is the basic reason why Hodge was
successful in applying Riemannian methods to algebraic geometry in his theory of
harmonic forms.

In the past few years it has been realised that some of the ideas from symplectic
geometry can also be applied to algebraic geometry. The key notion is that of angular
momentum and the main technical result is a convexity theorem [1] [6] which asserts
that the simultaneous values of commuting angular momenta form a convex
polyhedron.

My aim in this talk is to illustrate some of these new ideas and I will begin in the
next two Sections by describing two results connecting algebra with convex polyhedra.
These appear quite unrelated and neither is in a geometric form. Nevertheless I will
show in subsequent sections how they both fit elegantly into the symplectic framework,
which is explained in Section 4. In Section 7 I will discuss briefly the very important
application to geometric invariant theory. Finally in Section 8 I will explain the "exact
integration formulae" of Duistermaat and Heckman [5]. This is of interest not so much
in algebraic geometry but as a prototype of infinite-dimensional counterparts which
arise as models in theoretical physics.

2. Eigenvalues of Hermitian matrices

An old result of Schur [13] asserts that the diagonal entries (nu..., fin) of an nxn
Hermitian matrix satisfy some inequalities relating them to the eigenvalues (Xl,...,Xn). If
both sequences are arranged in descending order these inequalities are:

(2-1)
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the last equality coming from the trace. Horn [7] proved the converse, i.e. if the X, \i are
related by (2.1) then there exists a Hermitian matrix with the iit as diagonal entries and
the Xt as eigenvalues.

The inequalities can be cast in a more geometric form by interpreting X and fi as
vectors in W and considering their orbits ~LnX and Zn/i under the symmetric group £„
(taking all permutations of the coordinates). Then (2.1) is equivalent to

C M (2.2)

where C denotes the convex hull of C. For a discussion of the equivalence of (2.1) and
(2.2) see [7] or [3; Section 12]. For « = 3 the convex hull Z3A is in general a hexagon
lying in the plane Xx + X2 + X3 = const, (see Fig.). If two of the eigenvalues coincide this
hexagon becomes a triangle. The condition (2.2) asserts that n lies inside (or on) the
hexagon determined by X.

Figure 1

The original proof of Schur-Horn is in [7] while another proof, including a
generalisation to Lie groups (other than U(n)) was given by Kostant [10]. The proof by
symplectic methods which will be outlined later is given in [1] [6].

3. Solutions of polynomial equations

Let z = (z1,...,zn)eC" be a complex n-vector with no component zero, a = (oc1,...,an)eZ"
an integral n-vector and denote by za the monomial

Now let S be a finite subset of Z" and consider the system of n equations

neS
(3.1)
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where the coefficients c{ are assumed "general". The question we pose is to determine
the number N(S) of solutions of (3.1).

Remark. Since the components af of a may be negative integers (3.1) is an equation
for finite Laurent series. However, this generality is illusory since we can multiply
by a suitable monomial zp to make all equations polynomial. Clearly N(S + P) = N{S).

As in Section 2 let S denote the convex hull of the finite set S c Z ' c K " . This may be
called the Newton polyhedron of the set of equations (3.1). Then we have the following
elegant formula for N(S):

AT(S) = n!vol(S), (3.2)

where vol stands for the standard Euclidean volume in IR". This formula is due to
Koushnirenko [11], but the symplectic proof we shall give later is somewhat simpler.

There is an interesting generalisation of this formula due to Bernstein [4] for the case
when the n equations (3.1) involve different monomials, corresponding to different
Sj-cZ". In this case (3.2) gets replaced by

N(S1,...,Sn)=V(S1,..Jn) (3.3)

where V is the Minkowski mixed volume of the n Newton polyhedra. This will also be
explained in Section 5.

4. Angular momentum

The conservation of angular momentum in ordinary Newtonian mechanics is a
consequence of the rotational invariance of Newton's laws of motion: in the same way
as translation invariance yields the conservation of linear momentum. Let me recall
briefly the general principles of Hamiltonian mechanics underlying such classical
conservation laws.

One begins by introducing the basic exterior differential 2-form on phase-space:

where the qj,pj are position and momentum coordinates respectively. Then every
function F(p,q) has a differential dF which via the 2-form co gets converted into the
vector field

x = y 5 F _d 3F__d_
F ydpj dqj dqj dp-

Formally dF is the interior product of XF with co: since co is non-degenerate this
determines XF uniquely. The fact that dF is a closed 1-form (i.e. ddF-0) guarantees
that XF preserves co. Conversely any vector field preserving co gives a closed 1-form
which (at least locally) is the differential of some function F (unique up to an additive
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constant). If F is the Hamiltonian H of the system then XF is the Hamiltonian flow
whose integral curves give the dynamical evolution. For example, for a free particle of
unit mass H=JY,JPJ- Other conserved quantities generate flows which preserve H. Thus
(in 3 dimensions)

is the angular momentum about the q3-axis and the corresponding flow XF generates
rotation about this axis. In particular the integral curves are all closed orbits (circles)
with the same periods.

Another example, more pertinent for our purposes, is given by taking

This represents n uncoupled harmonic oscillators. Each individual

is conserved and the corresponding flow generates rotation in the (Pj,qj) plane. These
flows all commute so that we have an action of the n-dimensional torus T" on our
system. If we introduce the complex variables

then the n functions Hj define the map

given by (zu..., zn)-^j(\zi\2,..., |zn|
2)- This is an example of the moment map. Note that its

image is just the positive quadrant in IR": this is the origin of the convexity results we
shall encounter.

If we restrict ourselves to a fixed energy surface, say H = \, of this system we get the
sphere

On this the Hamiltonian flow acts, generating the scalar multiplication

so that the quotient space (or orbit space) is just the complex projective space Pn_t(C).
The original symplectic form co is of course degenerate when restricted to the energy
surface S2""1, but the degeneracy is just along the orbits of the Hamiltonian flow. Since
co is also invariant under this flow it follows that co descends to give a non-degenerate
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closed 2-form coj on Pn_!(C). This is the famous Kahler form of algebraic geometry. To
get the correct normalisation one computes the Gaussian integral \R1,e~Hofjn\ in two
different ways and finds that

f o>r1=(27r)"-1.
Pn-1

Hence Q = coJ2n represents the generator of H2(.PI1_1(C), Z).
The functions Hj=^\zj\2, regarded now as functions on Pn-1(C), satisfy the constraint

l, and the image of P^^C) under the moment map is the (n — l)-simplex
spanned by the points (1,0,..., 0), (0,1,0,..., 0),... (0,..., 0,1).

More generally if a torus T" acts symplectically on a manifold M (i.e. preserving the
non-degenerate closed 2-form co defining the symplectic structure), we have a moment
map

provided the n "Hamiltonians" are globally single-valued (e.g. if M is simply-connected).
Actually, U" here should more invariantly be viewed as the dual t* of the Lie algebra

t of T". Moreover, under appropriate circumstances one can define moment maps for
non-abelian groups. We shall encounter this in Section 6.

The importance of these ideas for algebraic geometry lies in the fact that every non-
singular algebraic variety in projective space is symplectic, the symplectic (Kahler)
structure being inherited from that of projective space. In the subsequent sections I shall
describe a number of applications of the moment map in algebraic geometry and in
particular I shall show how the problems of Section 2 and 3 fit into this framework.

5. Complex torus orbits

Let me return now to the problem in Section 3 and rephrase it in more geometric
form. We note first that a vector zeC" with no zero components is just a point of the
complex n-dimensional torus T", and oceZ" represents a 1-dimensional (holomorphic)
representation Va. A finite subset ScZ" therefore defines an n-dimensional
representation

aeS

of T". Let {va} be a corresponding system of coordinates for V, so that the n general
linear equations

E c X = 0 J = l , . . ,n
aeS

define a vector subspace W<zV of codimension n. The solutions of the equations (3.1)
represent the intersections of W with the subvariety X' of V given parametrically by
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Note that X' is just the 7>orbit of the unit point (1,1,..., 1) in V. Moreover if

S generates the lattice Z" (5.1)

then X' is a faithful orbit so that the number N(S) of solutions of (3.1) is just the
intersection number of X' and W.

We now pass to the projective space P(V), then the T"-orbit X of the unit point in
P(V) is just the image of AT'. Moreover if

the differences a. - j? (a, J? e S) generate Z" (5.2)

then X is also a faithful orbit and X'^X. Thus N(S) is also the intersection number of
X and P{W) in P(V). But X (or rather its closure X) is an algebraic subvariety of
dimension n and its intersection number with a generic P(W) of codimension n is by
definition its degree (note that dim^X — X)<n and so does not meet a generic P{W)).
But this degree can also be computed as the integral

x

where Q is the normalised Kahler form on P(V), representing the generator of integral
cohomology. Equivalently, since Q"/n\ is the induced symplectic volume element on X,

N(S) = n\vo\(X). (5.3)

At this point we bring in the moment map

relative to the action of the compact torus T" (i.e. all |z,| = 1) and the symplectic form Q.
Note that Q depends on a choice of Hermitian metric on V and we assume this is
TMnvariant. Now n, is just the composition of the standard moment map

fik:P(V)->k*

for the standard action of TN (where N = dimc V = Card S, and k denotes its Lie algebra)
and the linear map

dual to the map

associated to the representation S:T"-*TN. Now in Section 4 we saw explicitly that the
image of \ik was the standard (N — l)-simplex. Since we are now using the normalised
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symplectic form Q = a>/2n the vertices of the simplex are the generators of the integer
lattice L*d* dual to the lattice Let which is the kernel of the exponential map t-*T".
Under s* these vertices become the points of S<=T* (the "weights" of the
representation). It follows that the image n,(P{V)) is the convex hull S.

In fact a general result proved in [1] shows that the image under /i, of the generic
T"-orbit X is the whole interior of S, and that .Y->int(S) (which is the moment map for
the action of T" on the symplectic manifold X) is a fibration with fibre T". It follows that

vol(X) = vol(T")vol(S). (5.4)

If we normalize so that vol(T")=l then this determines the normalisation of the
Euclidean volume on t*. Together with (5.3) this gives the required formula (3.2), namely

JV(S) = n!vol(S).

Recall finally that this proof was under the assumption (5.2). However this presents no
real problem. In the first place if the differences a — /? generate a lattice of lower rank
both sides of (3.2) are zero. On the other hand if this is a lattice of finite index in Z" it is
the weight lattice of a quotient of T" by a finite group F. Working with this new torus
and multiplying both sides of (5.4) by the order of F then gives (3.2).

The observation that Koushnirenko's formula (3.2) can be deduced from the convexity
theorem of [1] is due to V. Arnold and A. G. Hovanski. The same methods also yield
Bernstein's generalisation (3.3). For this we consider the representations Vlt..., V„
defined by the subsets Su...,Sn of t* and form

M = P(V1)xP(V2)x-xP(Vn).

For any choice of positive integers Xu...,Xn we consider M a s a symplectic manifold
with symplectic form

The corresponding moment map

is then given by

where /i, is projection of M onto the r-th factor followed by the natural moment map of
P(V,). Restricting this to a generic T"-orbit X and applying the convexity result of [1]
we deduce

degAX = n! vol nk{X) = n! vol {LkjiiX)} = n! vol
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where degA is the degree relative to the class of Qx, i.e. is the value of the cohomology
class £yx on X. This is clearly a polynomial in the Xi of degree n and the coefficient of
A1A2...AB is just n\ times the number N(Su...,Sn) of Section 3. On the other hand the
Minkowski mixed volume V(Slt..., Sn) can be defined as the coefficient of X^X2... Xn in

This establishes (3.3). Thus (3.3) is just obtained by "polarising" (3.2).

6. Homogeneous symplectic manifolds

The main convexity result of [1] [6] is that the image under the moment map /i
of a compact symplectic manifold M acted on by a torus T" is a convex polyhedron.
When M is a Kahler manifold (e.g. a projective algebraic manifold) there is a refinement,
proved in [1], that the image of any T"-orbit X is also (the interior of) a convex
polyhedron. Since the closure X may have singularities (but is otherwise symplectic) this
can be viewed as a generalisation of the first result. Moreover for Kahler manifolds the
first result is a consequence of the refinement since, for generic orbits X, one has

As we saw in Section 5 Koushnirenko's formula (3.2) is essentially a consequence of
the refined convexity theorem about T"-orbits. I shall now explain how the Schur-Horn
theorem of Section 2 is a special case of the general convexity theorem for symplectic
manifolds.

We first reformulate (2.2) in terms of orbits of U(ri) acting by conjugation on the
space ye of Hermitian matrices. An orbit Mx consists of all Hermitian matrices with
given eigenvalues l = (X1,...,Xn). Taking the diagonal part of such a matrix corresponds
to the orthogonal projection

using the standard Euclidean metric on #? in which

The inclusion (2.2), together with its converse, is then equivalent to

"Q (6.1)

so that n(3^) is in particular a convex polyhedron (lying in the subspace SA; = constant).
To see that (6.1) is a special case of the convexity theorem of [1] [6] it remains to

observe that $? has a natural symplectic structure invariant under U(n), and that n is
just the moment map for the action of T" c U(n). This is well-known and is a special
case of the general result of Kirillov [8] that orbits M of any Lie group G acting on the
dual g* of its Lie algebra have a natural symplectic structure (and the inclusion M-*g*
is just the moment map for the action of G). When G is compact we can, using the
Killing form, identify the Lie algebra with its dual. Finally when G = U(n) its Lie algebra
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is iffl. The symplectic form coh at a point h e Mx is given by

Here £, r\ e iJf represent the tangent vectors to MA at h given by the infinitesimal action
of the Lie algebra of U{n).

In fact the orbits Mx are even Kahler manifolds and, if 2%k is an integral vector (so
that A belongs to the integral weight lattice of t*), then Mx is actually a projective
algebraic variety. If V x is the irreducible representation of U(n) indexed by A (i.e. A is the
Young diagram, partition or maximal weight depending on your preference) then Mx

occurs as an orbit of U(n) in P(VX): the orbit of the unique "maximal weight vector".
From the results of Section 5 we can therefore give an interpretation to the volume of
the convex polyhedron ZnA. Namely

where X<=MX is a generic TJT^orbit (T""1 the maximal torus of the projective unitary
group PU(n)) and degA is the degree in the projective space Vx.

As an example, and a check on our normalisation, take 27tA = (1,0,0,...,0), then
VX = C" with standard action of U(n) and X is the whole projective space P(C"), so that
degAX = l. Since the (n— l)-volume Vn_x of the standard simplex in W (with vertices
(1,0,..., 0) etc.) is given by

V - ^ ~
"-1 (n1)!

we see that (6.2) checks in this case.
When the eigenvalues A( are distinct the orbit Mx is the flag manifold U(n)/T":

different general A now correspond to different symplectic structures. By varying A in
(6.2) we obtain enough numerical formulae to determine completely the homology class
of X in U{n)/T". This is because the cohomology of the flag manifold is multiplicatively
generated by the different symplectic classes. Moreover, using the polarised form of (6.2)
as explained in Section 5, we obtain explicit formulae for the values of all the
monomials in these classes on X. These formulae are in terms of the Minkowski mixed
volumes of the polyhedra Ẑ A".

All the preceding discussion works without essential change when U(ri) is replaced by
any compact Lie group G and J f by the Lie algebra of G.

7. Invariant theory

We saw in Section 4 that the complex projective space Pn_1(C) is naturally the
reduced phase-space (or symplectic quotient) for the scalar action of the unit circle S1

on C". That is we fix the energy level H = 1 where H is the Hamiltonian and then divide
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out by the Hamiltonian flow. On the other hand, by definition,

Pa_1(C)=(C"-0)/C*

where C* is the group of non-zero complex scalars (and so the complexification of S1).
The fact that the symplectic quotient and the algebro-geometric quotient coincide in this
case turns out to have a far-reaching generalisation which I shall now explain.

Let G be a compact Lie group, Gc its complexification (e.g. G = SU(n), Gc = SL(n,C))
and let V be a holomorphic representation space of Gc. Then Gc acts on the projective
space P(V). Let XcP(V) be an algebraic sub-manifold preserved by the action of Gc. In
this situation one would like to divide X by Gc and obtain a "quotient projective
variety". Because Gc is non-compact there are difficulties in this process (cf. the action of
C* on C"). To obtain a quotient one must first restrict to a certain open set XssczX (the
semi-stable points which I shall define shortly). The required quotient Y is then a
quotient of Xss although some fibres of the map Xss-+ Y may consist of more than one
Gc-orbit.

This formation of quotients is part of Mumford's Geometric Invariant Theory [12].
Classical invariant theory was formulated more algebraically by associating to X its
homogeneous coordinate ring

I(X) = ideal of polynomials vanishing on X

and considering the subring of A(X) invariant under the projective action of Gc (i.e.
those / with f{gz) = k(g)f{z) for some scalar character k of Gc).

These invariant polynomials are the natural functions to use to define a projective
embedding of the quotient variety Y. This shows at once that the "bad points" in X
which should be discarded are the common zeros of the (non-constant) invariant
polynomials. The semi-stable part Xss of X is by definition the complement of these bad
points.

If we fix a Hermitian metric on V invariant under the compact group this defines a
G-invariant Kahler metric on P(V) and hence also on X. We can then form the
associated moment map

where g is the Lie algebra of G. Here G need not be abelian but the only difference this
makes is that we now have a non-trivial action (by conjugation) of G on g*. The
moment map is compatible with the action of G on both sides.

Now form the symplectic quotient n~l(0)/G. It turns out that this can always be
identified with Mumford's algebro-geometric quotient Y [12; p. 158].

I shall illustrate this with a simple example. Take G = SU(2), GC = SL(2,C), K=Cn + 1

the irreducible representation given by homogeneous polynomials f(z1,z2) of degree
n + l. Then P(V) represents unordered sets of n points on Px and Gc acts by projective



ANGULAR MOMENTUM 131

equivalence. For the trivial case n = 1 the moment map

embeds Py as a 2-sphere S2c=IR3 (this is the simplest example of the homogeneous
symplectic orbits discussed in Section 6). For general n the moment mapf \i (for a
suitable normalisation) assigns to n points on S2c[R3, their centroid. Thus n~l(0)
consists of all "balanced" sets of points on S2 (i.e. with centroid at 0). The symplectic
quotient therefore parametrises balanced sets up to rotational equivalence (this being the
action of SU(2) on R3). On the other hand the semi-stable sets are those in which no
point has multiplicity greater than n/2. When n is odd Mumford's quotient Y is actually
the space of semi-stable orbits. The identification of the symplectic and algebro-
geometric quotients means (for n odd) that every semi-stable SL(2, C)-orbit contains a
unique balanced S[/(2)-orbit.

F. Kirwan [9] has used this symplectic approach to Mumford's quotient to calculate
its cohomology. The basic idea is to use, as a Morse function, the norm-square of the
moment map. In our simple example this becomes the distance-squared of the centroid
(of n points on S2) from the origin. The semi-stable sets turn out to be those which flow
(along paths of steepest descent) towards balanced sets. "Bad sets" flow towards other
critical points of the function, and these are easily seen to consist of anti-podal pairs on
S2, one with multiplicity k>n/2 and the other with multiplicity n — k. Such complete
information about the higher critical points then leads, by suitable Morse theory
arguments, to information about the minimum (i.e. the balanced sets).

Kirwan's analysis of this Morse function relies heavily on the convexity properties of
the moment map for a torus action which I have discussed in earlier sections.

8. Exact integral formulae

The Koushnirenko formula of Section 3 was proved, as an integral formula in Section
5, by using the moment map for a single T"-orbit, while in Section 7 we have been
discussing the geometry of the space of orbits. There are also interesting integral
formulae in connection with these quotient spaces. These can be formulated in the
purely symplectic context so that we do not need a complex Kahler structure (although
they will of course apply in the special case of Kahler manifolds).

The main result is due to Duistermaat and Heckman [5] and it applies to the moment
map

fi:M->t*

associated to the action of a torus T on a compact symplectic manifold M. One
formulation is the following:

The direct image under n of the symplectic (Liouville) measure on M is a piece-wise
polynomial function (times Lebesgue measure). (8.1)

There is an alternative formulation of (8.1), obtained by taking Fourier transforms,

fStrictly speaking this is the moment map for ordered sets of n points.
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which is somewhat more enlightening. For simplicity I shall describe this in the special
case when the torus T is a circle and the fixed points {P} of the action are assumed
isolated. We then have a single moment function H (the Hamiltonian of the circle
action) and the Fourier transform of (8.1) gives the integral formula:

„ e-itH(P)

L'-'ji-lwan- (82)

Here co is the symplectic form on M, 2n = dim M and e(P) is an integer attached to the
infinitesimal action of the circle on the tangent space at P (the product of the weights of
this representation).

The interest of (8.2) is that the principle of "stationary-phase" gives an asymptotic
expansion as t-»oo in terms of behaviour near the critical points of H, which are just
the fixed points P of the circle action. The R.H.S. of (8.2) is precisely what stationary-
phase gives (the expansion consists here of just one term for each P). Thus (8.2) asserts
that the stationary-phase approximation is exact for a Hamiltonian coming from a circle
action, and the same holds more generally for torus actions and arbitrary fixed point
sets (not necessarily isolated).

It is not hard to see that the polynomial nature of iija}"/n\) is equivalent to the
exactness of stationary-phase so that (8.1) and (the general case of) (8.2) are indeed
equivalent.

There are several variants of the proof of (8.1). In addition to that in [5] there is an
alternative approach in [2] which emphasises its essentially cohomological nature.

Stationary-phase approximation is very widely used in mathematical physics, even
when M is infinite-dimensional (i.e. some function space), and a general principle telling
us when this approximation is exact is clearly of great value. A number of interesting
infinite-dimensional examples, including loop spaces of manifolds, fit into the symplectic
framework we have been discussing and do give exact formulae. It is therefore an
interesting problem to generalise (8.2) to a suitable infinite-dimensional setting. This will
of course involve some regularisation of formally infinite quantities as in quantum field
theory.

In conclusion I hope that this rather rapid survey has given some indication of the
usefulness of the moment map in quite a variety of algebraic and geometric contexts.
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