CONVEXITY AND COMMUTING HAMILTONIANS

M. F. ATIYAH

§1. Introduction

A well-known result of Schur [9] asserts that the diagonal elements (a,, ..., a,) of
an nxn Hermitian matrix 4 satisfy a system of linear inequalities involving the
eigenvalues (4,, ..., 4,). In geometric terms, regarding a and 4 as points in R" and
allowing the symmetric group Z, to act by permutation of coordinates, this result
takes the form

(1.1) ais in the convex hull of the points T, 4.

The converse was proved by A. Horn [5], so that all points in this convex hull occur
as diagonals of some matrix A with the given eigenvalues. Kostant [7] generalized
these results to any compact Lie group G in the following manner. We consider the
adjoint action of G on its Lie algebra L(G). If T is a maximal torus of G and W its
Weyl group, then it is well known that W-orbits in L(T) correspond to G-orbits in
L(G). Now fix a G-invariant metric on L(G), so that we can define orthogonal
projection. Then Kostant’s result ist

(1.2) The orthogonal projection of a G-orbit onto L(T) coincides with the convex hull
of the corresponding W-orbit.

Clearly (1.2) reduces to (1.1) when G is the unitary group U(n). we replace the
Hermitian matrix A by iA, and note projection here amounts to taking the diagonal
part.

The purpose of this paper is to put (1.2) into the more general context of
symplectic geometry. Thus we shall prove a general result which reduces to (1.2) in
the homogeneous case. For Kahler manifolds we shall go further and prove a more
delicate result which, in the homogeneous case, yields an interesting refinement of
(1.1)y and (1.2).

Our proofs are quite different from those of Kostant (at least for the difficult part)
and depend on some Morse theory ideas first employed by T. Frankel [2]. There is
also an interesting connection with the ideas of toroidal compactification as
developed by Mumford and others [8].

To formulate our main result we recall the rudiments of symplectic geometry.
First a symplectic manifold M is a differentiable manifold of even dimension with an
exterior differential 2-form w which satisfies

(i) do =0,

(ii) w is of maximal rank.
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A real-valued smooth function f on M defines a Hamiltonian vector-field X, which
corresponds to the 1-form df using the duality defined by w. The Poisson bracket
{f,g} of two functions is defined by

{f.g} = X,(9)

and is skew-symmetric: f and g are said to Poisson commute if {f, g} = 0. A vector
field X is said to be periodic if it generates a circle action (so that all orbits are closed
with periods dividing some number T). It is said to be almost periodic if it generates a
torus action. Our main result is then the following

THEOREM 1. Let M be a compact connected symplectic manifold and let f,, ...,f,
be n real-valued functions which Poisson commute and whose Hamiltonian vector fields
are almost-periodic. Then the map f: M — R" given by the f; satisfies

(A,) all (non-empty fibres) f~'(c) are connected (c € R");
(B,) the image f(M) is convex.

Moreover if Z,, ..., Zy are the connected components of the set Z = M of common
critical points of the f; then f(Z;) = c; is a single point and f(M) is the convex hull of
Croeees Cn.

Remarks. 1. The essential case of Theorem 1 is when all f; have periodic
Hamiltonian fields so that we have a symplectic action of the n-torus T" on M.
Conversely such an action leads to functions f,, ..., f, as in Theorem 1 provided the
first Betti number of M vanishes. The map f is usually called the moment map and is
canonically a map M — L(T)*

2. Replacing f, by f? (say) destroys the convexity of the image and shows that
the periodicity assumption is essential.

3. Although we are mainly interested in (B,) and the subsequent statement
about the points ¢,,...,cy, we have formulated (A,) also because (A,) actually
implies (B, ). Note that (B,) is trivial, since any compact connected set on the real

line is an interval, while (A,) and (B,) are non-trivial, and represent the first
interesting cases.

4. For any Lie group G any orbit M in the dual L(G)* of the adjoint
representation has a natural homogeneous symplectic structure. Any element
ue L(G) is a linear function on L(G)* and so defines a function on M. The
corresponding Hamiltonian vector field is just the natural action of u on M (see [6]).
Taking u,,...,u, to lie in the Lie algebra of a torus T < G we are then in the
situation of Theorem 1 provided M is compact. If G is compact, so is M, and we can
identify L(G) with L(G)* by an invariant metric. This now reduces to Kostant’s
situation yielding (1.2): it is easy to identify our points c,, ..., cy with the W-orbit.
Note that (A,) asserts (for G = U(n)) that the set of n x n Hermitian matrices with
given eigenvalues and given admissible diagonal elements is connected.

We turn now to the case when M is a compact Kahler manifold. Thus, in
addition to being symplectic, M is also Riemannian and complex analytic, these
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three structures being compatible in various ways. When we consider an action of
the torus T" on M we shall now require it to preserve all structures: in fact because of
their compatibility it is enough to preserve just the Riemannian metric and either of
the other two structures (as proved in [2] even this last requirement can be
dropped). Now the automorphism group of any compact complex manifold is a
complex Lie group and so the action of T" extends to a holomorphic action of its
complexification T7: this “complex torus” is a product of n copies of the
multiplicative group C* of complex numbers. Our next result refines Theorem 1 by
describing the behaviour of the functions fi, ..., f, on the orbits of T%:

THEOREM 2. Let M be a compact Kdahler manifold and let f,,....f, be n real-
valued functions which Poisson commute and whose Hamiltonian vector-fields are
periodic and generate an n-dimensional torus T. Let T, be its complexification, Y an
orbit of T, acting on M and Y its closure. Finally let Z; (j = 1,...,p) be those
components of the common critical points of the f; which intersect Y and put
¢; =f(Z;)eR". Then the map f:Y — R" satisfies

(a) f(Y) is the convex polytope P with vertices c,, ..., c,,

(b) For each open face ¢ of P, the inverse image [~ '(c) in Y consists of a single

T -orbit,

(c) f induces a homeomorphism of Y/T onto P.

RemArks. 1. Theorem 2 applies whenever we have a complex torus acting
holomorphically on a compact connected Kéhler manifold with at least one fixed
point (see [2]), since by averaging over the real torus we can produce an invariant
Kéhler metric. The interest is then not in the functions f; (which depend on the
metric) but in the implications about the structure of the closure Y of an orbit Y. We
shall explain in Section 3 the relation of this result with Mumford’s toroidal
compactifications [8].

2. Our proof of the convexity of f(Y) in Theorem 2(a) will be rather different
from the proof of convexity of f(M) in Theorem 1. This could be used to give an
alternative proof of Theorem 1 in the Kahler case by showing that there is always an
orbit Y with f(Y) = f(M). More generally by choosing other orbits we can identify
the images under f of various sub-varieties of M. Applied to the homogeneous case
this will prove that the images of the Bruhat cells are convex sub-polyhedra of f(M):
this is the content of Theorem 3 in Section 4 and it can be viewed as a refinement of
(1.1) and (1.2).

In Section 4 we also prove a result (Theorem 4) concerning the restriction of
harmonic forms to T;-orbits. This result, which arises naturally in our context, was
motivated by a special case of Gel'fand and Macpherson [3] connected with the
study of the di-logarithm.

In recent years there has been considerable interest in various infinite-
dimensional Hamiltonian systems. One may ask whether Theorem 1 can be extended
in any interesting way to infinite-dimensions. In a subsequent paper it will be shown
that Theorems 1 and 3 extend to the special infinite-dimensional case when
M = Q(G) is the loop space of a compact Lie group. This case turns out to be very
similar to the homogeneous case studied by Kostant.
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Since writing this paper I have learnt that V. Guillemin and S. Sternberg have
arrived independently and almost simultaneously at similar results, though with
mildly different proofs.

§2. The symplectic case

In this section we shall give the proof of Theorem 1. As already mentioned (A,) in
Theorem 2 implies (B, , ;). To see this consider the diagram

M - Rn+l

N

RII

where f'= (f|,....f,+:), @ is any linear projection and g = nf. Then, for any c € R",
we have

JM)ynr=He) = f(g7"(c)).

Applying (A,) to g it follows that this is empty or connected. Thus f(M)is a compact
subset of R"*! meeting every line in a closed (possibly empty) interval and this is
equivalent to the convexity of f(M), that is, (B,) holds.

To prove Theorem 1 it will be sufficient therefore to prove (A,) by induction on n
(recall that (B,) is trivially true). For this we shall first need a simple application of
Morse theory. We recall that a function ¢ on a manifold N is said to be non-
degenerate (in the sense of Morse) if at every critical point the Hessian H(¢), given
by the second derivatives, is a non-degenerate quadratic form. The critical points of
such a non-degenerate function are necessarily discrete. A more general notion of
non-degeneracy, due to Bott [1], allows sub-manifolds of critical points. The Hessian
of ¢ is necessarily degenerate in the directions tangent to such a sub-manifold, but
Bott’s requirement is that H(¢) is non-degenerate in the remaining normal
directions. The index of ¢ along a critical manifold Z is then defined as the number
of negative terms in the diagonalization of H(¢). The result which we need is the
following:

LemMA (2.1) Let ¢ : N — R be a non-degenerate function (in the sense of Bott) on
the compact connected manifold N, and assume that neither ¢ nor — ¢ has a critical
manifold of index 1. Then ¢~'(c) is connected (or empty) for every c € R.

Proof. By continuity, it is enough to consider non-critical values of c. Let
NI ={xeN|d(x)=c}, N. ={xeN|d(x)<c}.

The Morse theory, as generalized by Bott [1], tells us that, as we increase ¢ across a
critical level, N[ is altered (homotopically) by attaching the negative normal bundle
of the critical manifold. If the index is zero (i.e. we have a local minimum) then we get
a new component, and such a component can disappear later only by crossing a level
of index one. Hence if ¢ never has index one, and N is connected, it follows that ¢
has a unique locally minimal manifold and that N_ is always connected (for
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¢ = Min ¢). Similarly, if — ¢ never has index one, ¢ has a unique locally maximal
manifold and N is always connected (for ¢ < Max ¢). Now ¢ ~(c) is the boundary
of N7, so that if ¢ ~'(c) is not connected we get a non-trivial (n—1)-cycle for N
from a boundary component (where n = dim N). But for Min¢ < ¢ < Max ¢ we
meet only critical manifolds with index (—¢) = 2 so that the negative bundle has
total dimension < n—2 (index (—¢) = 0 would be a local maximum, and index
(—¢) = lis excluded by hypothesis). Hence we can never produce an (n— 1)-cycle in
N[ . Thus ¢ ~*(c) is connected, as required.

In view of this Lemma the key step towards proving Theorem 1 is the
observation that Hamiltonian functions of the type occurring in Theorem 1 always
satisfy the hypothesis of Lemma (2.1). More precisely we have

LEMMA (2.2). Let M be a compact symplectic manifold, ¢ : M — R a function
whose Hamiltonian vector field X, is almost-periodic. Then ¢ is non-degenerate in the
sense of Bott and has only critical manifolds of even index.

Proof. Let T be the torus generated by X, so that the zero set Z of X, is
precisely the fixed point set of T. It is well known that Z is then the union of sub-
manifolds Z;. We recall that this follows easily by picking a Riemannian metric on
M which is T-invariant and using normal coordinates. Since, in our case, M also has
a T-invariant symplectic structure it acquires a T-invariant almost-complex
structure. Thus if V is the tangent space to M at z € Z it has a complex structure and
decomposes under T as:

V=V, 0V ®.0V,

where ¥, is fixed by T and is the tangent space to Z while each V, for j > 0,
corresponds to a non-trivial character of T. Since X, generates T it acts on each V;
by some scalar iA; with 4; real and non-zero. The Hessian H(¢) at z is then the

p
corresponding Hermitian form A;lvj|* which is non-degenerate and necessarily
=1

has even index. J

ReMARK. The above proof shows that the critical manifold Z < M is also non-
degenerate with respect to the symplectic structure of M, so that it inherits a
symplectic structure itself. In the presence of a T-invariant metric Z is actually an
almost-complex submanifold.

Combining (2.1) and (2.2) (applied to +¢) we then get

LemMMA (2.3). Let M be a compact symplectic manifold, ¢ : M — R a function
whose Hamiltonian vector field is almost periodic. Then for any c € R the level surface
¢~ 1(c) is connected (or empty).

This Lemma is just the case (A;) of Theorem 1 and we shall now use it
inductively to prove (A,). Assume therefore that (A,) is true and let f,,...,f, ., be
functions on M satisfying the hypotheses of Theorem 1. We have to show that if
¢=(¢,...,Chs1) ER""! then

STHe) =fite) nnfidi(cnsy)
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is connected. Clearly we may suppose f,, ..., /,+, linearly independent, otherwise we
can drop one of them and apply (A,). Moreover it will be sufficient by continuity to
consider only regular values ¢, that is, values so that the df; are linearly independent
for all xef~'(c) (as we shall see later the irregular values actually form a finite
number of hyperplanes in R"*!). With this assumption

N=fi"c)n..nfr'(c)

is a submanifold of codimension n in M, and by (A,) it is connected. We now want to
show that the function f, , ,, restricted to N, satisfies the hypotheses of Lemma (2.1).
For this we must consider its critical points, i.e. points x of N for which (on M)

df;.+1 + Z )Lidf;' =0,

i=1

for some constants A;. Such a point is then critical on M for the function
¢ =fosr + 2 Afi.
i=1

Now by Lemma (2.2) we know that +¢ has only non-degenerate critical manifolds
of even index. Let Z be the component through x: we will show that Z intersects N
transversally at x. From this it will follow that +¢|N, and so also +f,.,|N

(which only differs by the constant Z A;¢;), has Z n N as non-degenerate critical
1

manifold of even index. Since this is true starting from any critical point x of f,,, | N
we can apply Lemma (2.1) and deduce that

f~Ye)=N mfn_‘l-ll(cn-*‘l)

is connected (or empty) for any c,, ,, which will establish (A, , ;) inductively.

It remains to check that Z and N intersect transversally or equivalently that
df,,...,df, remain linearly independent when restricted to Z at x. Now the
Hamiltonian fields X,,..., X, must preserve Z and so the independent vectors
X ,(x), ..., X,(x) lie in the tangent space Z to Z at x. Now Z is non-degenerate
relative to the symplectic structure of M (Remark after (2.2)). Hence, for any
constant p = (i, ..., 4,) ¥ 0 there exists a tangent vector Y € Z such that

o(} 1 Xi(x), Y) £ 0,

where w is the symplectic form. But by definition of the X this is the same as

{3 wdfi(x)}(Y) 0,

which proves our assertion.

Remark. If we factor N locally by the action of X, ..., X, then f, ., is defined
on the quotient which is symplectic and we are essentially in the position of (2.2).
The only difficulty is that this may not work globally, which is why we proceeded
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slightly differently. Note also that the critical points of f,,,|N come from the
critical points of a finite number of functions ¢—not just one.

We have completed the proof of (A,) and (B,) in Theorem 1, and we now come to
the last part. The set Z of common critical points of f,,...,f, is also the fixed-point
set of the torus T generated by the Hamiltonian fields X, ..., X, and as we have
already noted Z is a disjoint union of connected submanifolds Z;. On each Z; we
have df; = 0 for all i and so each f; is constant. Thus f(Z;) = c; is a single point in
R". Moreover if ¢ =) A;f; is a generic linear combination, so that the
corresponding Hamiltonian field generates T, then the critical set of ¢ is precisely Z,
and in particular ¢ takes its maximum on Z. Hence the linear form ) A;x;
considered as a function on f(M) = R" takes its maximum at one of the points
Cy5--» €, Since this holds for almost all (4,, ..., 4,) it follows that¥

f(M) < convex hull of ¢, ..., cy .

But by (B,) /(M) is convex and since it contains the ¢; it must coincide with the
convex hull as stated in Theorem 1.

Theorem 1 implies of course that the set Z of common critical points is not
empty. In fact it asserts considerably more because if f,,....f, are linearly
independent, then f(M) is a full n-dimensional convex polytope and so it has at least-
(n+1) vertices. Thus the number N of components of Z is at least (n+1).

It is illuminating to consider the map f: M — R" in some more detail. For this
we should introduce not only the fixed-point set Z of the torus T but also fixed-
points of its various sub-tori. By considering the representations of T on the normal
bundles of the components Z; of Z we get a finite set of characters, and their kernels
give a finite set of codimension-one sub-tori of T. Taking intersections these generate
a finite lattice of sub-tori. Without essential loss of generality, we may assume that
dim T = n and that T acts effectively on M. Then the minimal non-zero elements of
our lattice will be circles S, ..., S, and the quotient (n— 1)-torus T/S; acts effectively
on the components X;; of the fixed-point set of S;. Restricting f to Z;; we
see  therefore that its 1image in R" lies in the hyperplane
Y A,;x, = constant, where ¢, = Y A,f, is the Hamiltonian corresponding to §.
Moreover f(Z;;) will contain (and is spanned by) the subset of c,,...,cy
corresponding to the components of Z lying in Z;;. Thus the union of all these
hyperplanes contains the set of critical values of the map f. A bounding face of the
convex polytope f(M) must arise from a maximal or minimal component of the
corresponding function ¢.

As already noted, our proof of Theorem 1 used a small amount of Morse theory.
In fact Frankel [2] shows that a function as in (2.3) is a “perfect” Morse function, in
the sense that the sum of the Betti numbers of its critical manifolds is equal to the
sum of the Betti numbers of M. Frankel states his results for Kihler manifolds but
the proofs work also in the symplectic case.

§3. Kdhler manifolds

In this section we shall give the proof of Theorem 2: Thus M is now a compact
Kihler manifold and our purpose is to study the closure Y of an orbit ¥. of the

t This is essentially the argument of Kostant [1].
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complex torus T, and to describe the map f: Y — R" There is no loss of generality
in assuming that f,, ..., f, are linearly independent on Y: if not we simply consider an
independent subset. Thus dim Y = 2n and T acts on Y with a finite isotropy group
I, so that T/T" acts freely.

We first note that, because on a Kdhler manifold the various structures are
compatible, for any ¢ = Z A:fi we have grad ¢ = J X, where X4 is the Hamiltonian
field of ¢, J is multiplication on tangent vectors by \/—_l and grad ¢ is defined
relative to the metric. More formally if (,) and {, ) denote the symplectic and
Riemannian pairings respectively, and # is any tangent vector then

(n, grad @) = dd(n) = (n, Xy) = 0, JXy>.

If we decompose T, as T x H corresponding to the Lie algebra decomposition
L(T) @ JL(T), then the gradient flow ¢, of ¢ is just given by the action of the
corresponding one-parameter subgroup Hy of H. In particular ¢ is a strictly
monotonic increasing function along any (non-trivial) orbit of H.

As a first step we shall prove

LemMa (3.1). Forany ye Y let y,, be a limit point of ¢,(y) ast — 0. Then
(1) y, lies on a critical manifold N of ¢,

(i) lim ¢(o,(y)) exists and is a constant d(¢) independent of y,

= w

(i) d(¢) = sup ¢.

Proof. (i) is an elementary general fact about the flow of .any gradient vector
field. For (ii) we note that ¢(¢,(y)) is, for fixed y, a bounded monotonic function of ¢
and so the limit d exists and is equal to ¢(y,). Now ¢ is constant along N and T,
leaves N invariant, hence for any ue T, :

lim ¢ (uy)) = d(uys) = $(ye) = d,

t— oo

is independent of u. Clearly (iii) follows from (ii).
Taking ¢ generic so that T, = T then N is one of the components Z; of the fixed-
point set of T and so (3.1) implies

sup ¢ = sup ¢(Z))

where j = 1,..., p runs over those indices for which Z; meets Y. Putting ¢;=f(Z))
as before this implies

(3.2) f(Y) is contained in the convex hull P of c,, ..., c,
which is_part of Theorem 2(a).

Our next step is to prove that f(Y) = P. For this we consider any point ye Y
and let 0 be the Euclidean distance of p = f(y) from the boundary 0P of P. Since the
Jacobian of f has rank n everywhere on Y, p is necessarily an interior point of P and
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so & > 0. We shall show that f(Y) contains the ball B(p, 46) with centre p and radius
15: clearly this will prove that f(Y) is the whole interior of P, and so f(Y) = P.

For convenience, we shall assume that p is the origin of R": this can be achieved
by adding constants to the f;. Now let d(4), for 4 € R" with || = 1, be the support
function of P, that is,

d(2) = sup () 4;x;).

xeP
Then the distance é from the origin to 0P is

5 = infd(2).
If we put ¢* = Y A, f; then we have .

d(¢*) = d()

where, as before, .
' d(¢’) = Slip ¢ = Su_pz Aicyj
J

and ¢;; (i = 1,..., n) are the coordinates of ¢; € R". Now consider the gradient flow or
of ¢* through y. As t goes from 0 to co the function ¢* increases monotonically from
0 to d(4). Since & < d(A) there is a unique value t(4) for which ¢* takes the value §.
Moreover it is easy to check that t(1) varies continuously with 4. Now let us define a
star-shaped neighbourhood U of 0 in L(H) as the set of all points r4 with |A| = 1 and
r < t(4). Then (exp U)y defines a neighbourhood V of 0 in f(Y) and for any point
vedV we have
Y Av; = 30 for some A with [A] = 1.

In particular |v| > 46 and so V > B(0, 39), as required.

We have now proved most of part (a) of Theorem 2, namely that f(Y) = P. To
proceed further we have to examine Y more closely and for this we shall need to use
more about gradient flows. More precisely we shall need the following facts which
hold for any function ¢ which is non-degenerate in the sense of Bott. They are fairly
routine extensions of standard results for non-degenerate functions in the sense of
Morse (for the local theory see [4, p.244]).

(3.3) For any xe M the gradient flow ¢,(x) has a unique limit point ¢ (x) as
[ — 0.

(3.4) The set of all points x in M for which ¢,(x) lies on a given (connected)
critical manifold N forms a submanifold N* such that
(i) ¢ restricted to N* has N as a non-degenerate maximum.
(i) x — ¢, (x) gives a continuous map N* - N.

The manifold N* is called the “unstable manifold” of ¢ at N. Note that, from (3.4)(i),
points x of N* for which ¢(N)—¢(x) < ¢ form a neighbourhood of N in N* This
clearly implies

(3.5) If N, is another critical manifold of ¢ with ¢(N,) = ¢(N), then N, is not
contained in the closure of N*.
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If C is any subset of N*, C its closure in M and C(N") its closure in N*, then N being
compact implies that C n N = C(N*) n N. Hence (3.4)(i) implies

(3.6) If C, is the image of C under the map N* > N then CA N = C,,,.

With these general results about gradient fields assumed, we now return to the
study of our orbit Y in M, and the map f: M — R". For any ¢ = ) 1, f; we consider
its gradient flow ¢,. Fixing some y € Y we then have ¢, (y) in some critical manifold
N of ¢. Since grad ¢ commutes with the action of T, the manifolds N and N* are
invariant under 7T,. Hence Y =« N¥ and Y, < N is the T-orbit of y, (and so is
independent of our original choice of y € Y). By (3.5) and (3.6) with C = Y we have

(3.7 YAN, =g, YnN=Y,

where N, is any other critical manifold of ¢ with ¢(N,) = ¢(N). We shall now show
that (3.7), for all ¢, gives us all the information we need about Y.

Let us first note that on an orbit Hy of the non-compact part H of T, f is a
diffeomorphism onto its image (which we know is the interior of P). Clearly f is a
local diffeomorphism, since it has rank n: it is globally injective because ¢ = ) 1, f; is
strictly monotonic along the orbits of H¢. Thus on Y the map f: Y — P is a bundle
projection with group T/I" (I finite). This implies that f(dY) < 0P. Hence if
z€dY, f(z) e OP and so lies on a support hyperplane S with equation ) 4;x; = d,
say. The intersection S N 9P is a “face” o of dP and is the convex hull of the vertices
of P lying in S. We can always choose S so that f(z) belongs to the interior ¢ of this
face (note that ¢ can have any dimension from 0 to n—1). If P lies in the half-space
Y Aix; < dthen ¢ =) 1 f; has d as its supremum on Y, and ¢(z) = d. Hence z lies
on some critical manifold of ¢ at level d. Applying (3.7) we see that ze Y, is in the
closure of the orbit Y, e N. Under f, Y, — ¢ and, by the same argument as used
earlier, dY,, —» do. Since f(z) was in ¢ (and not in its boundary) it follows that
ze Y,. Thus the map f: Y — P has f~'(o) a single orbit Y,. Since we have earlier
proved that f(Y) = P it follows that Y is the disjoint union of orbits Y,, one for each
face g of P, establishing Theorem 2(b). As with the mapon Y themap f: Y, > gisa
bundle map for the appropriate torus group. This establishes part (c) of Theorem 2
and also shows that if dimo > 0 then Y, contains no fixed point of T. This proves
that the points c,,...,c,, which were the images f(Z;) where Z; was a fixed
component of T meeting Y, coincide with the vertices (i.e. the extreme points) of P.
This finishes the proof of part (a) and thus of the whole of Theorem 2.

Note that our proof has also shown that Y, = ¢,(Y) where ¢ is any linear
combination ) 4;f; such that 6 = P NS (where as before S is the hyperplane
Y Xx; = d and P is in the half space ) A;x; < d).

If M is a projective algebraic variety then Mumford and others [8] have studied
the orbit-closure Y and shown that it has basically the structure described above.
Their procedure is to study the affine case first and then to glue things together. The
polyhedral cone associated in [8] to Y is abstractly dual to our P: it lies canonically
in L(T) whereas P lies in L(T)*. Naturally the proofs in [8] are algebraic and are
replaced here by our use of gradient flows. In [8] the polyhedron is “rational” relative
to the integer lattice in L(T), but our polyhedron P is not rational for general Kéhler
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manifolds. In fact in the homogeneous case studied by Kostant any orbit in L(G)*
has a natural Kdhler metric whereas only “integral” orbits correspond to projective
varieties (or, in the Kirillov sense, to representations of G). Thus the convex hull of
any W-orbit in L(T)* occurs as a polytope P, whereas only integral ones occur in the
projective case. This suggests that P should be rational for Hodge metrics, provided

we normalize the arbitrary constant in the definition of f by requiring that | f = 0.
M

§4. Examples and Applications

We return now to the homogeneous examples arising from orbits of G in L(G).
Any such orbit M is of the form G/C(T,) where C(T;) is the centralizer of some sub-
torus Ty < T. Thus a generic orbit is always the flag manifold G/T but special orbits
are quotients of G/T. If we fix a positive Weyl Chamber € in L(T) this fixes a Borel
subgroup B of the complexification G, containing T (and a parabolic subgroup
P o C(Ty)). We can then identify G/T with G./B and more generally G/C(T;) with
G./P. In this way our orbit M becomes a complex manifold, homogeneous under the
action of G,. Together with the symplectic structure this then determines a Kéhler
metric on M (this is not the same as the metric induced from a G-invariant Euclidean
metric on L(G), see the Remark below). Thus we can apply Theorem 2 to describe
the image f(Y) for various T-orbits in M. We shall use this to describe the images
under f of the Bruhat cells of M. We recall that these are the B-orbits in M and they
correspond to the double cosets BwP where w runs over representatives for W/W,,
where W, W, are the Weyl groups of G and C(T,). We write M, for the cell BwP and
[w] for the “point” wP in M. Since M, is a B-orbit it is invariant under T.. Moreover
M, has a natural linear structure arising from the nilpotent part of B, the action of T,
is then linear and the weights of the representation are a subset of the positive roots.
Now let 4 € L(T) be an interior point of the positive Weyl chamber €. Then a(1) > 0
for all positive roots o and so any orbit of exp2zi(u+itd) in M, tends to [w] as
t — oo (u being any element of L(T)). But such an orbit is a trajectory of grad ¢
where ¢ is the function corresponding to 4, that is, ¢(x) = {(x, 4> for xe M < L(G).
Hence M, is in the unstable manifold of ¢ at w. Since this holds for all w it follows
that M, coincides with this unstable manifold.

There is a natural partial ordering on Bruhat cells, and so on W/W,, in which

4.1) o zweM,cM,)
By the same argument as used in Section 3, we see that
(4.2) f(M,) = convex hull of the set of all f(«') with ' > w,

where f is orthogonal projection of L(G) onto L(T). To show that we have equality
it is then only necessary, by Theorem 2, to prove that there is some point y € M, with
T¢-orbit Y, so that [w'] € Y for all ' > w. Now there is just one cell M, of maximal
dimension and its complement is an algebraic subvariety. Translating this cell by «’
we get a new cell of maximal dimension (for the Bruhat decomposition of a different
Borel subgroup) centred on [w']. Points of M, converge to [t] under the flow ¢, as
t — 0. Hence points of w't ™' M, converge to [w'] under the flow , as t — oo where
W is obtained from ¢ by the action of 't . Now by hypothesis M,, gets arbitrarily
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close to [w], hence it has non-zero intersection M (w') with the open
neighbourhood w't ™' M.. Since all these are algebraic varieties, M (') is Zariski
open in M. Hence the intersection of all M (') for @' > w is non-empty. Take y to
be in this intersection. Then by construction we see that for each ' > @ we have
¥,(y) = [w] as t — oo for some . Hence [w'] € Y as required. Thus we have proved
the following refinement of Kostant’s result.

THEOREM 3. Let M be an orbit of G on L(G), x the unique point of M n L(T) in
the positive Weyl chamber and M, the Bruhat cell determined by w e W. Then the
image of M, under orthogonal projection to L(T) is the convex hull of the set of all
points @'(x) with ' = .

Note. This result has also been obtained by G. Heckman in his Leiden thesis.

The partial ordering defined geometrically in (4.1) can be given a direct
definition in Weyl group terms. From our discussion it clearly follows that

(4.3) W 2w = o)) < <A o) foral le?.

Here { is any point of € with W, as isotropy group. In fact it is well known and not
hard to prove directly that the converse of (4.3) also holds. Note that the partial
ordering on W/W, is induced by that on W, corresponding to the fact that the
Bruhat cells of G./P are projections of those of G,/B.

The simplest non-trivial example of Theorem 3 arises for G = SU(3). The flag
manifold has complex dimension 3, there are 6 Bruhat cells indexed by the elements
of ;. The trivial element gives a point, the transposition (13) gives the 6-cell (using
the usual ordering to define the positive Weyl chamber), leaving two 2-cells
corresponding to (12), (23) and two 4-cells corresponding to the 3-cycles (123),
(321). In the diagram below the shaded region describes the image of the 4-cell
(132), while the double line is the image of the 2-cell (12). The other images are
obtained by interchanging the roles of 1 and 3.

Xl =X2

(12)
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Remarks. 1. In the proof of Theorem 3 we used strongly the fact that there is
one dense open Bruhat cell, or equivalently that each generic ¢ has a unique
maximal component. On any Kéhler manifold this is guaranteed by Morse theory as
in Section 2. Thus deducing Theorem 1 from Theorem 2 still requires Morse theory.

2. It is perhaps helpful to make a comment on the various metrics which arise
on the orbits M in L(G). For simplicity we consider the general case when M =~ G/T,
but our conclusion will apply to all cases. Any G-invariant metric on M is
determined by a T-invariant metric on L(G)/L(T) =@ @ E,, where the E, are the
2-dimensional root spaces. Thus the metric is given by choosing metrics on each E,.
There is a natural metric arising from any G-invariant metric on L(G)—the Killing
form if G is semi-simple gives a preferred choice. Relative to this standard metric any
other metric is defined by positive scalars p,. Suppose now that M is the G-orbit of
x € L(T) chosen in the positive Weyl chamber. Then for every positive root we have
a(x) = 0 and a(x) > 0 if x is an interior point. Then simple computation shows that

(i) for the Kahler metric on M, p, = a(x);
(ii) for the metric on M, induced from L(G), p, = a(x)>.

Alternatively we can say that, relative to the standard metric on M, any other one is
given at each point by a positive self-adjoint operator on the tangent space. Then if
A, B are the operators for the metrics (i) and (ii) respectively, we have B = 42

Finally we shall discuss the relation of our results to recent work of Gel'fand and
Macpherson [3]. First let us observe that Theorem 2 can be reformulated in terms of
the orbits of the non-compact part H of the complex torus T, to give

THEOREM 2. The map f:M — R" = L(H)* induces an H-homeomorphism
Hy - P.

Consider in particular the special case when M is the Grassmannian of complex
p-subspaces in C?*9. We take for T the diagonal matrices in U(p+¢q). Then H is the
group of positive real diagonal matrices. Clearly H acts on M, the real (unoriented)
Grassmannian of p-subspaces in R?*4, and so, taking y € My, Theorem 2’ gives us
the structure of H—y in M,. This is what Gelfand and Macpherson call a
hypersimplex. One of their main results is that (for pq even) any O(p+ q)-invariant
differential form 0 on My restricts to zero on any H-orbit. Their proof is by direct
computation and we shall now show that this result can be proved quite naturally
and more generally in our context, without computation. The key idea is that one
should work with the complex Grassmannian, exploiting to the full its Kéhler
structure. The result we shall prove is

THEOREM 4. Let M be a compact connected Kdhler manifold, T a toral group of
automorphisms of M having at least one fixed point. Write T° = T x H so that
L(H) = JL(T). Then T¢ acts on M and, for 1 > 0, every harmonic I-form 6 on M
restricts to zero on any H-orbit.

Consider any T-orbit Ty. Since T has a fixed point (and M is connected) the
map y: T - M given by t — ty is homotopic to a constant. Hence, for | > 0, the
induced map on H'is zero. Hence y*(0) represents zero in H'(T). On the other hand
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T preserves all harmonic forms on M and in particular §. Hence y*(6) is an invariant
form on T. But an invariant form representing zero must itsell be zero. Hence
y*(0) = 0 on T and so 0 restricts to zero on the orbit Ty. Now we may, without loss
of generality, assume that 8 is a pure (r, s)-form with r+s = |, (because on a Kahler
manifold the (r, s) components of a harmonic form are themselves harmonic). This
implies that 0 is an eigenvector of J: JO = i"~*0. Now in the tangent space to M at y
the H-directions are obtained from the T-directions by applying J. Since 6 restricts
to zero on Ty, JO restricts to zero on Hy. But J§ = i"7*0 and so 6 restricts to zero
on Hy as required.

To deduce the special case of Gel'fand—Macpherson, we note that on any
homogeneous symmetric space, such as the real or complex Grassmannians,
invariant forms are harmonic. Finally, we need to observe that the map
H'(M, R) - H'(Mg, R), induced by the inclusion of the real Grassmannian M into
the complex Grassmannian M, is surjective for pq even : H¥(M,) is generated by the
Pontrjagin classes and H*(M) by the Chern classes. Note that the surjectivity of
cohomology is not true if pq is odd or if we consider oriented Grassmannians, and in
these cases there are indeed invariant forms which are not zero on H-orbits.

The hypothesis in Theorem 4 that T have at least one fixed-point is of course
satisfied for the Grassmannian. More generally it holds whenever X is algebraic and
T. acts algebraically. As noted in [2] it is also the condition which guarantees in
general the existence of the Hamiltonian functions f,, ..., f,. Thus Theorem 4 and
Theorem 2’ are both available in this context and so the integral-geometry formulae
of [3] could in principle be generalized to other Kédhler manifolds of the type
considered here.

Our proof of the Gel'fand—Macpherson result indicates the advantage of looking
at the real Grassmannian as the real part of the complex Grassmannian. In the same
spirit one could extend Theorem 2’ to suitable real algebraic manifolds.

It is perhaps worth making a final remark in connection with Theorem 2'. If we
introduce the natural coordinates (y,, ..., y,) on the orbit Hy coming from the Lie
algebra then we find that

of;
3. = Yij>

dy; J

where g,-jdy"dyf is the metric on the orbit induced by the Kéhler metric on M. In
particular since g;; = g;; we see that

=2

Vi
for some function p. This function is strictly convex and its graph has, by Theorem
2', an asymptotic polyhedral cone with base dP.

Locally any Kihler metric can be written: as id'd”p. In our situation we get a
natural choice for p along an H-orbit, unique up to a constant and linear terms, and
our map f is just dp.
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