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0. Introduction. In the investigation of functors on the category of preschemes,

one is led, by Grothendieck [3], to consider the following situation. Let A be a

complete noetherian local ring, u, its maximal ideal, and k = A/u. the residue field.

(In most applications A is k itself, or a ring of Witt vectors.) Let C be the category

of Artin local A-algebras with residue field k. A covariant functor F from C to

Sets is called pro-representable if it has the form

F(A) £ HomlooalA„lUg.(.R, A),       AeC,

where R is a complete local A-algebra such that R/mn is in C, all n. (m is the maximal

ideal in R.)

In many cases of interest, F is not pro-representable, but at least one may find

an R and a morphism Hom(7?, ■)->■ F of functors such that Hom(.R, A) -> F(A)

is surjective for all A in C. If R is chosen suitably "minimal" then R is called a

"hull" of F; R is then unique up to noncanonical isomorphism. Theorem 2.11,

§2, gives a criterion for F to have a hull, and also a simple criterion for pro-repre-

sentability which avoids the use of Grothendieck's techniques of nonflat descent

[3], in some cases. Grothendieck's program is carried out by Levelt in [4]. §3

contains a few geometric applications of these results.

To avoid awkward terminology, I have used the word " pro-representable " in a

more restrictive sense than Grothendieck [3] has. He considers the category of

A-algebras of finite length and allows R to be a projective limit of such rings.

The methods of this paper are a simple extension of those used by David Mum-

ford in a proof (unpublished) of the existence of formal moduli for polarized

Abelian varieties. I am indebted to Mumford and to John Täte for many valuable

suggestions.

1. The category CA. Let A be a complete noetherian local ring, with maximal

ideal u. and residue field k = A/u.. We define C= CA to be the category of Artinian

local A-algebras having residue field k. (That is, the "structure morphism" A —> ,4

of such a ring A induces a trivial extension of residue fields.) Morphisms in C are

local homomorphisms of A-algebras.
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Let C=CA be the category of complete noetherian local A-algebras A for which

Ajmn is in C, all n. Notice that C is a full subcategory of C.

If p: A -> B, q: C -*■ B are morphisms in C, let y4 xB C denote the ring (in C)

consisting of all pairs (a, c) with ae A,c e C, for which pa=qc, with coordinatewise

multiplication and addition.

For any A in C, we denote by fJ/A, or just t%, the "Zariski cotangent space" of

A over A:

(1.0) t* = /«/(m2 +M)

where m is the maximal ideal of A. A simple calculation shows that the dual vector

space, denoted by tA, may be identified with DerA (A, k), the space of A linear

derivations of A into k.

Lemma 1.1. A morphism i? —^ A in C is surjective if and only if the induced map

from t* to t* is surjective.

Proof. First of all, any A in C is generated, as A module, by the image of A in

A and the maximal ideal m of A. (For A and A have the same residue field k.)

Thus the induced map from [i/[L2 to \iAl(m2 n \¡.A) is a surjection. If i?-> A is a

morphism in C, then denoting the maximal ideal of B by n, we get a commutative

diagram with exact rows :

0-> M/(M n m2)-> m/m2-> t*A-► 0

0-► [lBKilB n n2)-> n/n2-► t%-► 0

in which the left-hand arrow is a surjection. If the right-hand arrow is also a

surjection, then the middle arrow is a surjection, so that the induced map on the

graded rings is a surjection. From this it follows that B -> A is a surjection [1, §2,

No. 8, Theorem 1].

Conversely, if B -*■ A is a surjection, then the induced map on cotangent spaces

is obviously surjective.

Let p : B -> A be a surjection in C.

Definition 1.2. p is a small extension if kernel p is a nonzero principal ideal (t)

such that mr = (0), where m is the maximal ideal of B.

Definition 1.3. p is essential if for any morphism q: C -> B in C such that po is

surjective, it follows that q is surjective.

From Lemma 1.1 we obtain easily

Lemma 1.4. Let p: B -» A be a surjection in C. Then

(i) p is essential if and only if the induced map p* : t% -> ff & a« isomorphism.

(ii) 7/"p z's a sma// extension, then p is not essential if and only if p has a section

s: A ->■ B, with ps= lA.
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Proof, (i) If/;* is an isomorphism, then by Lemma 1.1,/) is essential. Conversely

let ix,..., tr be a basis of t*, and lift the ?¡ back to elements t¡ in B. Set

C= A[tx,...,tr]^B.

Then p induces a surjection from C to y4, so if p is essential, C=5. But then

dimfc rf^r=dimk t%, so /£ s r*.

(ii) If p has a section s, then j is not surjective, so p is not essential. If p is not

essential, then the subring C constructed above is a proper subring of B, and

hence is isomorphic to A, since length (B) = length 04)4-1. The isomorphism

C^A yields the section.

2. Functors on C We shall consider only ccviriant functors F, from C to

Sets, such that F(fc) contains just one element. By a couple for F we mean a pair

(/4, |) where AeC and f € F(/l). A morphism of couples u: (A, Ç) -* (A', £') is a
A.

morphism u: A^- A in C such that F(u)(£) = f '. If we extend F to C by the formula

F(A) = pro] Lim F(A/mn) we may speak analogously of pro-couples and morphisms

of pro-couples.

For any ring R in C, we set hB(A) = Hom(/?, A) to define a functor hB on C.

Now if F is any functor on C, and i? is in C, we have a canonical isomorphism

F(R) -^* Hom(AK, F).

Namely, let £=proj Lim fn be in F(Ä). Then each u.R-^-A factors through

un : R/mn -^~A for some n, and we assign to u e hR(A) the element F(un)(£n) of

F(A). This sets up the isomorphism. We therefore say that a pro-couple (R, £) for

F pro-represents F if the morphism hR^- F induced by f is an isomorphism.

(2.1) Relation to global functors. Let G be a contravariant functor on the cate-

gory of preschemes over Spec A, and pick a fixed e e G(Spec k). For A in C, let

F(A) £ G(Spec A) be the set of those £ e G(Spec A) such that G(/)(£) = e. where í is

the inclusion of Spec k in Spec A. If G is represented by a prescheme X, then e

determines a ^-rational point xe X, and it is then clear that F(A) is isomorphic to

HomA(Ox> x, A). Thus the completion of Dx> x pro-represents F.

Unfortunately, many interesting functors, for example some "formal moduli"

functors (§3.7), are not pro-representable. However, one can still look for a

"universal object" in some sense, for example in the sense of Definition 2.7 below.

Definition 2.2. A morphism F -> G of functors is smooth if for any surjection

B -+ A in C, the morphism

(*) F(B)^F(A)xG,A)G(B)

is surjective.

Part (i) of the sorites below will perhaps motivate this definition.

Remarks. (2.3) It is enough to check surjectivity in (*) for small extensions

B->A.
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(2.4) If F -> G is smooth, then /-* G is surjective, in the sense that F(A) -*> G(/l)

is surjective for all A in ¿(consider the successive quotients A¡mn, n = l, 2,...).

Proposition 2.5. (i) Let R-+ S be a morphism in C. Then hs -> hR is smooth if

and only if S is a power series ring over R.

(ii) IfF-*-G and G ->■ H are smooth morphisms of functors, then the composition

F —> H is smooth.

(iii) If u: F —> G and v: G -^ H are morphisms of functors such that u is surjective

and vu is smooth, then v is smooth.

(iv) If F-+G and H -*■ G are morphisms of functors such that F—s- G is smooth,

then F xG H -> H is smooth.

Proof, (i) This is more or less well known (see [3, Theorem 3.1]), but we give

a proof for the sake of completeness. Suppose hs ->■ hR is smooth. Let r (resp. s)

be the maximal ideal in R (resp. S), and pick xx,..., xn in S which induce a basis

of t*iR=s/(s2+rS). If we set T=R[[XX,..., Xn]] and denote the maximal ideal of

T by t, we get a morphism ux: S-> T/(t2+rT) of local R algebras, obtained by

mapping x¡ on the residue class of X¡. By smoothness ux lifts to u2: S-* T/t2,

thence to u3: S-> F/f3,... etc. Thus we get a u: S-> F which induces an iso-

morphism of tgIR with tfiR (by choice of ux) so that m is a surjection (1.1). Further-

more, if we choose yt e S such that uy{ = Xu we can set vXt=yt and produce a

local morphism v: T —> S of R algebras such that uv= lT; in particular v is an in-

jection. Clearly v induces a bijection on the cotangent spaces, so v is also a surjec-

tion (1.1). Hence v is an isomorphism of T=R[[XX,..., Xn]] with S.

Conversely, if 5 is a power series ring over R, then it is obvious that hs -*- hR is

smooth.

The proofs of (ii), (iii), (iv) are completely formal and are left to the reader.

(2.6) Notation. Let k[e], where e2=0, denote the ring of dual numbers over k.

For any functor F, the set F(k[e]) is called the tangent space to F, and is denoted by

tF. It is easy to see that if F=hR, then there is a canonical isomorphism tF~tR:

tR s HomA(Ä, k[e]).

Usually tF will have an intrinsic vector space structure (Lemma 2.10).

Definition 2.7. A pro-couple (R, $) for a functor F is called a pro-representable

hull of F, or just a hull of F, if the induced map hR -> F is smooth (2.2), and if in

addition the induced map tR —>■ tF of tangent spaces is a bijection.

(2.8) Notice that if (R, Ç) pro-represents F then (R, £) is a hull of F. In this case

(R, i) is unique up to canonical isomorphism. In general we have only noncanonical

isomorphism :

Proposition 2.9. Let (R, {) and (R', $') be hulls of F. Then there exists an iso-

morphism u: F. —> R' such that F(u)(£) = l;'.

Proof. By (2.4) we have morphisms u: (R, £) -+ (R', f) and u' : (R', £') ->■ (R, ¿),

both inducing an isomorphism on tangent spaces, by the definition of hull. Thus
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u'u say, induces an isomorphism on tg, so that u'u is a surjective endomorphism

of R, by Lemma 1.1. But an easy argument, which we leave to the reader, shows

that a surjective endomorphism of any noetherian ring is an isomorphism. Thus

u'u and ««' are isomorphisms and we are done.

Remark 2.10. Let (R, £) be a hull of F. Then R is a power series ring over A if

and only if F transforms surjections B -> A in C into surjections F(B) -> F(A). In

fact the stated condition on F is equivalent to the smoothness of the natural mor-

phism F->AA. By applying (2.6), (ii) and (iii) to the diagram

hn-> hA

\/ *F

we conclude that hR -> hA is smooth if and only if F-> hA is. Now use 2.5 (i).

Lemma 2.10. Suppose F is a functor such that

F(k[V] xkk[W]) ^> F(k[V])xF(k[W})

for vector spaces V and W over k, where k [ V] denotes the ring k @ VofCin which V

is a square zero ideal. Then F(k[V]), and in particular tF = F(k[s]), has a canonical

vector space structure, such that F(k[V])^tF <g> V.

Proof. k[V] is in fact a "vector space object" in the category C(in which k is

the final object), for we have a canonical isomorphism

Hom(^, k[V]) s DerA(^, V),       A e C.

The addition map k[V] xk k[V] ->■ k[V] is given by (x, 0) h> x, (0, x) h->- x (x e V),

and scalar multiplication by a e k is given by the endomorphism x \-*- ax (x e V)

of k[V], Thus if F commutes with the necessary products, F(k[V]) gets a vector

space structure. Finally, we identify V with Hom(k[e], k[V]) to get a map

tF® V^F(k[V])

which is an isomorphism since k[V] is isomorphic to the product of r=dimfc V

copies of k[e].

Theorem 2.11. Let F be a functor from C to Sets such that F(k) = (e) ( = one point).

Let A' -> A and A" -> Abe morphisms in C, and consider the map

(2.12) F(A' xA A") -* F(A') xFU) F(A").

Then

(l) F has a hull if and only if F has properties (Ux), (H2), (H3) below:

(Hi) (2.12) is a surjection whenever A" -^ A is a small extension (1.2).

(H2) (2.12) is a bijection when A=k, A" =k[e],

(H3)dimfc(fJ,)<oo.
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(2) F is pro-representable if and only if F has the additional property (H4):

(H4) F(A' xA A') ^+ F(A') xm) F(A')

for any small extension A' -> A.

Notice that if F is isomorphic to some hR, then (2.12) is an isomorphism for any

morphisms A'->■ A, A"-> A; that is, the four conditions are trivially necessary for

pro-representability.

Remarks. (2.13) (H2) implies that tF is a vector space by Lemma 2.10. In fact,

by induction on dimk W we conclude from (H2) that (2.12) is an isomorphism

when A=k, A" = k[W]; in particular the hypotheses of 2.10 are satisfied.

(2.14) By induction on length ^"-length A it follows from (Hx) that (2.12) is a

surjection for any surjection A" -> A.

(2.15) Condition (H4) may be usefully viewed as follows. For each A in C, and

each ideal I in A such that mA ■ 1= (0), we have an isomorphism

(2.16) AxAIIA^+ Axkk[I],

induced by the map (x, y) h» (x, x0 +v—x), where x and y are in A and x0 is the k

residue of x. Now, given a small extension p: A' -> A with kernel /, we get by

(H2) and (2.16) a map

(2.17) F(A') x (tF ® /) -> F(A') xFW F(A')

which is easily seen to determine, for each -q e F(A), a group action of tF <g> I on

the subset F(p)'1(iq) of F(A') (provided that subset is not empty). (Hx) implies

that this action is "transitive," while (H4) is precisely the condition that this action

makes F(p)-1(^) a (formally) principal homogeneous space under tF0I. Thus,

in the presence of conditions (H^, (H2), (H3), it is the existence of "fixed points"

of tF <S> I acting on F(p) " 1(r¡) which obstruct the pro-representability of F. In

many applications, where the elements of F(A) are isomorphism classes of geometric

objects, the existence of such a fixed point -n' e F(p)~1(r¡) is equivalent to the exist-

ence of an automorphism of an object y in the class of ij which cannot be extended

to an automorphism of any (or some) object y' in the class of r¡'.

Proof of 2.11. (1) Suppose F satisfies conditions (Hx), (H2), (H3). Let tx,..., tr

be a dual basis of tF, put S=A[[TX,..., Tr]], and let n be the maximal ideal of S.

R will be constructed as the projective limit of successive quotients of S. To begin,

let R2 = S/(n2 + [i.S)^k[e] xk---xkk[e] (r times). By (H2) there exists i2eF(R2)

which induces a bijection between tR2 (^Hom(F2, k[e])) and tF. Suppose we have

found (Rq, £,), where Rq = S/Jq. We seek an ideal Jq + x in S, minimal among those

ideals J in S satisfying the conditions (a) nJq^J^Jq, (h) £q lifts to S/J. Since the

set y of such ideals corresponds to a certain collection of vector subspaces of

Jq/(nJq), it suffices to show that if is stable under pairwise intersection. But if
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J and K are in St°, we may enlarge J, say, so that J+K=JQ, without changing the

intersection J n K. Then

SIJxmSIKzSI(JnK)

so that by (Hx) (see (2.14)) we may conclude that J n K is in St°. Let Jq+X be the

intersection of the members of Sf, put Rq + x = S/Jq+x, and pick any f,+1 e F(/?4+1)

which projects onto fa e F(/?,).

Now let J be the intersection of all the /„'s («7 = 2, 3,...) and let R = S/J. Since

n"^Jq, the JJJ form a base for the topology in R, so that R = pro] Lim S/7,, and

it is legitimate to set f=proj Lim f„ e F(Ä). Notice that tp£tB, by choice of R2.

We claim now that hR -*■ Fis smooth. Let/?: (A', r¡') -> (y4, ij) be a morphism of

couples, where p is a small extension, A=A'\I, and let u: (R, F)-*-(A,rj) be a

given morphism. We have to lift u to a morphism (R, $) -»■ L4', 77'). For this it

suffices to find a w' : Ä -»• A' such that /?«' = u. In fact, we have a transitive action

of tF <g> / on F(/?) " 1(^) (resp. AB(/>) " 1(n)) by (2.15) ; thus, given such a u', there

exists aetF®I such that [F(y)(f )]" = V, so that v' = (u')° will satisfy F(v')(F) = r¡',

pv' = u.

Now m factors as (R, £) -> (/?„, £,) -»■ L4,17) for some q. Thus it suffices to com-

plete the diagram

Rq+i

R.

>A'

+ A

or equivalently, the diagram

AŒrlf ...,Tr]]=S-H^ Rq xA A'
pr

pn

Rq + l -+Rq

where w has been chosen so as to make the square commute. If the small extension

prx has a section, then v obviously exists. Otherwise, by 1.4(ii), prx is essential, so

w is a surjection. By (Hx), applied to the projections of Rq xA A' on its factors,

f, £ F(Rq) lifts back to Rq xA A', so ker w2/,+1, by choice of Jq + X. Thus w factors

through S/Jq + x = Rq + x, and v exists. This completes the proof that (R, F) is a hull

ofF.

Conversely, suppose that a pro-couple (R, $) is a hull of F. To verify (Hx), let

p': (A', r]') -> (A, rj) and p": (A", r¡") -> L4, r¡) be morphisms of couples, where p"
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is a surjection. Since hR-> F is surjective, there exists a u': (R, |) ->■ (A', 7/), and

hence by smoothness applied to p", there exists u": (R, Ç) -*■ (/!", 17") rendering the

following diagram commutative :

(A'xAA",r)

Therefore £ = F(u' x u")(£) projects onto -n' and r¡", so that (Ux) is satisfied.

Now suppose (A, °q) = (k, e), and A" = k[e]. If ^ and £2 in F(/4' xfc k[e]) have the

same projections r¡' and rj" on the factors, then choosing u' as above we get

morphisms

u'xut:(R,0->(A'xkk[e],a       i= 1,2,

by smoothness applied to the projection of Ä xk k[e] on A'. Since tF=tR we have

ux = u2, so that £i = £2, which proves (H2). The isomorphism tR=tF also proves

(Ha).
(2) Suppose now that F satisfies conditions (Hj) through (H4). By part (1) we

know that F" has a hull (R, f). We shall prove that hR(A) -£-► F(/l) by induction

on length A. Consider a small extension p: A' -> A = A'/I, and assume that

hR(A) -a¿* FL4). For each tj g F(^), hR(p)-\-n) and Fip)"1^) are both formally

principal homogeneous spaces under tF <g> 7(2.15); since hR(A') maps onto F(A'),

we have /¡fl(/4') ^^ F(^'), which proves the induction step.

The necessity of the four conditions has already been noted.

3. Examples.

(3.1) The Picard functor. If X is a prescheme, we define Pic (X) = H1(X, Of),

the group of isomorphism classes of invertible (i.e., locally free of rank one) sheaves

on X. Recall that the group of automorphisms of an invertible sheaf is canonically

isomorphic to H°(X, Of).

Now suppose Zis a prescheme over Spec A. We let XA abbreviate X xSpec A Spec A

for A in C, and set X0 = Xk. If -n (resp. L) is an element of Pic (XA) (resp. an in-

vertible sheaf on XA) and A ->■ B is a morphism in C, let y ®AB (resp. L ®A B)

denote the induced element of Pic (XB) (resp. induced invertible sheaf on XB).

Let £0 be an element of Pic (X0) fixed once and for all in this discussion, and let
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P(A) be the subset of Pic (A",,) consisting of those r¡ such that -q ®Ak = ¿¡0. We

claim that P is pro-representable under suitable conditions, namely :

Proposition 3.2. Assume

(i) X is flat over A,

(ii) A -=** H°(XA, DXA)for each AeC,

(iii) dimfcff1(*o,Cx0)<«>-

Then P is pro-representable by a pro-couple (R, F); furthermore tR^H1(X0, £>Xo)-

Notice that condition (ii) is equivalent to the condition k -^ H°(X0, €>Xo),

in view of (i). In fact, by flatness, the functor M i-> T(M) = H°(X, £)x <g> M) of A

modules is left exact. A standard five lemma type of argument then shows that the

natural map M -> T(M) is an isomorphism for all M of finite length.

For the proof of 3.2 we need two simple lemmas on flatness.

Lemma3.3. Let A be a ring, Ja nilpotent ideal in A, and u: Af-> N a homomorphism

of A modules, with N flat over A.Ifü: MjJM—> N/JN is an isomorphism, then u is

an isomorphism.

Proof. Let ÄT=coker u and tensor the exact sequence •

M-+N-+K-+0

with A/J. Then we find K/JK—0, which implies K=0, since J is nilpotent. Thus,

if K' = ker u, we get an exact sequence

0 -> K'/JK' -> M/JM -> N/JN -* 0

by the flatness of N. Hence K' = 0, so that u is an isomorphism.

Lemma 3.4. Consider a commutative diagram

P"

of compatible ring and module homomorphisms, where B = A' xA A", N=M' xM M"

and M' (resp. M") is aflat A' (resp. A") module. Suppose

(i) A"/J ^-> A, where J is a nilpotent ideal in A",

(ii) u' (resp. u") induces M' ®A. A ^±+ M (resp. M" <g>A~ A ~=±* M).
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Then N is flat over B and p' (resp. p") induces N®BA' -^-> M' (resp.

N®BA" -»♦ M").

Proof. We shall consider only the case where M' is actually a free A' module.

(This case actually suffices for our purposes, since a simple application of Lemma

3.3 shows that a flat module over an Artin local ring is free.) Choose a basis

(Xf)¡g, for M'. Then by (ii) we find that M is the free module on generators u'(x't).

Choosing x'l e M" such that u"(x¡) = u'(x\), we get a map J,A"x'/->M" of A"

modules, whose reduction modulo the ideal J is an isomorphism. Therefore M"

is free on generators x" (Lemma 3.3) and it follows easily that N=M' xM M" is

free on generators x\ x x", and that the projections on the factors induce iso-

morphisms

N®BA' -^ M',    N®BA" -2¿* M"

as desired. (A similar argument for the case of general M' is given in [4, §1,

Proposition 2].)

Corollary 3.6. With the notations as above, let L be a B module which may be

inserted in a commutative diagram

where q' induces L <g>¡¡ A' -£¿> M'. Then the canonical morphism q'xq":L^-N

= M' xM M" is an isomorphism.

Proof. Apply Lemma 3.3 to the morphism u=q'xq".

Remark. Lemma 3.4 is false, in general, if neither A" ->■ A nor A' -> A is assumed

surjective. For example, let A' be a sublocal ring of the local ring A, and map

AX = A" into A by inclusion. Let a be a unit of A such that the ideal (aA') n A' of

A' is not flat ( = free) over A'. (In CA one could take A=k[t]/(t3), A' = k[t2],

a=l+t.) Let M' = M" = A', M=A, u' = inclusion, u" = multiplication by a"1.

Then B%A', while N^(aA') n A' is not flat over B.

Proof of Proposition 3.2. Let «': (A', v') -> (A, r¡), u": (A", r,") -» (A, r¡) be mor-

phisms of couples, where u" is a surjection. LetL', L, L" be corresponding invertible

sheaves on X' = XA-, Y= XA, and X" = XA.. Then we have morphisms p' : L' -> L,

p": L"-±L (of sheaves on the topological space \X0\, compatible with £)x, ->• Dy,

Cx»^- Oy) which induce isomorphisms L' <g>¿, A -^* L, L" ®A» A -£í-*- L.
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Let B—A' xA A", and let Z=XB. Then we have a commutative diagram

Qx. £>x.

of sheaves on \X0\; thus by Corollary 3.6 there is a canonical isomorphism

¡Dz -^ Dx. xqy £)x„, where Dx. xsr £>x~ is the sheaf of 5-algebras whose sec-

tions over an open U in | ̂ T0| are given by

Or xoY QAU) = O AU) xßr(ü) O AU).

Hence N=L' xLL" is a sheaf on Z, obviously invertible, and the projections of

N on L and L" induce isomorphisms N ®s ^' -^-> L', JV ®B -4" -^ L" by

Lemma 3.4.

If M is another invertible sheaf on Z for which there exist isomorphisms

M®A' ^* V,    M <g> ,4" -=¡* L",

we have morphisms #': M -*■!/, q": M^-L" which induce these isomorphisms,

and thus a commutative diagram

Here 9 is the automorphism of L given by the composition

L -^* L' <g>A. A -*-> M®BA -ä* L" ®A, A -=*+ L.

By hypothesis (ii) of 3.2, 6 is multiplication by some unit ae A. Lifting a back to

a" in A", we can change q" to a"q"; thus we may assume that u'q' = u"q". It follows

from Corollary 3.6 that M -^ N. We have therefore proved that

P(A' xA A") -*+ P(A') xPU) P(A")

for any surjection A" -» /4 in C.
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Finally, letting Y=Xk[e-¡, we have £>y = £)Xo ®e£)Xq, so there is a split exact

sequence

exp
0 -► DXo —U- Of -► D$0 -► 1

where exp maps the (additive) sheaf Dx¡> into D? by exp (/) = 14- sf Hence

F(k[e]) ~ ker {/r(JT0, O?) -► H\X0, D*Xo)} S /r(AT0, DXo)

which has finite dimension, by assumption. This completes the proof of Proposi-

tion 3.2.

(3.7) Formal moduli. Let X be a fixed prescheme over k, and AeC. By an

(infinitesimal) deformation of A7& to A we mean a product diagram

X——> Y

X ^+ YxStecASpeck

Spec k ->■ Spec .4

where T is flat over Spec A and i is (necessarily) a closed immersion. We will

suppress the i and refer to y as a deformation, if no confusion is possible. If Y' is

another deformation to A then Y and Y' are isomorphic if there exists a morphism

/: T -> F' over ,4 which induces the identity on the closed fibre X. (f must then

be an isomorphism of preschemes, by Lemma 3.3.) Given the deformation Y over

A and a morphism A -> B in C, one has evidently an induced deformation Y ®¿ B

over B; and if Z is a deformation over B, one can define the notion of morphism

Z -> y of deformations. (Notice that there is a one-to-one correspondence between

such morphisms and the isomorphisms Z ^^» y <g)¿ 5 which they induce.

Define the deformation functor D=Dxlk by setting

D(A) = Set of isomorphism classes of deformations of X/k to A.

We shall find that, in general, D is not pro-representable, but that with rather weak

finiteness restrictions on X, D will have a hull.

Suppose that (A', r¡') -> (A, r¡) and (A", r¡") -> (/4,77) are morphisms of couples,

where A" -> .4 is a surjection. Letting A", y, A"' denote deformations in the class

of 77', 17,7]" respectively, we have a diagram

X' X"

of deformations. Therefore we can construct, as in the proof of 3.2 the sheaf

£>x- xoY &x" of A' xA A" algebras, and (\X\, SDX. x¡jY Dx«) defines a prescheme Z

flat over A' xA A". (The fact that Z is actually a prescheme consists of straight-

forward checking; in fact it is the sum of X' and X" in the category of preschemes
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under Y, homeomorphic to Y. Z is flat over Ä xA A" by Lemma 3.4.) Furthermore

the closed immersions X->- Y^Z give Z a structure of deformation of X/k to

A' xAA" such that

Z

X' X"

is a commutative diagram of deformations. In particular this shows that

D(A' xA A') -» D(A') xDW D(A')

is surjective, for every surjection A" -> A. That is, condition (Hx) of 2.11 is satisfied.

Suppose now that W is another deformation over B, inducing the deformations

W

X' X"

^Y<_Y^'
8

X' and X". Then there is a commutative diagram of deformations, where 8 is

the composition

Y ^> X' ®A. A -^*  W®BA -> X" ®A„ A -^^  Y.

If 8 can be lifted to an automorphism 8' of A", such that 8'u' = u'6, then we can

replace q' with q'8' ; then we would have an isomorphism W -^-+ Z by Corollary

3.6. Now if A=k (so that Y=X, 8 = id) 8' certainly exists, so condition (H2) is

satisfied.

To consider the condition (H4), let p: (A', ■>]')-+ (A, r¡) be a morphism of couples,

where p is a small extension. For each morphism i? ->- A, let Dn(B) denote as usual

the set of £ e D(B) such that £ ®B A=-q. Pick a deformation Y' in the class of t/;

then

Lemma 3.8. The following are equivalent

(i) DV(A' xAA') ^ Dn(A')xDn(A'),

(ii) Every automorphism of the deformation Y= Y' <S)A' A is induced by an auto-

morphism of the deformation Y'.

Proof, (i) => (ii). Let u: f^7' be the induced morphism of deformations.
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If 9 is an automorphism of Y, then one can construct deformations Z, W over

A' xA A' to yield "sum diagrams"

of deformations. Since Z and W have isomorphic projections on both factors,

there is an isomorphism p:Z -=i* W. p induces automorphisms 9X and 92 of

y, and an automorphism <p of Y such that

9xu9 = u<f>,    92u = utp.

Therefore u9 = 9x~192u and 9X192 induces 9.

(ii) => (i). In a similar manner, it follows from (ii) that tF ® /. (7=ker p) acts

freely on 77' (i.e., (17')"= r?' implies ct=0). Since the action of tF <g) / on Z)„L4') is

transitive, it follows that D„(A') is a principal homogeneous space under tF <g> /,

which is equivalent to (i).

It should be remarked that the obstruction to lifting 9 lies in tF ® / and is often

nonzero (see e.g., [4, §4]).

Finally it remains to consider the finiteness condition (H3). If X is smooth over k

(in ancient terminology absolutely simple), then Grothendieck has shown in

S.G.A. Ill, Theorem 6.3, that

tD s H\X, 0)

where 0 is the tangent sheaf of X over k. Thus tD has finite dimension if X is

smooth and proper over k. In general, it is shown in [4] that for any scheme X

locally of finite type over k, there is an exact sequence

(3.9) 0 -► H\X, T°) -^tD-+ H°(X, T1) -+ H2(X, T°)

where T° is the sheaf of derivations of £>x, and T1 is a (coherent) sheaf isomorphic

to the sheaf of germs of deformations of X/k to k[e]. If X is smooth over k, then

r°= 0, 7^ = 0. Thus, in summary

Proposition 3.10. If X is either

(a) proper over k or

(b) affine with only isolated singularities,

then D has a hull (R, £). (R, {) pro-represents D if and only if for each small extension

A'' ->- A, and each deformation Y' ofXjk to A', every automorphism of the deformation

F' ®A, A is induced by an automorphism of Y'.
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(3.11) The automorphism functor. One can formalize the obstructions to pro-

representing D as follows. Let A' be a prescheme proper over k, and let (R, f) be a

hull of the deformation functor D. £ is represented by a formal prescheme

3£ = inj Lim Xn over R, where Xn is a deformation of X/k to R\mn. For each mor-

phism R^-A in CA, we get a deformation 3£A = Ï xSpeoBSpecJ4 of X/k to ^4.

We can therefore define a group functor A on the category CB of Artin local

F-algebras :

A: Av^»group of automorphisms of the deformation 3E¿.

If A' -+ A and A" ^- A are morphisms in CB with A" ^- A a surjection, and if

we put B=A' xA A" then we have a canonical isomorphism, respecting the struc-

tures as deformations:

€>sB ~ 0Xa. xoXa QXa.

by Corollary 3.6. It follows easily that (2.12) is an isomorphism, so that (Hx),

(H2) and (H4) of Theorem 2.11 are satisfied. Finally the computations of Grothen-

dieck in S.G.A. Ill, §6, show that the tangent space of A is given by

tAlR s H°(X0, T°)

where F° is, again, the (coherent) sheaf of derivations of £>x over k. Thus tA has

finite dimension, and we find:

Proposition 3.12. If X is proper over k, the functor A is pro-represented by a

complete local R algebra, S, which is a group object in the category dual to CR (i.e., S

is a formal Lie group over R). The deformation functor D is pro-representable (by R)

if and only if S is a power series ring over R.

The last statement follows from Lemma 3.8 and the smoothness criterion of

Remark 2.10.

In a future paper I will discuss the deformation functor in more detail, with

particular attention to the contribution of singular points on X.
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