Reconstruction problem in mirror symmetry

Jenia Tevelev (notes by Paul Hacking)

11/6/09

1 Large complex structure limit of Calabi-Yaus

Let X/Δ be a degenerating family of Calabi-Yau *n*-folds over the disc Δ . So X_t is smooth for $t \neq 0$ and X_0 is singular. We have the monodromy operator

$$T: H^n(X_t, \mathbb{Z}) \to H^n(X_t, \mathbb{Z}).$$

After a base change $t \mapsto t^k$ we may assume that X is smooth and $X_0 \subset X$ is a normal crossing divisor, that is, looks locally like a union of coordinate hyperplanes (this is Mumford's semistable reduction theorem). In this case one can show the map T is unipotent, $(T - I)^{n+1} = 0$. We say X/Δ has maximally unipotent monodromy if $(T - I)^n \neq 0$. We say X_t is approaching a large complex structure limit as $t \to 0$.

Example 1.1. The elliptic curve (n = 1). We consider a family X/Δ of smooth elliptic curves X_t , $t \neq 0$, degenerating to a rational nodal curve (a pinched torus). The monodromy is

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

The invariant class is the vanishing cycle.

2 SYZ (philosophical)

Let X be a Calabi–Yau *n*-fold that is close to a large complex structure limit. Then we expect that there is a fibration $f: X \to B$ of X by special Lagrangian real *n*-tori L. (Recall that $L \subset X$ is special Lagrangian if $\omega|_L = 0$ and $\operatorname{Im} \Omega|_L = 0$ where ω is the Kähler form and Ω is the holomorphic *n*form.) B is a real manifold of dimension n (away from the locus of singular fibres of f). *Example* 2.1. Elliptic curve. $f: X = \mathbb{C}/\Lambda \to S^1$ with fibre S^1 , given by $z = x + iy \mapsto y$ (here $\Omega = dz$).

Example 2.2. K3 surface. $f: X \to S^2$ with general fibre $S^1 \times S^1$, and (typically) 24 singular fibres, each a pinched torus.

Let $B^0 \subset B$ denote the locus of smooth fibres of f. Then f defines an *integral affine structure* on B^0 , that is, a distinguished atlas of charts with transition functions of the form $x \mapsto Ax + b$ for $A \in \operatorname{GL}(n, \mathbb{Z})$ and $b \in \mathbb{R}^n$. Indeed the integral affine coordinates can be defined as follows. Let $\gamma_1, \ldots, \gamma_n$ be a basis of $H_1(L, \mathbb{Z})$ for $L = X_b$ a smooth fibre (a real *n*-torus). For $v \in T_b B$ a tangent vector, let \tilde{v} be a lift of v to a vector field along $L \subset X$ and define 1-forms η_i on B by

$$\eta_j(v) = \int_{\gamma_j} i_{\tilde{v}} \omega = \int_{\gamma_j} \omega(\tilde{v}, \cdot)$$

(the choice of lift \tilde{v} is irrelevant because $\omega|_L = 0$). The forms η_j are closed, so locally we can write $\eta_j = dy_j$. Then y_1, \ldots, y_n are local integral affine coordinates.

There is also a natural metric g on B, the MacLean metric, defined by

$$g(v_1, v_2) = -\int_{X_b} i_{\tilde{v}_1} \omega \wedge i_{\tilde{v}_2} \operatorname{Im} \Omega.$$

Theorem 2.3. (Hitchin) In local integral affine coordinates y_1, \ldots, y_n , the metric $g = (g_{ij})$ is the Hessian of a (locally defined) potential function K:

$$g_{ij} = \frac{\partial^2 K}{\partial y_i \partial y_j}$$

Suppose in addition that the Ricci-flat Kähler metric h on X is semi-flat, that is, the induced metric on the fibres L of f is flat. Then

$$\det(g_{ij}) = constant,$$

that is, the potential function K satisifes the real Monge–Ampère equation. We say the integral affine manifold B^0 together with the metric g is a Monge–Ampère manifold.

Remark 2.4. In general, we do not expect the Kähler metric h to be semiflat. However, for X close to a large complex structure limit, we expect the metric to be close to a semi-flat metric away from the singular fibres. For K3 surfaces, this is explained in [GW00]. The integral affine structure on B^0 is determined by the lattice $T^{\mathbb{Z}}B^0 \subset TB^0$ of integral tangent vectors. We can define a dual integral affine structure using the MacLean metric g by

$$\check{T}^{\mathbb{Z}}B^0 := \{ v \in TB^0 \mid g(v, u) \in \mathbb{Z} \text{ for all } u \in T^{\mathbb{Z}}B^0 \} \subset TB^0.$$

3 SYZ mirror symmetry

We are looking for another Calabi-Yau *n*-fold \check{X}_t such that the SYZ fibration gives the same Monge–Ampère manifold but interchanges $T^{\mathbb{Z}}B^0$ and $\check{T}^{\mathbb{Z}}B^0$.

First consider the semi-flat case with no singular fibres. Then $X = TB/T^{\mathbb{Z}}B \to B$ and $\check{X} = TB/\check{T}^{\mathbb{Z}}B \to B$. Unfortunately Cheng-Yau showed that the only Calabi-Yaus that can arise in this way are complex tori.

Homework: The SYZ picture explains the interchange of Hodge numbers in classical mirror symmetry, see [G09, §1].

Reconstruction problem, I: Given a Monge–Ampère manifold B, produce Calabi–Yau manifolds X and \check{X} SYZ fibred over it.

Unfortunately the analysis required to construct special Lagrangian fibrations in dimension $n \geq 3$ seems intractable. We will use a less direct approach inspired by the SYZ picture.

4 Gromov–Hausdorff collapse

Let X_t be a family of Calabi–Yau *n*-folds approaching a large complex structure limit. Let h_t be the Ricci flat Kähler metric on X_t . Rescale h_t so that the diameter of X_t is constant.

Definition 4.1. (Gromov-Hausdorff distance) Let (X, d_X) , (Y, d_Y) be metric spaces. Let $f: X \to Y$ and $g: Y \to X$ be two maps (not necessarily continuous). Suppose that

 $|d_X(x_1, x_2) - d_Y(f(x_1), f(x_2))| < \epsilon \text{ for all } x_1, x_2 \in X,$ $d(x, g(f(x))) < \epsilon \text{ for all } x \in X,$

and the two symmetric statements hold. Then the Gromov–Hausdorff distance $d_{GH}(X, Y) < \epsilon$. And $d_{GH}(X, Y)$ is the infimum of all such ϵ .

Theorem 4.2. (Gromov) A family of Ricci flat manifolds of bounded diameter has a convergent subsequence with respect to d_{GH} (the limit being a metric space). Example 4.3. Elliptic curve. Let $X_t = \mathbb{C}/\langle 1, i/t \rangle$, $t \to 0$, with Ricci-flat metric induced from the standard metric on \mathbb{C} . Then X_t has diameter approximately 1/t. Rescale to obtain $X_t = \mathbb{C}/\langle t, i \rangle$. Thus X_t is obtained from rectangle with height 1 and width $t \to 0$ by identifying opposite sides. So the GH limit is S^1 .

A calculation shows that the fibres of the SYZ fibration have vanishing volume.

Conjecture 4.4. (Kontsevich) The GH limit of (X_t, h_t) is the base of the SYZ fibration with its Monge-Ampère metric.

Moreover, let us assume that X_t is simply connected and has full SU(n) holonomy. Then we expect B is homeomorphic to S^n .

Conjecture 4.4 is proved for n = 2 (K3 surfaces) by Gross and Wilson [GW00].

Reconstruction problem II: Begin with $S^n \supset B^0$, $\Delta := S^n \setminus B^0$ codimension $\geq 2, B^0$ Monge–Ampère, plus some conditions on Δ (for example, restriction on the monodromy of the integral affine structure around Δ). Construct a degenerating family of Calabi–Yaus with GH limit B.

References

- [G09] M. Gross, The SYZ conjecture: From torus fibrations to degenerations, in Algebraic geometry - Seattle 2005, Proc. Sympos. Pure Math. 80, Part 1, p. 149–192, AMS 2009, and arXiv:0802.3407v1
- [GW00] M. Gross and P. Wilson, Lagre complex structure limits of K3 surfaces, J. Differential Geom. 55 (2000), no. 3, 475–546, and arxiv:math/0008018v3 [math.DG].