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1 Large complex structure limit of Calabi-Yaus

Let X/∆ be a degenerating family of Calabi-Yau n-folds over the disc ∆.
So Xt is smooth for t 6= 0 and X0 is singular. We have the monodromy
operator

T : Hn(Xt, Z) → Hn(Xt, Z).

After a base change t 7→ tk we may assume that X is smooth and X0 ⊂ X
is a normal crossing divisor, that is, looks locally like a union of coordinate
hyperplanes (this is Mumford’s semistable reduction theorem). In this case
one can show the map T is unipotent, (T − I)n+1 = 0. We say X/∆ has
maximally unipotent monodromy if (T − I)n 6= 0. We say Xt is approaching
a large complex structure limit as t → 0.

Example 1.1. The elliptic curve (n = 1). We consider a family X/∆ of
smooth elliptic curves Xt, t 6= 0, degenerating to a rational nodal curve (a
pinched torus). The monodromy is

T =
(

1 1
0 1

)
.

The invariant class is the vanishing cycle.

2 SYZ (philosophical)

Let X be a Calabi–Yau n-fold that is close to a large complex structure
limit. Then we expect that there is a fibration f : X → B of X by special
Lagrangian real n-tori L. (Recall that L ⊂ X is special Lagrangian if ω|L = 0
and Im Ω|L = 0 where ω is the Kähler form and Ω is the holomorphic n-
form.) B is a real manifold of dimension n (away from the locus of singular
fibres of f).
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Example 2.1. Elliptic curve. f : X = C/Λ → S1 with fibre S1, given by
z = x + iy 7→ y (here Ω = dz).

Example 2.2. K3 surface. f : X → S2 with general fibre S1 × S1, and
(typically) 24 singular fibres, each a pinched torus.

Let B0 ⊂ B denote the locus of smooth fibres of f . Then f defines
an integral affine structure on B0, that is, a distinguished atlas of charts
with transition functions of the form x 7→ Ax + b for A ∈ GL(n, Z) and
b ∈ Rn. Indeed the integral affine coordinates can be defined as follows. Let
γ1, . . . , γn be a basis of H1(L, Z) for L = Xb a smooth fibre (a real n-torus).
For v ∈ TbB a tangent vector, let ṽ be a lift of v to a vector field along
L ⊂ X and define 1-forms ηi on B by

ηj(v) =
∫

γj

iṽω =
∫

γj

ω(ṽ, ·)

(the choice of lift ṽ is irrelevant because ω|L = 0). The forms ηj are closed,
so locally we can write ηj = dyj . Then y1, . . . , yn are local integral affine
coordinates.

There is also a natural metric g on B, the MacLean metric, defined by

g(v1, v2) = −
∫

Xb

iṽ1ω ∧ iṽ2 Im Ω.

Theorem 2.3. (Hitchin) In local integral affine coordinates y1, . . . , yn, the
metric g = (gij) is the Hessian of a (locally defined) potential function K:

gij =
∂2K

∂yi∂yj
.

Suppose in addition that the Ricci-flat Kähler metric h on X is semi-flat,
that is, the induced metric on the fibres L of f is flat. Then

det(gij) = constant,

that is, the potential function K satisifes the real Monge–Ampère equa-
tion. We say the integral affine manifold B0 together with the metric g
is a Monge–Ampère manifold.

Remark 2.4. In general, we do not expect the Kähler metric h to be semi-
flat. However, for X close to a large complex structure limit, we expect the
metric to be close to a semi-flat metric away from the singular fibres. For
K3 surfaces, this is explained in [GW00].

2



The integral affine structure on B0 is determined by the lattice T ZB0 ⊂
TB0 of integral tangent vectors. We can define a dual integral affine struc-
ture using the MacLean metric g by

Ť ZB0 := {v ∈ TB0 | g(v, u) ∈ Z for all u ∈ T ZB0} ⊂ TB0.

3 SYZ mirror symmetry

We are looking for another Calabi-Yau n-fold X̌t such that the SYZ fibration
gives the same Monge–Ampère manifold but interchanges T ZB0 and Ť ZB0.

First consider the semi-flat case with no singular fibres. Then X =
TB/T ZB → B and X̌ = TB/Ť ZB → B. Unfortunately Cheng-Yau showed
that the only Calabi-Yaus that can arise in this way are complex tori.

Homework: The SYZ picture explains the interchange of Hodge numbers
in classical mirror symmetry, see [G09, §1].

Reconstruction problem, I : Given a Monge–Ampère manifold B, produce
Calabi–Yau manifolds X and X̌ SYZ fibred over it.

Unfortunately the analysis required to construct special Lagrangian fi-
brations in dimension n ≥ 3 seems intractable. We will use a less direct
approach inspired by the SYZ picture.

4 Gromov–Hausdorff collapse

Let Xt be a family of Calabi–Yau n-folds approaching a large complex struc-
ture limit. Let ht be the Ricci flat Kähler metric on Xt. Rescale ht so that
the diameter of Xt is constant.

Definition 4.1. (Gromov–Hausdorff distance) Let (X, dX), (Y, dY ) be met-
ric spaces. Let f : X → Y and g : Y → X be two maps (not necessarily
continuous). Suppose that

|dX(x1, x2)− dY (f(x1), f(x2))| < ε for all x1, x2 ∈ X,

d(x, g(f(x))) < ε for all x ∈ X,

and the two symmetric statements hold. Then the Gromov–Hausdorff dis-
tance dGH(X, Y ) < ε. And dGH(X, Y ) is the infimum of all such ε.

Theorem 4.2. (Gromov) A family of Ricci flat manifolds of bounded di-
ameter has a convergent subsequence with respect to dGH (the limit being a
metric space).
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Example 4.3. Elliptic curve. Let Xt = C/〈1, i/t〉, t → 0, with Ricci-flat
metric induced from the standard metric on C. Then Xt has diameter
approximately 1/t. Rescale to obtain Xt = C/〈t, i〉. Thus Xt is obtained
from rectangle with height 1 and width t → 0 by identifying opposite sides.
So the GH limit is S1.

A calculation shows that the fibres of the SYZ fibration have vanishing
volume.

Conjecture 4.4. (Kontsevich) The GH limit of (Xt, ht) is the base of the
SYZ fibration with its Monge-Ampère metric.

Moreover, let us assume that Xt is simply connected and has full SU(n)
holonomy. Then we expect B is homeomorphic to Sn.

Conjecture 4.4 is proved for n = 2 (K3 surfaces) by Gross and Wilson
[GW00].

Reconstruction problem II : Begin with Sn ⊃ B0, ∆ := Sn \B0 codimension
≥ 2, B0 Monge–Ampère, plus some conditions on ∆ (for example, restriction
on the monodromy of the integral affine structure around ∆). Construct a
degenerating family of Calabi–Yaus with GH limit B.
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