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String theory is a N = 2 superconformal field theory (SCFT) which models
elementary particles by loops propagating in spacetime.

super — supersymmetry.
N = 2 — number of symmetries.
field theory — instance of a quantum field theory.
conformal — conformal structure on the worldsheet (surface in space

time traced out by motion of string), coming from minimization of energy.
Some live on

(1) Calabi–Yau 3-fold

(2) Point. Here have superpotential F (Φ1, . . . ,Φn), a weighted homoge-
neous polynomial in variables Φ1, . . . ,Φn, and vacuum states

C[Φ1, . . . ,Φn]/({∂F/∂Φi}),

an Artinian ring. This is a Landau–Ginzburg theory.

Also have orbifold Landau–Ginzburg theories — fields are invariant fields
of Landau–Ginzburg theory under finite group action.

In the Calabi–Yau case, the data of a Calabi–Yau 3-fold V together with
a complexified Kähler class ω gives rise to the SCFT. We have a U(1)×U(1)
action on a Hilbert space. The (p, q)-eigenspace is

Hq(V,∧pT ) ' Hq(V,Ω3−p).
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(Note that ∧3Ω is trivial because V is Calabi–Yau.) The (−p, q)-eigenspace
is Hq(V,Ωp).

The SCFT moduli space is (locally) a product of complex and Kähler
moduli. There is a formal symmetry of the SCFT — a sign change in
U(1)× U(1) (meaning, compose with inverse map on one factor) gives new
N = 2 SCFT.

Expectation: New theory comes from another Calabi–Yau 3-fold V 0, the
so called “mirror”.

Hp,q(V ) = Hq(V,Ωp) ' Hq(V 0,Ω3−p) = H3−p,q(V 0)

The Hodge diamond of a Calabi–Yau 3-fold has the form

1
0 0

0 h2,2 0
1 h1,2 h2,1 1

0 h1,1 0
0 0
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(Recall that a Calabi–Yau n-fold V is a complex manifold such that Ωn is
trivial and hi(OV ) = 0 for 0 < i < n.) So we see that the Hodge diamonds
of V and V 0 are related by reflection in the line y = −x. This is the origin
of the term “mirror symmetry”.

Also H2,1(V ) = H1(V,Ω2) ' H1(V, T ), the space of deformations of
complex structure, and H1,1(V ) is the space of deformations of (complexi-
fied) Kähler structure. Thus the Kähler moduli of V is identified with the
complex moduli of V 0.

There is a “physics proof” of Mirror symmetry in the Landau–Ginzburg
case. There is a deformation argument that applies to some Calabi–Yau 3-
folds (including the quintic) to deduce mirror symmetry from the Landau–
Ginzburg case. (Roughly, we consider deforming the Kähler class to a class
defining a contraction to a space of lower dimension. The Landau–Ginzburg
case corresponds to the totally degenerate case where the Calabi-Yau is
contracted to a point.)
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Let V be the quintic 3-fold, that is, the locus of zeroes of a homogeneous
polynomial of degree 5 in complex projective 4-space.
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The mirror of V is V ′/G, where V ′ is a quintic 3-fold and G is a group
of order 125 acting linearly on P4. Here we choose the quintic V ′ so that
it is invariant under the action of G. This gives a 1-parameter family of
choices. Remark: Strictly speaking, we should pass to a crepant resolution
of V ′/G here, that is, a resolution of singularities W → V ′/G such that Ω3

W

is trivial.
The isomorphism of SCFT’s induces an isomorphism of moduli spaces

of SCFT’s, the mirror map, which identifies the 3-point functions on these
moduli spaces. We now describe the 3-point functions on the Kähler and
complex moduli spaces.

(1) (Kähler). Given (V, ω), for ω1, ω2, ω3 ∈ H1,1(V ) we have

〈ω1, ω2, ω3〉 =
∫
V
ω1 ∧ ω2 ∧ ω3 +

∑
β∈H2(V )

nβ

∫
β
ω1

∫
β
ω2

∫
β
ω3

q

1− q
.

where nβ is the “number of rational curves” in class β (instantons),
and q = exp(2πi

∫
β ω). The terms involving q are non-perturbative

worldsheet corrections.

(2) (Complex). Given V 0, for θ1, θ2, θ3 ∈ H1(V 0, T ) ' H2,1(V 0), we have

〈θ1, θ2, θ3〉 '
∫

Ω ∧ (∇θ3∇θ2∇θ1Ω)

where ∇ is the Gauss–Manin connection. This 3-point function can
be computed by classical methods (Hodge theory). There are no non-
perturbative corrections. (Roughly, this is because the integral

∫
β θi

mirror to
∫
β ωi is zero by dimensions.)

For the quintic 3-fold V and its mirror V 0: The Kähler moduli of V
is 1-dimensional, q = exp(2πi

∫
β ω), where β is the positive generator of

H2(V ) ' Z. The point q = 0 is a “boundary point” of Kähler moduli (the
limit as the imaginary part of the complexified Kähler form ω tends to ∞,
the large volume limit). The complex moduli of V 0 is also 1-dimensional,
with parameter x = ψ−5 and universal family the quotient of the family of
invariant quintics

x5
1 + · · ·+ x5

5 + ψx1 · · ·x5 = 0

by the finite group G. The boundary point x = 0 has maximally unipotent
monodromy. That is, for a small loop around x = 0 in the moduli space,
parallel transport induces an isometry T of the middle cohomology H3(W,Z)
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of the fibre W of the universal family over the basepoint (the monodromy),
and, possibly after a basechange, (T − I)4 = 0 but (T − I)3 6= 0. This gives
rise to natural coordinates on the complex moduli space near x = 0.

The mirror map q = q(x) is given by

q = −x · exp

 5
y0(x)

·
∞∑
n=1

(5n)!
(n!)5

 5n∑
j=n+1

1
j

 (−1)nxn


where

y0(x) =
∞∑
n=1

(5n)!
(n!)5

(−1)nxn.

Now the identification of 3-point functions under the mirror map gives

5 +
∞∑
d=1

nd · d3 · qd

1− qd
=

5
(1 + 55x)y0(x)2

·
(
q

x

dx

dq

)3

,

and we find nd = 2875, 609250, 317206375, . . . for d = 1, 2, 3, . . .

2.1 Complications

(1) It is not known that nd is finite for all d (but this has been conjectured
by Clemens). We do know that nd is finite for d ≤ 10.

(2) We can take an almost complex structure J on (V, ω) and count pseu-
doholomorphic curves. Then for generic choice of J , all the curves
should be smooth. Vainsenscher observed that, in the algebraic case,
n5 = 229305888887625, and 17601000 of these curves are 6-nodal. For
each of these singular curves and a choice of node we can define an
étale double cover by a reducible curve with two rational components
meeting in a single node. These covers contribute to n10, and it is now
known that these account exactly for the discrepancy between n10 and
the actual number of rational curves of degree 10 on V . Kontsevich
introduced the notion of stable maps to give a precise definition of the
nβ.
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Mirror symmetry has had a huge impact on mathematics. We list a few
examples.
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In 1994 Batyrev used reflexive polytopes to “explain” mirror symmetry.
In particular mirror symmetry for the quintic fits naturally in this frame-
work. This led to an emphasis on toric varieties.

Chen-Ruan, McDuff, and Kontsevich-Manin introduced Gromov-Witten
invariants. This led to the theories of stable maps, quantum cohomology,
virtual fundamental classes, orbifold cohomology, and a renewed interest in
algebraic stacks.

In 1994 Kontsevich proposed a homological version of mirror symmetry.
If V ,V 0 is a mirror pair, we expect that the derived category of coher-
ent sheaves on V 0 (“complex”) is equivalent to the “derived category of
Lagrangian submanifolds of V ” (“Kähler”). A naive consequence is the fol-
lowing: If p ∈ V 0 is a point we have the structure sheaf O{p} of the closed
subvariety {p} ⊂ V 0, a skyscraper sheaf at p with stalk C. According to
the homological mirror symmetry proposal, this sheaf should correspond to
a Lagrangian submanifold Lp of V . Now, tautologically, V 0 is the mod-
uli space of points p ∈ V 0, hence V 0 is the moduli space of the Lp ⊂ V .
Thus we obtain a construction of the mirror V 0 in terms of V . This is re-
lated to T -duality (Strominger–Yau–Zaslow), Fourier–Mukai transforms on
K3 surfaces, etc.
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