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Abstract. We explain our proof, joint with Mark Gross and Maxim Kontsevich,

of conjectures of Fomin–Zelevinsky and Fock–Goncharov on canonical bases of clus-

ter algebras. We interpret a cluster algebra as the ring of global functions on a

non-compact Calabi-Yau variety obtained from a toric variety by a blow up con-

struction. We describe a canonical basis of a cluster algebra determined by tropical

counts of holomorphic discs on the mirror variety, using the algebraic approach to

the Strominger–Yau–Zaslow conjecture due to Gross and Siebert.

1. Introduction

We say a complex variety U is log Calabi–Yau if it admits a smooth projective

compactification X with normal crossing boundary1 D such that KX + D = 0, that

is, there is a nowhere zero holomorphic top form Ω on U with simple poles along D.

The mirror symmetry phenomenon for compact Calabi–Yau manifolds extends to the

case of log Calabi–Yau varieties, see [A09] and §4. We say U has maximal boundary if

D has a 0-stratum (a point cut out by n = dimCX branches of D) and is positive if

D is the support of an ample divisor2 (so in particular U is affine) . The tropical set

U trop(R) of U is the cone over the dual complex of D; we write U trop(Z) for its integral

points.

Conjecture 1.1. Mirror symmetry defines an involution on the set of positive log

Calabi–Yau varieties with maximal boundary. For a mirror pair U and V , there is a

basis ϑq, q ∈ U trop(Z) of H0(V,OV ) parametrized by the integral points of the tropical

set of U , which is canonically determined up to multiplication by scalars λq ∈ C×,

q ∈ U trop(Z).

For example, if U ' (C×)n is an algebraic torus, then the mirror V is the dual

algebraic torus, and the canonical basis is given by the characters of V (up to scalars),

which may be characterized as the units of H0(V,OV ). The set of characters of V

corresponds under the duality to the set of 1-parameter subgroups of U , which is

The authors were partially supported by NSF grants DMS-1601065 (P.H.) and DMS-1561632 (S.K.).
1More generally, (X,D) has Q-factorial divisorial log terminal singularities ([KM98], Defini-

tion 2.37).
2More generally, D is the support of a big and nef divisor.
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identified with U trop(Z). The heuristic justification for Conjecture 1.1 coming from

mirror symmetry is explained in §4.

Cluster algebras were introduced by Fomin and Zelevinsky as a tool to understand

the constructions of canonical bases in representation theory by Lusztig [FZ02]. In §2
we review a description of cluster varieties in terms of toric and birational geometry

[GHK15b]. Roughly speaking, a cluster variety is a log Calabi–Yau variety U which

carries a non-degenerate holomorphic 2-form and is obtained from a toric variety X̄

by blowing up codimension 2 centers in the toric boundary and removing its strict

transform. The existence of the 2-form greatly constrains the possible centers and

accounts for the combinatorial description of cluster varieties. The mutations of cluster

theory are given by elementary transformations of P1-bundles linking different toric

models.

For a cluster variety U , Fock and Goncharov defined a dual cluster variety V by

an explicit combinatorial recipe, and stated the analogue of Conjecture 1.1 in this

setting [FG06]. In §5 we use an algebraic version of the Strominger–Yau–Zaslow mirror

construction [SYZ96] to explain that if U is positive then V should be its mirror. (If

U is not positive, then we expect that the mirror of U is an open analytic subset of

V and the Fock–Goncharov conjecture is false, cf. [GHK15b].) Under a hypothesis

on U related to positivity, our construction proves Conjecture 1.1 in this case. In

particular, the hypothesis is satisfied in the case of the mirror of the base affine space

G/N for G = SLm studied by Fomin and Zelevinsky, so we obtain canonical bases of

representations of G by the Borel–Weil–Bott theorem.

Acknowledgements. This paper is based on joint work with Mark Gross and Maxim

Kontsevich [GHK15a], [GHK15b], [GHKK14]. The algebraic approach to the Strominger–

Yau–Zaslow conjecture in §5 is due to Gross and Siebert [GS11].

2. Log Calabi–Yau varieties

Definition 2.1. A log Calabi–Yau pair (X,D) is a smooth complex projective variety

X together with a reduced normal crossing divisor D ⊂ X such that KX + D = 0.

Thus there is a nowhere zero holomorphic top form Ω on U = X \D (a holomorphic

volume form) such that Ω has a simple pole along each component of D, uniquely

determined up to multiplication by a nonzero scalar.

We say a variety U is log Calabi–Yau if there exists a log Calabi–Yau pair (X,D)

such that U = X \D.

Remark 2.2. Note that if U is a smooth variety and (X,D) is any normal crossing

compactification of U , the subspace H0(Ωp
X(logD)) ⊂ H0(Ωp

U) for each p ≥ 0 is inde-

pendent of (X,D) [D71]. In particular, if U is a log Calabi–Yau variety then there is
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a holomorphic volume form Ω on U such that Ω has at worst a simple pole along each

boundary divisor of any normal crossing compactification (X,D), uniquely determined

up to a scalar.

Definition 2.3. We say a log Calabi–Yau pair (X,D) has maximal boundary if the

boundary D has a 0-stratum, that is, a point p ∈ D ⊂ Y cut out by n = dimCX

analytic branches of the divisor D, so that we have a local analytic isomorphism

(p ∈ D ⊂ X) ' (0 ∈ (z1 · · · zn = 0) ⊂ Cn).

We say a log Calabi–Yau variety U has maximal boundary if some (equivalently, any

[dFKX12], Proposition 11) log Calabi–Yau compactification (X,D) of U has maximal

boundary.

Definition 2.4. We say a log Calabi–Yau variety U is positive if there exists a log

Calabi–Yau compactification (X,D =
∑
Di) and positive integers ai such that A =∑

aiDi is ample. In particular, U = X \D is affine.

Example 2.5. The algebraic torus (C×)n is a log Calabi-Yau variety, with holomorphic

volume form Ω = dz1
z1
∧· · ·∧ dzn

zn
. Any toric compactification (X,D) satisfies KX+D = 0.

Example 2.6 (Non-toric blow up). Let (X,D) be a log Calabi–Yau pair and Z ⊂ X

a smooth subvariety of codimension 2 which is contained in a unique component of D

and meets the other components transversely. Let π : X̃ → X be the blow up of Z and

D̃ ⊂ X̃ the strict transform of D. Then the pair (X̃, D̃) is log Calabi–Yau.

Definition 2.7. A toric model of a log Calabi–Yau variety U is a log Calabi–Yau com-

pactification (X,D) of U together with a birational morphism f : (X,D) → (X̄, D̄)

such that (X̄, D̄) is a toric variety together with its toric boundary and f is a compo-

sition of non-toric blow ups as in Example 2.6.

Remark 2.8. In the description of a log Calabi–Yau variety U in terms of a toric model

(X,D) → (X̄, D̄), one can replace the projective toric variety X̄ with the toric open

subset X̄ ′ ⊂ X̄ given by the union of the big torus T ⊂ X̄ and the open T -orbit in

each boundary divisor containing the center of one of the blow ups. Thus the fan Σ′ of

X̄ ′ is the subset of the fan of X̄ consisting of {0} and the rays corresponding to these

boundary divisors. Cf. [GHK15b], §3.2.

Example 2.9. Let X = P2 and D = Q + L the union of a smooth conic Q and a

line L meeting transversely. We describe a toric model of the log Calabi–Yau surface

U = X \D. First, choose a point p ∈ Q∩L and blow up at p. Second, blow up at the

intersection point of the exceptional divisor and the strict transform of Q. Let X̃ → X
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be the composition of the two blow ups and D̃ = π−1D. The strict transform in X̃ of

the tangent line to Q at p is a (−1)-curve E meeting D̃ transversely at a point of the

exceptional divisor of the second blow up. Contracting E yields a toric pair (X̄, D̄)

with X̄ ' F2 := P(OP1 ⊕OP1(−2)).

Proposition 2.10. ([GHK15a], Proposition 1.3) Let U be a log Calabi-Yau surface

with maximal boundary. Then U has a toric model.

The proof is an exercise in the birational geometry of surfaces.

Example 2.11. We describe an example of a log Calabi–Yau 3-fold with maximal

boundary which is irrational. In particular, it does not have a toric model.

Smooth quartic 3-folds are irrational [IM71]. Let X ⊂ P4 be a smooth quartic 3-fold

with hyperplane section

D = (X4
1 +X4

2 +X4
3 +X1X2X3X4 = 0) ⊂ P3.

The surface D has a unique singular point p = (0 : 0 : 0 : 1). The minimal resolution

of D is obtained by blowing up p and has exceptional locus a triangle of (−3)-curves

(in particular, p ∈ D is a cusp singularity).

We describe a sequence of blow ups π : X̃ → X such that the inverse image of D is a

normal crossing divisor. First blow up the point p. The inverse image D1 of D consists

of two components, the exceptional divisor E ' P2 and the strict transform D′ of D

(which is its minimal resolution). The intersection E ∩D′ is the exceptional locus of

D′ → D, a triangle of smooth rational curves. Blow up the nodes of the triangle. For

each of the exceptional divisors Ei ' P2, the strict transforms of E and D meet Ei in

a common line li ⊂ Ei. Finally blow up each line li to obtain X̃.

Define the divisor D̃ ⊂ X̃ to be the union of the strict transforms of D, E, and the

exceptional divisors over the lines li. Then KX̃ + D̃ = 0. The variety Ũ = X̃ \ D̃ is an

irrational log Calabi–Yau 3-fold with maximal boundary.

Remark 2.12. On the other hand, if (X,D) is a log Calabi-Yau pair with maximal

boundary then X is rationally connected [KX16], (18).

3. Cluster varieties

3.1. Birational geometric description of cluster varieties.

Definition 3.1. We say a log Calabi–Yau variety U is a cluster variety if

(1) There is a non-degenerate holomorphic 2-form σ on U such that for some

(equivalently, any [D71]) normal crossing compactification (X,D) we have σ ∈
H0(Ω2

X(logD)).
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(2) U has a toric model.

Remark 3.2. It is customary in the theory of cluster algebras to allow the 2-form to be

degenerate. However, the non-degenerate case is the essential one (cf. §5.4).

Example 3.3. Every log Calabi–Yau surface with maximal boundary is a cluster

variety by Proposition 2.10.

Suppose U is a cluster variety with 2-form σ and toric model f : (X,D) → (X̄, D̄).

Then σ = f ∗σ̄ for some σ̄ ∈ H0(Ω2
X̄

(log D̄)) by Hartogs’ theorem. The sheaf ΩX̄(log D̄)

is freely generated by dz1
z1

, . . . , dzn
zn

, where z1, . . . , zn is a basis of characters for the

algebraic torus T = X̄ \ D̄ ' (C×)nz1,...,zn . See [F93], Proposition, p. 87. Thus σ̄ =
1
2

∑
aij

dzi
zi
∧ dzj

zj
for some non-degenerate skew matrix (aij). The following lemma is left

as an exercise.

Lemma 3.4. Let (X,D) be a normal crossing pair, Z ⊂ X a smooth codimension

2 subvariety contained in a unique component F of D and meeting the remaining

components transversely, π : X̃ → X the blow up with center Z, and D̃ the strict

transform of D. Let σ ∈ H0(Ω2
X(logD)) be a log 2-form on X. Let DF = (D − F )|F

and let ResF : Ω2
X(logD) → ΩF (logDF ) be the Poincaré residue map. Then σ lifts to

a log 2-form on (X̃, D̃) if and only if (ResF σ)|Z = 0.

Now let Z ⊂ F ⊂ D̄ be the center of one of the blow ups for the toric model f .

We may choose coordinates on T so that F \ D̄F = (z1 = 0) ⊂ A1
z1
× (C×)n−1

z2,...,zn
, then

ResF (σ̄) =
∑

j>1 a1j
dzj
zj

. Using the lemma, we deduce that

(1) ResF (σ̄) is proportional to an integral log 1-form, that is, ResF (σ̄) = ν ·∑
j>1 bj

dzj
zj

for some ν ∈ C× and pairwise coprime bj ∈ Z. Equivalently, writing

χ : T → C× for the character
∏
z
bj
j , ResF (σ̄) = ν dχ

χ
.

(2) Z = F ∩ (χ = λ) for some λ ∈ C×.

Remark 3.5. Note that, after a change of coordinates, we may assume χ = z2. Thus,

if f is a single blow up, then U = X \D decomposes as a product U ′ × (C×)n−2
z3,...,zn

. In

general U does not globally decompose as a product.

Conversely, any sequence of non-toric blow ups of (X̄, D̄, σ̄) with the above properties

yields a cluster variety.

3.2. Atlas of tori and elementary transformations. The usual description of a

cluster variety U is as follows: The variety U is the union of a countable collection

of open subsets Tα (indexed by seeds α) which are copies of a fixed algebraic torus
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T ' (C×)n. The glueing maps between the open subsets are compositions of mutations,

given (for some choice of coordinates z1, . . . , zn on T ) by the formula

µ : T 99K T ′, (z1, z2, . . . , zn) 7→ (z1(1 + cz2)−1, z2, z3, . . . , zn)

for some c ∈ C×.

There is the following geometric interpretation. First, note that a toric model

f : (X,D)→ (X̄, D̄) determines an open inclusion of the torus T = X̄ \D̄ in U = X \D
via f−1. This is the origin of the torus charts of a cluster variety: seeds correspond

to toric models. Second, mutations correspond to birational transformations between

toric models given by elementary transformations of P1-bundles. In the above notation,

let (X̄, D̄) be the toric partial compactification of T given by P1
z1
× (C×)n−1

z2,...,zn
. Let

Z = (z1 = 0) ∩ (1 + cz2 = 0), let π : X → X̄ be the blow up of Z, and D the strict

transform of D̄. Write H = (1 + cz2 = 0) ⊂ X̄ and let H ′ ⊂ X be its strict transform.

Then H ′ can be blown down, yielding a morphism π′ : (X,D) → (X̄ ′, D̄′) to a second

toric pair such that X̄ ′ is also isomorphic to P1
z1
× (C×)n−1

z2,...,zn
and π′ is the blow up of

Z ′ = (z1 =∞) ∩ (1 + cz2 = 0). The birational map (X̄, D̄) 99K (X̄ ′, D̄′) is an elemen-

tary transformation of P1-bundles over (C×)n−1. Writing U = X \D, T = X̄ \ D̄, and

T ′ = X̄ ′ \ D̄′, we have T ∪ T ′ = U \W where W ' Z ' Z ′ is the intersection of the

exceptional divisors of π and π′. The mutation µ : T 99K T ′ is the restriction of the

birational map X̄ 99K X̄ ′.

Remark 3.6. In general the union of tori in the original definition of a cluster variety

is an open subset of a cluster variety in the sense of Definition 3.1 with complement of

codimension at least 2 provided that the parameters λ ∈ C× are very general [GHK15b],

Theorem 3.9. For simplicity we will always assume that this is the case.

3.3. Combinatorial data for toric model of a cluster variety. We can give an

intrinsic description of the data for a toric model of a cluster variety as follows. (We

use the notation of [F93] for toric varieties.) Let T = X̄ \ D̄ be the big torus acting

on X̄. Let N = H1(T,Z) = Hom(C×, T ) be the lattice of 1-parameter subgroups of T

and M = N∗ = Hom(T,C×) the dual lattice of characters of T . Then T = N ⊗Z C×.

We sometimes use the multiplicative notation zm for characters.

Let U be a cluster variety and f : (X,D) → (X̄, D̄) be a toric model for U . With

notation as in §3.1, let Z = F ∩ (χ = λ) be the center of one of the blow ups. The

toric boundary divisor F ⊂ D̄ corresponds to a primitive vector v ∈ N (the generator

of the corresponding ray of the fan of X̄). The character χ corresponds to a primitive

element m ∈ v⊥ ⊂ M (primitive because Z is assumed irreducible). The 2-form σ̄

lies in H0(Ω2
X̄

(log D̄)) = ∧2MC. The condition ResF (σ̄) = ν · dχ
χ

is equivalent to
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σ̄(v, ·) = ν ·m. The associated mutation is given by

(3.7) µ = µ(m,v) : T 99K T, µ∗(zm
′
) = zm

′
(1 + czm)−〈m

′,v〉

where c = −1/λ.

3.4. The tropicalization of a log Calabi–Yau variety.

Definition 3.8. Let U be a log Calabi–Yau variety. We define the tropicalization

U trop(R) of U as follows. Let (X,D) be a log Calabi–Yau compactification of U . We

may assume (blowing up boundary strata if necessary) that D is a simple normal

crossing divisor, that is, each component Di of D is smooth and each intersection

Di1 ∩ · · · ∩Dik is either irreducible or empty. The dual complex of D is the simplicial

complex with vertex set indexed by components of D, such that a set of vertices spans

a simplex if and only if the intersection of the corresponding divisors is non-empty. Let

U trop(R) be the cone over the dual complex of D, and U trop(Z) its integral points. One

can show using [AKMW02] that U trop(R) is independent of the choice of (X,D) up to

ZPL-homeomorphism [KS06], §6.6, [dFKX12], Proposition 11.

The set U trop(Z) has the following intrinsic description: Let Ω be a holomorphic

volume form on U as in Remark 2.2. Then U trop(Z) \ {0} is identified with the set of

pairs (ν, k) consisting of a divisorial valuation ν : C(U)× → Z such that ν(Ω) < 0 and

a positive integer k. Thus roughly speaking U trop(Z) \ {0} is the set of all pairs (F, k)

where F is a boundary divisor in some log Calabi-Yau compactification (X,D) of U

and k ∈ N.

Example 3.9. If U = T = N⊗C× is an algebraic torus then we have an identification

U trop(Z) = N : Given 0 6= v ∈ N write v = kv′ where k ∈ N and v′ ∈ N is primitive.

Then v′ corresponds to a toric boundary divisor associated to the ray ρ = R≥0 · v′ in

NR, with associated valuation ν : C(T )× → Z determined by ν(zm) = 〈m, v′〉. These

are the only divisors along which Ω has a pole, by [KM98], Lemmas 2.29 and 2.45.

If (X,D) is a toric compactification of T then the cone over the dual complex of D

is identified with the fan Σ of X in U trop(R) = NR.

If f is a nonzero rational function on a log Calabi–Yau variety U , then we have

a ZPL map f trop : U trop(R) → R defined on primitive integral points ν = (ν, 1) by

f trop(ν) = ν(f). If f : U 99K V is a birational map between log Calabi–Yau varieties

that is compatible with the holomorphic volume forms, then there is a canonical ZPL

identification f trop : U trop(R)
∼→ V trop(R) defined by f trop(ν) = ν ◦ f ∗.
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Example 3.10. For the mutation (3.7), we have

µtrop : NR → NR, µtrop(w) =

w if 〈m,w〉 ≥ 0

w − 〈m,w〉v if 〈m,w〉 < 0.

4. Mirror symmetry

Mirror symmetry is a phenomenon arising in theoretical physics which predicts that

Calabi–Yau varieties (together with a choice of Kähler form) come in mirror pairs U

and V such that the symplectic geometry of U is equivalent to the complex geometry

of V , and vice versa.

4.1. The Strominger–Yau–Zaslow conjecture. Recall that a submanifold L of a

symplectic manifold (U, ω) is Lagrangian if dimR L = 1
2

dimR U and ω|L = 0. Let U

be a log Calabi–Yau manifold with holomorphic volume form Ω and Kähler form ω.

We say a Lagrangian submanifold L of (U, ω) is special Lagrangian if Im Ω|L = 0.

The Strominger–Yau–Zaslow conjecture asserts that mirror Calabi-Yau varieties admit

dual special Lagrangian torus fibrations [SYZ96]. More precisely, there exist continuous

maps f : U → B and g : V → B with common base B and a dense open set Bo ⊂ B

such that

(1) The restrictions f o : U o → Bo and go : V o → Bo are C∞ real n-torus fibrations

such that the fibers are special Lagrangian, and

(2) The associated local systems R1f o∗Z and R1go∗Z on Bo are dual.

Example 4.1. Let U = (C×)nz1,...,zn , Ω = ( 1
2πi

)n dz1
z1
∧ · · · ∧ dzn

zn
, and ω = 1

2π
i
2

∑n
j=1

dzj
zj
∧

dz̄j
z̄j

. Then the map f : U → Rn, f(z1, . . . , zn) = (log |z1|, . . . , log |zn|) is a special

Lagrangian torus fibration. (Topologically f is the quotient by the compact torus

(S1)n ⊂ (C×)n.)

Example 4.2. Let U = T = N ⊗ C× ' (C×)n and let (X,D) be a smooth projective

toric compactification. Let A be an ample line bundle on X. Let K ⊂ T be the

compact torus. Then, using the description of X as a GIT quotient of affine space,

the Kempf–Ness theorem ([MFK94], Theorem 8.3), and symplectic reduction, one can

construct a K-invariant Kähler form ω on X in class c1(A) ∈ H2(X,R). If µ is the

associated moment map, then µ maps X onto the lattice polytope P ⊂MR associated

to (X,A), and is topologically the quotient by K. The restriction of µ to T is a special

Lagrangian torus fibration for the Kähler form ω|U and holomorphic volume form Ω as

in Example 4.1.

Construction 4.3. If f : (U, ω) → B is a Lagrangian torus fibration, then the locus

Bo ⊂ B of smooth fibers inherits an integral affine structure (an atlas of charts with
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transition functions of the form x 7→ Ax+b for some A ∈ GL(n,Z) and b ∈ Rn). This

may be constructed as follows. Fix b0 ∈ Bo and let W ⊂ Bo be a small contractible

neighborhood of b0. For γ ∈ H1(f−1(b0),Z) define yγ : W → R by yγ(b) =
∫

Γ
ω where

Γ ⊂ X is a cylinder fibering over a path from b0 to b in W swept out by a loop in the

class γ. Applying this construction to a basis of H1(f−1(b0),Z) ' Zn gives a system of

integral affine coordinates y1, . . . , yn on W ⊂ Bo. In Examples 4.1 and 4.2 this integral

affine structure is the restriction of the standard integral affine structure on Rn.

Example 4.4. Let U , (X,D), etc. be as in Example 4.2 and consider a non-toric

blow up (X̃, D̃) of (X,D) as in Example 2.6. Then we can modify the moment map

µ : X → P to obtain a map µ̃ : X̃ → P̃ such that the restriction f : Ũ → B to the

interior B of P̃ is a Lagrangian torus fibration with singular fibers [AAK16].

Assume first that n = dimCX = 2. Thus we have a smooth point p of D, π : X̃ → X

is the blow up of p, and D̃ ⊂ X̃ is the strict transform ofD. Let S1 ⊂ K be the stabilizer

of the point p ∈ X, so that S1 acts on X̃. Let e ⊂ P be the edge of P containing

µ(p), and choose integral affine coordinates y1, y2 on MR ' R2 such that p = (0, 0),

e ⊂ (y1 = 0), and P ⊂ (y1 ≥ 0). Let ε > 0 be sufficiently small so that the triangle T

with vertices (0,−ε/2), (0,+ε/2), (ε, 0) is contained in P and its intersection with the

boundary of P is contained in the interior of e. Let P̃ be the topological space obtained

by collapsing T ⊂ P via the map y1 : T → [0, ε]. Then P̃ is the base of an S1-invariant

map µ̃ : (X̃, ω̃) → P̃ such that the restriction to the interior B of P̃ is a Lagrangian

torus fibration with a unique singular fiber (a pinched torus) over the image q ∈ B of

the point (ε, 0) ∈ P . The fibration has monodromy around q given by the Dehn twist

in the vanishing cycle (the class of the S1-orbits). The exceptional (−1)-curve E ⊂ X̃

fibers over the interval I ⊂ P̃ given by the image of T ⊂ P . The class of the symplectic

form in H2(X̃,R) is [ω̃] = π∗[ω]− εc1(E) = c1(π∗A− εE). The symplectic form ω̃ and

the fibration µ̃ agree with ω and µ over the complement of a tubular neighborhood of

I ⊂ P̃ .

A similar construction applies in dimension n > 2 [AAK16], §4. (Here we work

over the open set X ′ ⊂ X given by the complement of the codimension two strata, cf.

Remark 2.8.) Applying this construction repeatedly, we can construct a Lagrangian

torus fibration on any log Calabi-Yau variety with a toric model. (Note that the

fibration is not special Lagrangian (but cf. [AAK16], Remark 4.6).)

4.2. Homological mirror symmetry. The homological mirror symmetry conjecture

of Kontsevich [K95] asserts the following mathematical formulation of mirror sym-

metry: For mirror compact Calabi–Yau varieties U and V , the derived Fukaya cat-

egory F(U) of U is equivalent to the derived category of coherent sheaves D(V ) on
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V . Roughly speaking, the objects of the Fukaya category of U are Lagrangian sub-

manifolds L together with a unitary local system, and the morphisms are given by

Lagrangian Floer cohomology. See [A14] for an introduction.

If U is a log Calabi–Yau variety then, at least if U is positive (Definition 2.4),

the HMS conjecture is expected to hold with the following adjustments. First, we

must allow non-compact Lagrangian submanifolds with controlled behaviour at infinity.

Second, the definition of the morphisms in the Fukaya category is modified at infinity

using a Hamiltonian vector field associated to a function H : U → R such that H →∞
sufficiently fast at infinity. The resulting category F(U) is called the wrapped Fukaya

category [A14], §4.

The HMS and SYZ conjectures are related as follows. Suppose U and V are mirror log

Calabi–Yau varieties with dual Lagrangian torus fibrations f : U → B and g : V → B.

Let L = f−1(b) be a smooth fiber of f . The rank 1 unitary local systems ∇ on L are

classified by their holonomy hol(∇) ∈ Hom(π1(L), U(1)) = L∗ (the dual torus). It is

expected that the pairs [(L,∇)] ∈ F(U) correspond under the equivalence F(U) '
D(V ) to the skyscraper sheaves Op ∈ D(V ) for p ∈ g−1(b) ' L∗. (More generally, the

equivalence should be given by a real version of the relative Fourier–Mukai transform

for the dual torus fibrations, cf. [KS01], §9, [P03], §6.)

It follows that, to a first approximation, one can regard the mirror V of U as the

moduli space of pairs [(L,∇)] where L is a fiber of f and ∇ is a U(1) local system.

We define local holomorphic coordinates on V as follows (a complexified version of the

integral affine coordinates yγ of Construction 4.3). For L0 = f−1(b0) a smooth fiber,

γ ∈ H1(L0,Z), and (L = f−1(b),∇) a nearby fiber together with a U(1) local system,

let Γ be a cylinder over a short path from b0 to b with initial fiber Γb0 in class γ and

final fiber Γb. We define

zγ([(L,∇)]) = exp (−2πyγ(b)) · hol∇(Γb) = exp

(
−2π

∫
Γ

ω

)
· hol∇(Γb).

Suppose now that U is a log Calabi–Yau variety, and (X,D) is a log Calabi–Yau com-

pactification such that ω extends to a 2-form on X. The homology groups H2(X,L =

f−1(b)) form a local system over Bo; let T : H2(X,L0) → H2(X,L) be the local trivi-

alization given by parallel transport. Then, for β ∈ H2(X,L0), we define

zβ([(L,∇)]) = exp

(
−2π

∫
T (β)

ω

)
· hol∇(∂T (β)).

Then zβ = cz∂β where c = exp(−2π
∫
β
ω) ∈ R>0.

We can attempt to define global holomorphic functions ϑq on V for each q = (F, k) ∈
U trop(Z)\{0} as follows [CO06], [A09]. Let (X,D) be a log Calabi–Yau compactification

of U such that F is a component of the boundary D and ω extends to X. Let L be a
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smooth fiber of f . For β ∈ H2(X,L,Z), let Nβ be the (virtual) count of holomorphic

discs h : (D, ∂D) → (X,L) such that h meets F with contact order k and is disjoint

from the remaining boundary divisors, and h(∂D) passes through a general point p ∈ L.

We assume that Nβ is well defined (independent of the choice of p ∈ L). We define

ϑ(F,k)([(L,∇)]) =
∑

β∈H2(X,L,Z)

Nβz
β([(L,∇)]).

(Note that the sum may not converge in general.)

Example 4.5. Let U = T = N ⊗C× ' (C×)n. Let (X̄, D̄) be a toric compactification

and F ⊂ D̄ a boundary divisor corresponding to a primitive vector v ∈ N . Let g : C× →
T be the associated 1-parameter subgroup of T . Then g extends to a morphism ḡ : C→
X̄ such that ḡ meets F transversely at a single point and is disjoint from the other

boundary divisors. Let h be the restriction of ḡ to the closed unit disc D ⊂ C. Let

K ⊂ T ⊂ X̄ be the compact torus. Then h : (D, ∂D) → (X̄,K) is a holomorphic

disc ending on the fiber K of the moment map and passing through the point e ∈ K.

It is the unique such disc and counts with multiplicity 1. The same applies to any

choice of fiber and marked point (because they are permuted simply transitively by

T ). Similarly, there is a unique disc meeting F with contact order k given by the

multiple cover h̃(z) = h(zk). See [CO06], Theorems 5.3 and 6.1.

The functions ϑq as defined above are discontinuous in general, because the counts

of holomorphic discs Nβ ending on an SYZ fiber L = f−1(b) vary discontinuously with

b. This is due to the existence of SYZ fibers which bound holomorphic discs in U .

Such fibers lie over (thickened) real codimension 1 walls in the base B. In more detail,

suppose {Lt}t∈[0,1] are the SYZ fibers over a path crossing a wall in the base. If Lt0
bounds a holomorphic disc in U , then there may exist a family of holomorphic discs ht
in X ending on Lt for t < t0, such that the limit of ht as t → t0 is a stable disc given

by the union of two discs ending on Lt0 , one of which is contained in U , and such that

this stable disc does not deform to a holomorphic disc in X ending on Lt for t > t0.

Example 4.6. ([A09], Example 3.1.2.) Let (X̄, D̄) = (C2
z1,z2

, (z1z2 = 0)) with Kähler

form 1
2π

i
2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2). Let π : X → X̄ be the blow up of p = (1, 0) ∈ X̄

with exceptional curve E, and D ⊂ X the strict transform of D̄. As in Example 4.4,

we have a Kähler form ω on X and a map f̄ : X → B̄ which restricts to a Lagrangian

torus fibration f : U → B over the interior B of B̄. Moreover, over the complement of

a small neighborhood N of f̄(E) the map f̄ agrees with the moment map µ : X̄ → R2
≥0,

(z1, z2) 7→ 1
2
(|z1|2, |z2|2). The map f̄ : X → B̄ ' R2

≥0 is defined by 1
2
|π∗z1|2 and µS1 ,

the moment map for the S1 action on (X,ω), normalized so that µS1 = 0 on the strict

transform of the z1-axis. (Then on the singular fiber µS1 =
∫
E
ω = ε > 0.)
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There is a real codimension 1 wall H in the base B defined by |π∗z1| = 1. Note that

(π∗z1 = 1) ⊂ U is the union of two copies of A1 meeting in a node: E \E ∩D and the

strict transform of (z1 = 1). (The node is the singular point of the pinched torus fiber

of f .) These curves are S1-equivariant and map to the wall in the base with fibers the

S1-orbits (which collapse to the singular point at the pinched torus fiber). Thus each

smooth fiber over the wall bounds a holomorphic disc in U contained in one of the two

curves.

Now let D1 = (π∗z1 = 0) ⊂ X and consider the associated function ϑD1 defined by

counting holomorphic discs in X meeting D transversely at a point of D1, ending on

an SYZ fiber L, and passing through a marked point p ∈ L. We assume L lies over the

region R = B \ N where the fibration f agrees with the moment map µ. Note that

f−1R ⊂ U \E ' Ū . Let π(p) = (ν1, ν2) ∈ Ū = (C×)2
z1,z2

, so L = (|π∗z1| = |ν1|, |π∗z2| =
|ν2|). If |ν1| < 1 then there is a unique disc given by the strict transform of the disc

D → X̄ = C2, z 7→ (ν1z, ν2). If |ν1| > 1 there are two discs, one described as before

and the second given by the strict transform of the disc z 7→ (ν1z, ν2(ν1z−1
ν̄1−z )/(ν1−1

ν̄1−1
)).

See [CO06], Theorem 5.2. Writing β1, β
′
1 ∈ H2(X,L) for the classes of the two discs,

observe that β′1 = β1 + α ∈ H2(X,L) where α is the parallel transport of the class of

the disc associated to the portion of the wall meeting R. (More precisely, if {Lt}t∈[0,1]

are the fibers over a path γ in R ⊂ B crossing the wall at time t0 from |π∗z1| > 1 to

|π∗z1| < 1, then the limit of the holomorphic disc in class β′1 ending on Lt as t → t0
from below is the union of the holomorphic discs ending on Lt0 in classes β1 and α.)

We thus have

ϑD1 =

zβ1 if |π∗z1| < 1

zβ1 + zβ
′
1 = zβ1 · (1 + zα) if |π∗z1| > 1.

On the other hand, let D2 be the strict transform of (z2 = 0). Then, with notation

as above, there is a unique disc meeting D transversely at a point of D2, ending on

L, and passing through p ∈ L, given by the inverse image of the disc z 7→ (ν1, ν2z) in

X̄ = C2. (For ν1 = 1, this is the stable disc given by the union of the strict transform

of disc in X̄ (which is the disc associated to the wall) and the exceptional curve E.)

Thus, writing β2 ∈ H2(X,L) for the class of this disc, we have ϑD2 = zβ2 .

We have defined (using the local holomorphic coordinates zγ, γ ∈ H1(L,Z)) a com-

plex structure on the total space of the dual fibration V o → Bo of the smooth locus

of the SYZ fibration f : U → B. However it is expected that this does not extend

to a complex structure on a fibration V → B. Roughly speaking, if V → B is a

topological extension of the fibration V o → Bo, and W ⊂ V is a neighborhood of a

point p ∈ V \ V o, there are too few holomorphic functions defined on W ∩ V o for the
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complex structure to extend. For instance, some of the zγ are not well defined due to

the monodromy action on H1(L,Z). The naive definition of the mirror V o must be

corrected to account for discs ending on SYZ fibers. These glueing corrections are such

that the ϑq define global holomorphic functions on V o, and can be used to define an

extension V o ⊂ V .

For instance, in Example 4.6, the corrected mirror V o is an analytic open subset of

V̂ o = (C×)2
w1,w2
∪(C×)2

w′
1,w

′
2
, where the two torus charts correspond to the two connected

components |π∗z1| < 1 and |π∗z1| > 1 of the complement of the wall H in the base B,

the glueing is given by

(w1, w2) 7→ (w1(1 + cw2)−1, w2),

and w1 = w′1 = zβ1 and w2 = w′2 = zβ2 on the naive mirror (and we have trivialized the

local system H2(X,L) over the the region R ⊂ B as above). The parameter c is given

by c = z−E, zE := exp(−2π
∫
E
ω), so that cw2 = z−Ezβ2 = zα (since β2 = α + [E] in

H2(X,L)). Then ϑD1 and ϑD2 are the global functions on V o which restrict to w1 and

w2 in the first chart. In fact, defining V̂ = SpecH0(OV̂ o), we have an isomorphism

V̂
∼−→ (uv = 1 + cw) ⊂ A2

u,v × C×w

given by u 7→ w1, v 7→ w′1
−1, w 7→ w2, and V̂ o = V̂ \ {q} where q 7→ (0, 0,−1/c) (cf.

§3.2). The mirror V ⊂ V̂ equals V o ∪{q}, an analytic open subset of the affine variety

V̂ .

Remark 4.7. The point q ∈ V should correspond under HMS to the pinched torus fiber

of the SYZ fibration f : U → B regarded as an immersed Lagrangian S2 (with the

trivial U(1) local system). See [S13], Lecture 11.

In general, the wall crossing transformations should take the following form, cf.

[AAK16], p. 207. Let {Lt}t∈[0,1] be the fibers of f : U → B over a path crossing a wall

in the base B. Assume for simplicity that all the holomorphic discs in U bounded by

the Lt have relative homology class some fixed α ∈ H2(U,L). The boundaries of these

discs sweep out a cycle c ∈ Hn−1(L). Then the wall crossing transformation in the

local coordinates zγ, γ ∈ H1(L), is given by

zγ 7→ zγ · f(zα)c·γ

where f(zα) = 1+zα+· · · ∈ Q[[zα]] is a power series encoding virtual counts of multiple

covers of the discs.

4.3. Symplectic cohomology. Suppose that U is a positive log Calabi–Yau variety

with maximal boundary. Suppose V is HMS mirror to U , so that we have an equiv-

alence F(U) ' D(V ) between the wrapped Fukaya category of U and the derived
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category of coherent sheaves on V . Symplectic cohomology SH∗ is a version of Hamil-

tonian Floer cohomology for noncompact symplectic manifolds [S08]. There is a closed-

open string map SH∗(U) → HH∗(F(U)) which is conjectured to be an isomorphism,

cf. [S02], §4. (Recently, Ganatra–Pardon–Shende and Chantraine–Dimitroglou-Rizell–

Ghiggini–Golovko have announced results which, combined with [G13], would establish

this result.) Recall that HHn(D(V )) ' ⊕p+q=nHp(∧qTV ) (the Hochschild–Kostant–

Rosenberg isomorphism), in particular, HH0(D(V )) ' H0(OV ). Thus the above con-

jecture and HMS would yield an isomorphism of C-algebras SH0(U) ' H0(OV ). In

particular, assuming the mirror V is affine, it can be constructed as V = SpecSH0(U).

Conjecturally, SH0(U) has a natural basis parametrized by U trop(Z). (This was

proved by Pascaleff in dimension 2 [P13]; there is ongoing work of Ganatra–Pomerleano

on the general case.) We expect that this basis corresponds to the global functions

ϑq, q ∈ U trop(Z) under the above isomorphism SH0(U) ' H0(OV ) (where we define

ϑ0 = 1). In particular, we expect that the ϑq, q ∈ U trop(Z) form a basis of H0(OV ).

4.4. The Fock–Goncharov mirror of a cluster variety. Fock and Goncharov

[FG06] defined a candidate for the mirror V of a cluster variety U by a simple com-

binatorial recipe which we reproduce in our notation here. We will give a partial

justification for the Fock–Goncharov construction in §5.

Recall that U = X \ D is described (up to codimension two) as a union of copies

Tα, α ∈ A of the algebraic torus T = N ⊗ C× ' (C×)n with transition maps given by

compositions of mutations

µ = µ(m,v) : Tα 99K Tβ, µ∗(zm
′
) = zm

′ · (1 + czm)−〈m
′,v〉

for some c ∈ C×. In addition we have a non-degenerate log 2-form σ on U such that

σ|Tα = σ̄ ∈ ∧2MC for each α. We assume that the sign of m above has been chosen

according to the convention of §5.3.

The Fock–Goncharov mirror (V, σ∨) is described as follows. Let T∨ = N∗ ⊗ C× be

the dual algebraic torus to T = N ⊗ C×. We write N∨ = H1(T∨,Z) = N∗ = M and

M∨ = (N∨)∗ = N . Then (up to codimension two) V is a union of copies T∨α , α ∈ A of

T∨, with transition maps given by

µ∨ = µ(v,−m) : T∨α 99K T∨β µ∨
∗
(zv

′
) = zv

′ · (1 + c∨zv)〈v
′,m〉

for some c∨ ∈ C×. Let

φ : NC →MC, φ(v) = σ̄(v, ·)
be the isomorphism determined by the non-degenerate form σ̄ on NC and σ̄∨ the form

on N∨C = MC given by

σ̄∨(m1,m2) = σ̄(φ−1(m1), φ−1(m2)).
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Then the log 2-form σ∨ on V is given by σ∨|T∨
α

= σ̄∨ ∈ ∧2M∨
C .

Equivalently, given the data N , σ̄ ∈ ∧2MC, mi ∈M , vi ∈ N , λi ∈ C×, i = 1, . . . , r of

§3.3 determining the cluster variety U = X \D in terms of a toric model π : (X,D)→
(X̄, D̄), the Fock–Goncharov mirror is associated to the data N∨ = M , σ̄∨, vi ∈ M∨,

−mi ∈ N∨, and some λ∨i ∈ C×, i = 1, . . . , r.

Remark 4.8. Recall that, for mirror Calabi–Yau varieties U and V , symplectic defor-

mations of U correspond to complex deformations of V , and vice versa. In particular,

if we regard U as a symplectic manifold (forgetting the complex structure) and V as

a complex manifold (forgetting the Kähler form), then the parameters λ∨i for V are

determined by the class of the symplectic form on U (and the parameters λi for U are

irrelevant).

Remark 4.9. The Fock–Goncharov mirror construction is an involution. The isomor-

phism between U and the mirror of the mirror of U is given in the torus charts by the

map T → T , t 7→ t−1.

Remark 4.10. We expect that the mirror of a log Calabi–Yau variety U with maximal

boundary is of the same type if and only if U is positive. If U is a positive cluster

variety, we expect that the Fock–Goncharov mirror is the mirror in the sense of SYZ

and HMS. For a general cluster variety U , we expect that the true mirror is an analytic

open subset of the Fock–Goncharov mirror. Cf. the discussion of completion of the

mirror via symplectic inflation in the positive case in [A09], §2.2.

Example 4.11. Let X̄ be the smooth projective toric surface given by the complete fan

in R2 with rays generated by (1, 0), (0, 1), (−1, 2), (−1, 1), (−1, 0), (−1,−1), (0,−1),

(1,−1), (2,−1). The toric boundary D̄ ⊂ X̄ is a cycle of smooth rational curves with

self-intersection numbers −2,−2,−1,−2,−2,−1,−2,−2,−1. Let π : X → X̄ be the

blow up of three points in the smooth locus of D̄, one point on each of the (−1)-curves,

and D the strict transform of D̄. Then U = X \ D is a cluster variety. The divisor

D =
∑
Di is a cycle of nine (−2)-curves; in particular the intersection matrix (Di ·Dj)

is negative semi-definite, and U is not positive. It is expected (cf. [AKO06], [A09],

§5) that the mirror of U is the log Calabi–Yau surface V = Y \ E where Y = P2 and

E ⊂ Y is a smooth elliptic curve. In particular, there does not exist an open inclusion

of an algebraic torus (C×)2 in V , so V is not a cluster variety.

Remark 4.12. In dimension 2, we may assume (multiplying σ by a non-zero scalar)

that Z · σ̄ = ∧2M . Let ψ : N →M be the isomorphism given by ψ(v) = −σ̄(v, ·). Then

ψ(vi) = −mi and ψ∗(vi) = −ψ(vi) = mi. So if we take λ∨i = λi then the isomorphism

ψ ⊗ C× : T
∼→ T∨ extends to an isomorphism U → V . That is, in dimension two the

Fock-Goncharov mirror V of U is deformation equivalent to U .
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Note that 2-torus fibrations are self-dual by Poincaré duality, so SYZ mirrors are

diffeomorphic in dimension 2. For U a log Calabi–Yau surface with maximal bound-

ary, the Fock–Goncharov mirror construction is valid if and only if U is positive (cf.

[GHK15a], [K15]), and in that case the mirror V is deformation equivalent to U .

5. Scattering diagrams

Given a cluster variety U together with a choice of toric model, we explain how to

build a scattering diagram in U trop(R). Heuristically, this is the tropicalization of the

collection of walls in the base of the SYZ fibration together with the attached generating

functions encoding counts of holomorphic discs in U ending on SYZ fibers described

in §4.1. We use the scattering diagram to construct a canonical topological basis ϑq,

q ∈ U trop(Z) of the algebra of global functions on a formal completion of the Fock–

Goncharov mirror family. We expect that when U is positive this basis is algebraic and

defines a canonical basis of global functions on the Fock–Goncharov mirror. We prove

this under certain hypotheses on U related to positivity.

5.1. Definitions and algorithmic construction of scattering diagrams. Let

A = C[t1, . . . , tr] and m = (t1, . . . , tr) ⊂ A. We write M̂ for the m-adic completion

lim←−M/mlM of an A-module M .

Let N ' Zn be a free abelian group of rank n, and write M = N∗. Let σ̄ ∈ ∧2MC

be a non-degenerate skew form.

Definition 5.1. A wall is a pair (d, f) consisting of a codimension 1 rational polyhedral

cone d ⊂ NR together with an attached function f ∈ Â[N ] satisfying the following

properties. Let m ∈ M be a primitive vector (determined up to sign) such that

d ⊂ m⊥. Then there exists a primitive vector v ∈ N such that

(1) σ̄(v, ·) = ν ·m for some ν ∈ C×,

(2) f ∈ Â[zv] ⊂ Â[N ], and

(3) f ≡ 1 mod mzvÂ[zv].

(Note in particular v ∈ m⊥ because σ̄ is skew-symmetric.)

The cone d is called the support of the wall. The vector −v is called the direction

of the wall. We say a wall (d, f) is incoming if v ∈ d, otherwise, we say it is outgoing.

(The terminology comes from the dimension 2 case, where the support of an outgoing

wall is necessarily the ray R≥0 · (−v) in the direction of the wall.)

Crossing a wall (d, f) defines an associated automorphism θ of Â[N ] over Â such that

θ ≡ id mod m. Let m ∈M be as in Definition 5.1. Then the automorphism associated
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to crossing the wall from (m > 0) to (m < 0) is given by

θ : Â[N ]→ Â[N ], zu 7→ zu · f 〈u,m〉.

A scattering diagram D is a collection of walls such that for all l ∈ N, there are

finitely many walls (d, f) such that f 6≡ 1 mod ml (so that the associated automorphism

is non-trivial modulo ml).

The support SuppD of D is the union of the supports of the walls. A joint of D is

an intersection of walls of codimension 2 in NR. The singular locus SingD is the union

of the joints of D and the relative boundaries of the walls of D. A chamber of D is the

closure of an open connected component of NR \ SuppD.

If γ : [0, 1]→ NR \ SingD is a smooth path such that γ(0), γ(1) 6∈ Supp(D) and γ is

transverse to each wall it crosses, it defines an automorphism θD,γ given by composing

wall crossing automorphisms. In more detail, let Dl ⊂ D be the finite subset of the

scattering diagram consisting of walls (d, f) such that f 6≡ 1 mod ml. Let 0 < t1 <

. . . < tk < 1 be the times at which γ crosses a wall of Dl, and θi the composition of

the automorphisms associated to the walls crossed at time ti (note that if two walls

lie in the same hyperplane then the associated automorphisms commute, so θi is well

defined). Let θlD,γ be the automorphism θk ◦· · ·◦θ1 of (A/ml)[N ]. Then θD,γ = lim←− θ
l
D,γ.

We say two scattering diagrams D, D′ are equivalent if θD,γ = θD′,γ for all paths γ

such that θD,γ and θD′,γ are defined.

A version of the following result was proved in dimension two in [KS06], §10. The

general case follows from [GS11].

Theorem 5.2. ([GHKK14], Theorem 1.12) Let Din be a scattering diagram such that

the support of each wall is a hyperplane. Then there is a scattering diagram D =

Scatter(Din) containing Din such that

(1) D \Din consists of outgoing walls, and

(2) θD,γ = id for all loops γ such that θD,γ is defined.

Moreover, D is uniquely determined up to equivalence by these properties.

The theorem is proved modulo ml for each l ∈ N by induction on l. The inductive

step is an explicit algorithmic construction. A self-contained proof in dimension two is

given in [GPS10], Theorem 1.4. The basic construction in the general case is the same,

cf. [GHKK14], Appendix C.

5.2. Initial scattering diagram for cluster variety. Let (U, σ) be a cluster vari-

ety. Recall the combinatorial data from §3.3 describing U in terms of a toric model

π : (X,D) → (X̄, D̄): Let T = X̄ \ D̄ ' (C×)n be the big torus, N = H1(T,Z) ' Zn,
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and M = N∗. We have σ̄ = σ|T ∈ H0(Ω2
X̄

(log D̄)) = ∧2MC a non-degenerate skew ma-

trix. We have primitive vectors mi ∈M , vi ∈ N , i = 1, . . . , r such that σ̄(vi, ·) = νimi,

some νi ∈ C×. The rays R≥0 · vi are contained in the fan of X̄ so correspond to

components D̄i ⊂ D̄. Then π is given by the blow up of the smooth centers

Zi = D̄i ∩ (zmi = λi) ⊂ X̄

for some λi ∈ C×.

For the cluster variety U , we define

Din = {(m⊥i , 1 + tiz
vi) | i = 1, . . . , r}.

The enumerative interpretation is as follows. The strict transform of the divisor

(zmi = λi) ⊂ X̄ in U is swept out by holomorphic discs ending on SYZ fibers L with

boundary class vi ∈ H1(L,Z) = N . These are the holomorphic discs corresponding

to the ith initial wall. The two dimensional case is explained in Example 4.6. In

dimension n > 2, U is locally isomorphic to a product U ′× (C×)n−2 (see Remark 3.5).

Example 5.3. Let r = 2 and v1, v2 = (1, 0), (0, 1) ∈ N = Z2. Then D = Scatter(Din)

consists of the two incoming walls (R · (1, 0), 1 + t1z
(1,0)) and (R · (0, 1), 1 + t2z

(0,1)) and

one outgoing wall (R≥0(−1,−1), 1 + t1t2z
(1,1)).

Here is the enumerative interpretation of the outgoing wall. The cluster variety U has

toric model π : (X,D)→ (X̄, D̄) where X̄ = P2 with toric boundary D̄ = D̄1+D̄2+D̄3,

and π is given by blowing up two points p1, p2 in the smooth locus of D̄, with p1 ∈ D̄1

and p2 ∈ D̄2. Let C be the strict transform of the line through p1 and p2. Then C

meets D in a single point p. Holomorphic discs associated to the outgoing wall are

approximated by holomorphic discs contained in C \{p}. (One can also give an explicit

description using [CO06] as in Example 4.6.)

Note that in general the walls of the scattering diagram may be dense in some regions

of NR, and the attached functions are not polynomial. See e.g. [GPS10], Example 1.6

and Remark 5.5 below.

For U = X \ D a log Calabi–Yau surface with maximal boundary, [GPS10] proves

an enumerative interpretation of the scattering diagram in terms of virtual counts of

maps f : P1 → X meeting the boundary D in a single point. A similar interpretation

in terms of log Gromov-Witten invariants is expected in general [GS16], §2.4.

The following lemma (which will be needed in §5.4 below) is left as an exercise.

Lemma 5.4. Let U be a cluster variety with associated combinatorial data vi ∈ N ,

mi ∈M , i = 1, . . . , r. Then

Pic(U) = im(H2(X,Z)→ H2(U,Z)) = coker((v1, . . . , vr)
T : M → Zr)
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and

π1(U) = H1(U,Z) = coker((v1, . . . , vr) : Zr → N).

5.3. Reduction to irreducible case and sign convention. For (U, σ) a cluster

variety such that H1(U,Q) = 0, there is an étale cover Ũ → U which decomposes as a

product of cluster varieties (Ui, σi), Ui = Xi \Di, such that H0(Ω2
Xi

(logDi)) = C · σi
for each i (cf. the Bogomolov decomposition theorem in the compact setting).

We now assume that H0(Ω2
X(logD)) = C · σ. It follows from §3.1 that the subspace

H0(Ω2
X(logD)) ⊂ H0(Ω2

X̄
(log D̄)) = ∧2MC is defined over Q. So we may assume,

multiplying by a nonzero scalar, that σ ∈ ∧2M . Then σ̄(vi, ·) = νimi for some νi ∈ Q.

Note that the blow up description of U = X \ D depends on mi through the center

Zi = Di ∩ (zmi = λi). So we may assume (replacing mi by −mi and λi by λ−1
i if

necessary) that νi > 0.

In this case, it follows from the proof of Theorem 5.2 that for all walls (d, f) in

D = Scatter(Din) we have d ⊂ m⊥ for some nonzero m ∈ M such that m =
∑
aimi

with ai ≥ 0 for each i. In particular, if the mi are linearly independent then D has two

chambers given by

C+ = {v ∈ NR | 〈mi, v〉 ≤ 0 for all i = 1, . . . , r}

and C− := −C+.

5.4. Reduction to the case of linearly independent mi: Universal deformation

and universal torsor. We now explain how to reduce to the case that the mi ∈
M are linearly independent. Assume for simplicity that M is generated by the mi.

Equivalently, by Lemma 5.4, the Fock–Goncharov mirror V of U is simply connected.

The surjection (m1, . . . ,mr) : Zr → M determines a surjective homomorphism

ϕ : (C×)r → T∨ and, dually, an injective homomorphism T ↪→ (C×)r

We have the universal deformation p : U → S := (C×)r/T of U = p−1([(λi)]) given

by varying the parameters λi.

Our assumption implies that PicV = coker(m1, . . . ,mr)
T is torsion-free by

Lemma 5.4. Let L1, . . . , Ls be a basis of PicV . The universal torsor q : Ṽ → V is

the fiber product of the C×-bundles L×i over V . It is a principal bundle with group

Hom(PicV,C×) = ker(ϕ).

The 2-form σ on U lifts canonically to a relative 2-form σU on U/S (non-degenerate

on each fiber). Equivalently, σU defines a Poisson bracket on U with symplectic leaves

the fibers of p. The 2-form σ∨ on V pulls back to a degenerate 2-form on Ṽ .

Write NU = Zr with standard basis e1, . . . , er and MU = N∗U with dual basis

f1, . . . , fr. We have the inclusion (m1, . . . ,mr)
T : N ⊂ NU . The variety (U , σU) is

a (generalized) cluster variety with toric model given by the combinatorial data NU ,
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σ̄U = σ̄ ∈ ∧2MC, vi ∈ NU , fi ∈ MU , i = 1, . . . , r. The variety (Ṽ , q∗σ∨) is the

(generalized) Fock–Goncharov mirror cluster variety. Cf. [GHK15b], §4.

Roughly speaking, in the terminology of Fock and Goncharov, U is the X -variety for

the given combinatorial data and Ṽ is the A-variety for the Langlands dual data. The

Fomin–Zelevinsky (upper) cluster algebra is the ring of global functions H0(Ṽ ,OṼ ).

One can construct the scattering diagram associated to U in (NU)R ⊃ NR as before

using the relative 2-form σ̄U = σ̄ ∈ ∧2MC. (Condition (1) in Definition 5.1 can be

rewritten σ̄∨(−m, ·) = ν∨v, where ν∨ = ν−1, that is, the corresponding condition for

the Fock–Goncharov mirror V . In this form it generalizes to the above setting.)

Note that H0(Ṽ ,OṼ ) = ⊕L∈PicVH
0(V, L) is the Cox ring of V . The torus

Hom(PicV,C×) acts with weight L ∈ PicV on the summand H0(V, L). Our construc-

tion of a canonical basis of H0(Ṽ ,OṼ ) is equivariant for the torus action. In particular

we obtain a canonical basis of H0(V,OV ) (and also H0(V, L) for each L ∈ PicV ). Thus

we may replace (U, σ) and (V, σ∨) by (U , σU) and (Ṽ , q∗σ∨) and assume that the mi

are linearly independent.

5.5. Mutation invariance of the support of the scattering diagram and clus-

ter complex. The support of the scattering diagram D is invariant under mutation

[GHKK14], §1.3. That is, if π : (X,D) → (X̄, D̄) and π′ : (X,D) → (X̄ ′, D̄′) are two

toric models for (X,D) related by a mutation µ : T 99K T ′ as in §3.2, and D, D′ are the

scattering diagrams associated to π, π′ then µtrop(SuppD) = SuppD′. Heuristically,

this is so because SuppD is the union of the tropicalizations of all holomorphic discs

in U ending on SYZ fibers, viewed in NR using the ZPL identification U trop(R) ' NR

corresponding to the open inclusion T = X̄ \ D̄ ⊂ U = X \ D of log Calabi–Yau

varieties.

Let µ = µ(m,v) as in (3.7). Let (mi, vi), i = 1, . . . , r, be the combinatorial data for the

toric model π, with (m, v) = (m1, v1). Recall the explicit formula in Example 3.10 for

µtrop. In particular, µtrop is linear on the halfspaces H+ = (m ≥ 0) and H− = (m ≤ 0).

Let T+, T− be the linear automorphisms of NR which agree with µtrop on H+ and H−.

Then T+ = id and T− is the symplectic transvection

T−(w) = w − 〈m,w〉v = w − ν−1 · σ̄(v, w)v.

Then the combinatorial data (m′i, v
′
i), i = 1, . . . , r for π′ is given by

(m′i, v
′
i) =


(−m1,−v1) if i = 1

((T ∗+)−1(mi), T+(vi)) if vi ∈ H+ and i > 1

((T ∗−)−1(mi), T−(vi)) if vi ∈ H− and i > 1.
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(The sign reversal v′1 = −v1 follows from the description of the elementary transforma-

tion in §3.2. The signs of the m′i are determined by the sign convention of §5.3.)

Using the explicit formula in Example 3.10 for µtrop, we see that the chambers

µtrop(C+) and C+′ in D′ meet along the codimension 1 face defined by m = 0.

Applying elementary transformations repeatedly, we obtain a simplicial fan ∆+ ⊂
U trop(R) ' NR with maximal cones the positive chambers C+

α associated to each torus

chart Tα, such that two maximal cones meet along a codimension 1 face if and only if

the torus charts are related by a mutation. This is the Fock–Goncharov cluster complex

(the dual graph is the Fomin–Zelevinsky exchange graph). The maximal cones of ∆+

are chambers of the scattering diagram D. Thus the scattering diagram is discrete in

the interior of the support of ∆+ in NR.

Remark 5.5. Note that here we are using our assumption that the mi are linearly inde-

pendent (see §5.4). Without this assumption, the scattering diagram can be everywhere

dense in NR. For example, this is the case for U = X \D where X ⊂ P3 is a smooth

cubic surface and D is a triangle of lines on X (equivalently, (X,D) is obtained from

X̄ = P2 together with its toric boundary D̄ by blowing up six general points in the

smooth locus of D̄, two on each line). To see this, first observe that we can construct

another toric model of U of the same combinatorial type as follows. Let D̄1, D̄2, D̄3 be

the components of D̄. Let X̄1 be the blowup of the point p = D̄1 ∩ D̄2 ∈ X̄. Then

X̄1 is a ruled surface with sections the exceptional divisor E and the strict transform

of D̄3. Let p1, p2 be the two centers of π : X → X̄ on D̄3 and let X̄1 99K X̄2 be the

composite of the elementary transformations with centers p1 and p2. Finally, blow

down the strict transform of D̄3 to obtain X̄ ′ ' P2 with toric boundary D̄′ given by

the strict transforms of D̄1, D̄2, and E. Then by construction we have another toric

model π′ : (X ′, D′)→ (X̄ ′, D̄′) of U given by blowing up two points on each boundary

divisor. The rational map T = X̄ \D̄ 99K T ′ = X̄ ′\D̄′ is a composite of two mutations.

Let v1, v2 ∈ N correspond to the boundary divisors D̄1, D̄2 of X̄ under the identifica-

tion U trop(Z) = N given by T ⊂ U , then the boundary divisor E of X̄ ′ correponds to

v1 + v2 ∈ N under this identification. Recall that the scattering diagram associated to

a toric model has an incoming wall associated to each blow up. The support of the wall

contains the ray corresponding to the boundary divisor containing the center of the

blow up. Moreover, the support of the scattering diagram is invariant under mutation.

In particular, it follows that the rays generated by v1, v1 + v2, and v2 lie in Supp(D).

Repeating the above construction one can prove by induction that every rational ray

lies in Supp(D).

In terms of the construction of the versal deformation U of U in §5.4, the scattering

diagram D for U is the slice of the scattering diagram DU for U by the subspace
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(m1, . . . ,mr) : NR ↪→ Rr. This slice can miss the discrete part of DU so that there are

no chambers in D.

The functions attached to walls of the scattering diagram change in a simple way

under mutation. Each wall of the cluster complex corresponds to a portion of an

incoming wall for some seed (and there are no outgoing walls with support contained in

an incoming wall [GHKK14], Remark 1.29). So one can describe the functions attached

to walls of the cluster complex explicitly. One finds that they are polynomials (in fact

of the form 1 + czv for c ∈ A = C[t1, . . . , tr] a monomial and v ∈ N). So one can define

an algebraic family V/Ar
t1,...,tr

as follows: V is a union of copies of T∨ ×Ar indexed by

chambers C+ ∈ ∆+, with transition maps T∨ × Ar 99K T∨ × Ar given by θD,γ for γ a

path in Supp ∆+ from the first chamber to the second. One finds that the restriction

of V/Ar to (C×)r is the family of Fock–Goncharov mirrors to U . Moreover, because

the automorphisms are trivial modulo m = (t1, . . . , tr), the special fiber V0 equals the

torus T∨.

5.6. Broken lines. We now describe the construction of global functions ϑq, q ∈
U trop(Z) on the mirror family V/Ar using a tropical analogue of the heuristic construc-

tion described in §4.2.

Definition 5.6. Let v ∈ U trop(Z) = N be a nonzero vector and p ∈ NR a general point.

A broken line for v with endpoint p is a continuous piecewise-linear path γ : (−∞, 0]→
NR together with, for each domain of linearity L ⊂ (−∞, 0], a monomial cL · zvL ,

cL ∈ A = C[t1, . . . , tr], vL ∈ N , such that

(1) There is an initial unbounded domain of linearity with attached monomial 1·zv.
(2) For all L and t ∈ L, γ′(t) = −vL.

(3) If γ is not linear at t ∈ (−∞, 0] then γ crosses a wall at time t. Let L and L′

be the domains of linearity before and after crossing the wall and θ the wall

crossing automorphism. Then cL′zvL′ is a monomial term in θ(cLz
vL) ∈ Â[N ].

(4) γ(0) = p.

We write M(γ) for the final monomial attached to a broken line γ.

Recall that the Fock–Goncharov mirror V of U is a union V =
⋃
C+∈∆+ T∨C+ of copies

of the dual torus T∨ = M⊗C× indexed by the maximal cones C+ of the cluster complex

∆+. We have the family V → SpecA = Ar
t1,...,tr

, V =
⋃
C+∈∆+ T∨C+ × Ar, with fiber V

over the point ti = c∨i = −1/λ∨i , and its formal completion V̂ → Spf Â over 0 ∈ Ar.
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We now define theta functions ϑv for v ∈ U trop(Z) ' N on V̂ . We define ϑ0 = 1. Let

v ∈ N be a nonzero vector. For p ∈ Supp ∆+ a general point, we define

ϑv,p =
∑
γ

M(γ) ∈ Â[N ],

where the sum is over broken lines γ for v with endpoint p. For general points p, p′ ∈
Supp ∆+, and γ a path from p to p′, we have θD,γ(ϑv,p) = ϑv,p′ [GHKK14], Theorem 3.5,

[CPS], §4. So, by the definition of V/Ar, the ϑv,p for p ∈ Supp ∆+ general define a

global function ϑv on V̂ .

Example 5.7. Consider the scattering diagram D for the data r = 1, v1 = (1, 0) ∈
N = Z2. Write z1 = z(1,0) and z2 = z(0,1). The scattering diagram D = Din consists of

the single wall (R · (1, 0), 1 + tz1). Let v = (0, 1). For p = (a, b) ∈ NR = R2, if b > 0

there is a unique broken line for v with endpoint p given by γ(t) = (a, b)− t(0, 1) with

attached monomial z2. If b < 0 there are two broken lines, one described as before and

the second given by γ(t) = (a− b, b)− t(0, 1) for t ≤ b with attached monomial z2 and

γ(t) = (a, b) − t(1, 1) for b ≤ t ≤ 0, with attached monomial tz1z2. Thus ϑv,p = z2

for b > 0 and ϑv,p = z2 + tz1z2 = z2(1 + tz1) for b < 0. This is the tropical version of

Example 4.6. See [CGMMRSW17] for more examples.

Recall that V0 = T∨, and note that ϑv restricts to the character zv on V0 (because

M(γ) ≡ 0 mod m for any broken line that bends). So the ϑv, v ∈ U trop(Z) restrict to

a basis of H0(V0,OV0). It follows that the ϑv, v ∈ U trop(Z) define a topological basis

of H0(V̂ ,OV̂). That is, for every element f ∈ H0(V̂ ,OV̂) there is a unique expression

f =
∑

v∈Utrop(Z) avϑv where av ∈ Â for each v and for all l ∈ N there are finitely many

av such that av 6≡ 0 mod ml.

The formal function ϑv defines a function on V (and so on the fiber V ) if and only

if the local expressions ϑv,p ∈ Â[N ] lie in A[N ], that is, are Laurent polynomials with

coefficients in A. This is not the case in general. However, one can show that if ϑv,p
is a Laurent polynomial for some p ∈ Supp ∆+, then the same is true for all p, so that

ϑv lies in H0(V ,OV) [GHKK14], Proposition 7.1.

Example 5.8. Let C+ be a chamber of ∆+ and v ∈ C+ ∩ U trop(Z) an integral point.

Let p ∈ C+ be a general point. Then there is a unique broken line for v and p, given

by γ : (−∞, 0] → NR, γ(t) = p − tv, with attached monomial zv. See [GHKK14],

Corollary 3.9. It follows that ϑv is a global function on V such that ϑv|T∨
C+

= zv. In

the terminology of Fomin–Zelevinsky, ϑv is a cluster monomial.

Example 5.9. For cluster algebras of finite type [FZ03], the cluster complex has finitely

many cones and is a complete fan, that is, Supp ∆+ = U trop(R) ' NR. In this case,
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every theta function is a cluster monomial, and the cluster monomials form a basis of

H0(V,OV ).

Cluster algebras of finite type correspond to finite root systems [FZ03]. The mirror

U of the A2-cluster variety V is described in Example 5.3. Let ϑ1, . . . , ϑ5 be the theta

functions on V/A2 corresponding to the primitive generators of the rays of the cluster

complex in cyclic order. We identify V with the fiber of V over (1, 1) ∈ A2. The theta

function basis of H0(V,OV ) is given by the cluster monomials

{ϑai ϑbi+1 | a, b ∈ Z≥0, i ∈ Z/5Z}.

The algebra structure is given by

V = (ϑi−1ϑi+1 = ϑi + 1, i ∈ Z/5Z) ⊂ A5
ϑ1,...,ϑ5

.

The closure of V in P5 is the del Pezzo surface of degree 5 (the blowup of 4 points in

P2 in general position) with an anti-canonical cycle of 5 (−1)-curves at infinity. In this

case, the mirror V of U is isomorphic to U (since U is rigid this is a special case of

Remark 4.12).

Theorem 5.10. ([GHKK14], Proposition 0.7) Let U trop(R) = NR be the identification

associated to some toric model of U . Suppose that the support of the cluster complex

∆+ is not contained in a half-space in NR under this identification. Then each ϑv
defines a global function on V, and the ϑv, v ∈ U trop(Z) define a C-basis of H0(V,OV ).

See [GHKK14], §8 for the relation between the hypothesis and positivity of U .

Example 5.11. ([GHKK14], Corollary 0.20, [M17], cf. [GS15]). Let G = SLm. Let

B ⊂ G be a Borel subgroup, N ⊂ B the maximal unipotent subgroup, and H ⊂ B

a maximal torus. Let F = G/B be the full flag variety, and F̃ = G/N its universal

torsor, a principal H = B/N -bundle over F . The variety F̃ is called the base affine

space. By the Borel–Weil–Bott theorem,

H0(F̃ ,OF̃ ) = ⊕L∈PicFH
0(F,L) = ⊕λVλ,

the direct sum of the irreducible representations of G (where λ ∈ Lie(H)∗ denotes a

dominant weight). Cf. [FH91], p. 392–3.

Let B− ⊂ G be the opposite Borel subgroup such that B ∩ B− = H. Let V ⊂ F

be the open subset of flags transverse to the flags with stabilizers B and B−. Let

Ṽ ⊂ F̃ be its inverse image. Then Ṽ is identified with the double Bruhat cell Gw0,e :=

Bw0B ∩ B− ⊂ G where w0 ∈ W = Sm, w0(i) = m + 1 − i, is the longest element of

the Weyl group. In particular, Ṽ is a cluster variety in the sense of Fomin–Zelevinsky

[BFZ05]. (From our point of view, there are algebraic tori T1 and T2, an action of T1

on Ṽ and a T1 invariant fibration Ṽ → T2, such that the quotients Ṽt/T1 of the fibers
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are cluster varieties in the sense of Definition 3.1. Thus Ṽ is given by a combination

of the two constructions in §5.4.) We remark that the cluster structure on Ṽ is closely

related to the Poisson structure on G associated to the choice H ⊂ B ⊂ G [GSV10],

§1.3, which is the first order term of the non-commutative deformation of G to the

quantum group [CP95],§7.3.

One can show using a generalization of Theorem 5.10 that the theta functions give

a canonical basis of H0(Ṽ ,OṼ ). The variety F̃ is a partial compactification of Ṽ , such

that F̃ \ Ṽ is a union of 2(m − 1) boundary divisors along which the holomorphic

volume form Ω on Ṽ has a pole. Using positivity properties of the theta function

basis B of H0(Ṽ ,OṼ ), one can further show that the subalgebra H0(F̃ ,OF̃ ) has basis

given by the subset of B consisting of theta functions which are regular on F̃ . The

set of such functions is indexed by the integral points of a polyhedral cone in Ũ trop(R)

(where Ũ denotes the Fock–Goncharov mirror of Ṽ ). This polyhedral cone C is given

by C = (W trop ≥ 0) where W : Ũ → A1 is the regular function given by the sum

of the theta functions on Ũ corresponding to the boundary divisors of the partial

compactification Ṽ ⊂ F̃ . (Thus, according to general principles, F̃ is mirror to the

Landau–Ginzburg model W : Ũ → A1, cf. [AAK16], §2.2.) For a specific choice of toric

model of Ũ , the cone C is identified with the Gel’fand–Tsetlin cone [GS15].

The theta function basis is equivariant for the action of H on F̃ . Thus the theta

functions with weight λ give a canonical basis of the irreducible representation Vλ.

Remark 5.12. The construction of theta functions given here appears to depend on

the choice of a toric model of U . However, one can show, using the behavior of the

scattering diagram under mutation, that the families V/Ar together with the theta

functions for different toric models are compatible [GHKK14], Theorem 6.8. In the

terminology of mirror symmetry, they correspond to different large complex structure

limits of the mirror family.
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