Math 621 Homework 5

Paul Hacking

April 25, 2018

Reading: Stein and Shakarchi, Chapter 2, Section 5.2; Chapter 9, Section 1.

Justify your answers carefully.

- (1) Let $\Omega = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 1\}$. Prove that $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ is holomorphic on Ω and compute its derivative. (Here $n^z := \exp(z \log n)$.)
- (2) Let f_n be a sequence of holomorphic functions converging uniformly to a function f on some connected open set $\Omega \subset \mathbb{C}$. Suppose that fvanishes at some $z_0 \in \Omega$ but is not identically zero on Ω . Prove the following statement: given $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$, f_n has a zero in the disc with center z_0 and radius ϵ .
- (3) Define

$$f(z) = \frac{1}{z} + \sum_{0 \neq n \in \mathbb{Z}} \left(\frac{1}{z+n} - \frac{1}{n} \right)$$

for $z \in \mathbb{C} \setminus \mathbb{Z}$. Prove the following assertions.

- (a) f is a meromorphic function on \mathbb{C} with a simple pole at each $n \in \mathbb{Z}$.
- (b) f is odd (i.e. f(-z) = -f(z) for all $z \in \mathbb{C} \setminus \mathbb{Z}$.)
- (c) $f(\frac{1}{2}) = 0.$
- (d) f(z+1) = f(z) for all $z \in \mathbb{C} \setminus \mathbb{Z}$.

[Hint: Imitate the analogous proofs for the Weierstrass \wp function. For (c), rearrange the sum (without breaking up the individual terms).]

- (4) Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent over \mathbb{R} , let $f: \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function on \mathbb{C} such that $f(z + \omega_1) = f(z)$ and $f(z + \omega_2) = f(z)$ for all $z \in \mathbb{C}$. Assume for simplicity that f has no zeroes or poles on the boundary of the parallelogram P with vertices $0, \omega_1, \omega_2, \omega_1 + \omega_2$, and suppose that on the interior of P the function fhas zeroes a_1, \ldots, a_k with multiplicities m_1, \ldots, m_k and poles b_1, \ldots, b_l with multiplicities n_1, \ldots, n_l . Prove the following statements.
 - (a) $\sum_{i=1}^{k} m_i = \sum_{j=1}^{l} n_j$ (b) $\sum_{i=1}^{k} m_i a_i = \sum_{j=1}^{l} n_j b_j + p_1 \omega_1 + p_2 \omega_2$ for some $p_1, p_2 \in \mathbb{Z}$.

[Hint for (b): Compute a contour integral $\int_{\gamma} z \frac{f'(z)}{f(z)} dz$ in two ways.]

(5) Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent over \mathbb{R} , and let \wp be the Weierstrass \wp -function for the lattice $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$. Let $a_1, a_2 \in \mathbb{C}/\Lambda$ be distinct points such that $a_1, a_2, a_1 + a_2 \neq 0 \in \mathbb{C}/\Lambda$. Let $a, b \in \mathbb{C}$ be such that that $\wp'(a_j) = a_{\wp}(a_j) + b$ for j = 1 and 2 (note that $\wp(a_1) \neq \wp(a_2)$ because $a_1 \neq \pm a_2$). Prove that $\wp'(-(a_1 + a_2)) = a_{\wp}(-(a_1 + a_2)) + b$.

[Hint: Consider the zeroes and poles of the elliptic function $\wp' - a\wp - b$ and apply Q4(b). (Note that the assumption in Q4(b) that there are no zeroes and poles on the boundary of the parallelogram is not essential — we can always translate the parallelogram so that this holds.)]

[Remark: The geometric interpretation of this result is as follows: Let $X = \mathbb{C}/\Lambda$ be the complex torus determined by Λ , and $F: X \setminus \{0\} \to \mathbb{C}^2_{z,w}$ the holomorphic map defined by $F(u) = (\wp(u), \wp'(u))$. Then $F(a_1), F(a_2), F(-a_1 - a_2)$ are the 3 intersection points of the complex line w = az + b with the complex cubic curve

$$F(X \setminus \{0\}) = (w^2 = 4(z - \wp(\omega_1/2))(z - \wp(\omega_2/2))(z - \wp(\omega_1 + \omega_2)/2)) \subset \mathbb{C}^2_{z,w}$$

It follows that the group law on the complex torus X can be reconstructed from the embedding $F: X \setminus \{0\} \to \mathbb{C}^2_{z,w}$. This is used in arithmetic geometry to define the group law without using analysis.]

(6) Let $\Omega = \mathbb{C} \setminus [0, 1]$. Show that there exists a holomorphic function $f: \Omega \to \mathbb{C}$ such that $f(z)^2 = z(z-1)$ for all $z \in \Omega$.

[Hint: Fix a base point $z_0 \in \Omega$. For $z \in \Omega$ let γ_z be a path in Ω from z_0 to z, and define $g(z) = \exp\left(\frac{1}{2}\int_{\gamma_z}\frac{1}{z} + \frac{1}{z-1}dz\right)$. Prove that g(z) is independent of the choice of path γ_z , g is holomorphic, and $g(z)^2 = cz(z-1)$ for some constant $0 \neq c \in \mathbb{C}$.]

- (7) Let $\Omega = \{z \in \mathbb{C} \mid |z| > 3\}$. Consider the function $f: \Omega \to \mathbb{C}$ given by $f(z) = \frac{1}{(z-1)(z-2)}$. Show that f has a primitive on Ω .
- (8) Let $H = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ be the upper half plane and $\overline{H} \subset \mathbb{C}$ its closure. Fix $k \in \mathbb{R}$, 0 < k < 1. For $z \in \overline{H}$, let γ_z be a path in \overline{H} from 0 to z and define $f(z) = \int_{\gamma_z} \frac{1}{\sqrt{(1-w^2)(1-k^2w^2)}} dw$ where we define the square root on \overline{H} so that it is continuous on \overline{H} and real and positive for $w \in (-1, 1)$.
 - (a) Prove that f restricts to a bijection from the boundary of the upper half plane to the boundary of a rectangle R with one point removed. (Compare Stein and Shakarchi, p. 233–234.)
 - (b) Using the argument principle or otherwise, show that f defines a holomorphic bijection from H onto the interior of the rectangle R. Thus f gives the explicit solution of the Riemann mapping problem for R.

[Hint for (b): Let $g: D \to H$ be a holomorphic bijection from the unit disc $D = \{z \in \mathbb{C} \mid |z| < 1\}$ to H. Then g is the restriction of a Möbius transformation $\tilde{g}: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ which maps the boundary of D to the boundary of H together with the point ∞ . Now $f \circ \tilde{g}$ maps the boundary of D to the boundary of the rectangle R.]