Math 621 Homework 3

Paul Hacking

April 3, 2018

Reading: Stein and Shakarchi, 3.3, 3.4, 3.5, 3.6.

Justify your answers carefully.

- (1) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function which is injective.
 - (a) Show that f does not have an essential singularity at ∞.
 [Hint: Use the Casorati–Weierstrass theorem and the open mapping theorem.]
 - (b) Deduce that f is a polynomial.
 - (c) Deduce that f(z) = az+b, for some $a, b \in \mathbb{C}$, $a \neq 0$. (In particular, f is bijective.)
- (2) Find the number of zeroes (counted with multiplicities) of the following functions on the indicated domains.
 - (a) $f(z) = z^{100} + 8z^{10} 3z^3 + z^2 + z + 1$ on the unit disc $D = \{z \in \mathbb{C} \mid |z| < 1\}.$
 - (b) $f(z) = z^5 + 5z^2 + z + 2$ on the annulus $A = \{z \in \mathbb{C} \mid 1 < |z| < 2\}.$
 - (c) $f(z) = e^{z} + 4z^{5} + 1$ on the unit disc.
- (3) Show that the equation $ze^{\lambda-z} = 1$ has exactly one solution in the unit disc for $\lambda \in \mathbb{R}$, $\lambda > 1$. Show also that this solution is a real number.
- (4) Let $\Omega \subset \mathbb{C}$ be an open set containing the closure of the unit disc D. Let $f : \Omega \to \mathbb{C}$ be a non-constant holomorphic function. Suppose that |f(z)| = 1 for |z| = 1. Show that f(D) = D.

[Hint: Show that there exists $z \in D$ such that f(z) = 0 (argue by contradiction using the maximum principle). Now use Rouché's theorem.]

- (5) Let $f: \overline{D} \to \mathbb{C}$ be a continuous function on the closure \overline{D} of the unit disc D which is holomorphic on the unit disc.
 - (a) Show that if f(z) = 0 for |z| = 1 then f(z) = 0 for all $z \in \overline{D}$.
 - (b) Show that if f(z) = 0 for |z| = 1 and $\operatorname{Re}(z) \ge 0$ then f(z) = 0 for all $z \in \overline{D}$.
 - (c) (Optional) Let $\theta_1, \theta_2 \in \mathbb{R}$ be such that $\theta_1 < \theta_2$. Show that if f(z) = 0 for all $z = e^{i\theta}$ with $\theta_1 \leq \theta \leq \theta_2$ then f(z) = 0 for all $z \in \overline{D}$.

[Hint for (b): Consider g(z) = f(z)f(-z).]

- (6) Let $\Omega \subset \mathbb{C}$ be a connected open set, $f: \Omega \to \mathbb{C}$ a non-constant holomorphic function, and $z_0 \in \Omega$. Suppose that f has a zero of order mat z_0 .
 - (a) Show that for 0 < ε ≪ 1, there exists δ > 0 such that for 0 < |w| < δ the equation f(z) = w has exactly m solutions (each of multiplicity 1) satisfying |z z₀| < ε.
 [Hint: Use Rouché's theorem. Recall that a solution z = α of

f(z) = w has multiplicity 1 iff f'(α) ≠ 0.]
(b) Now suppose that m = 1. With notation as in part (a), let γ be the circle with center z₀ and radius ε oriented counterclockwise.

Show that for $|w| < \delta$ the unique solution of f(z) = w inside γ is given by the integral formula

$$z = \frac{1}{2\pi i} \int_{\gamma} \frac{uf'(u)}{f(u) - w} du.$$

[Hint: Compute the residues of the integrand (compare the proof of the argument principle) using the following fact: if f(z) is holomorphic at $z = \alpha$ and g(z) has a simple pole at $z = \alpha$ then $\operatorname{res}_{z=\alpha} f(z)g(z) = f(\alpha) \cdot \operatorname{res}_{z=\alpha} g(z)$.]

(7) Recall that if $\Omega \subset \mathbb{C}$ is a simply connected open subset and $f: \Omega \to \mathbb{C}$ is a holomorphic function such that $f(z) \neq 0$ for all $z \in \Omega$, then we may define a holomorphic function $\log f: \Omega \to \mathbb{C}$ by

$$(\log f)(z) = \int_{\gamma_z} \frac{f'(w)}{f(w)} dw + c$$

where γ_z is a path in Ω from a fixed basepoint $z_0 \in \Omega$ to z, and $c \in \mathbb{C}$ is a constant chosen so that $e^c = f(z_0)$ (thus c is determined up to an integer multiple of $2\pi i$). Then $e^{\log f(z)} = f(z)$ for all $z \in \Omega$.

Now let $\Omega = \mathbb{C} \setminus (-\infty, 0]$, $f(z) = z^n$ for some $n \in \mathbb{N}$, $z_0 = 1$, and c = 0. Compute $(\log f)(re^{i\theta})$ for $r \in \mathbb{R}$, r > 0, and $\theta \in (-\pi, \pi)$.