Math 612 Homework 2

Paul Hacking

February 12, 2020

Reading: Dummit and Foote, Section 10.5.

Justify your answers carefully (complete proofs are expected). All rings are assumed commutative with 1.

(1) (Optional) Recall the *snake lemma*: Let

be a commutative diagram of R-module homomorphisms with exact rows, then there is an induced exact sequence

 $\ker \alpha_1 \to \ker \alpha_2 \to \ker \alpha_3 \xrightarrow{\delta} \operatorname{coker} \alpha_1 \to \operatorname{coker} \alpha_2 \to \operatorname{coker} \alpha_3.$

Complete the proof of the snake lemma started in class.

(2) Let

be a commutative diagram of *R*-module homomorphisms with exact rows. Show that if α_2 and α_4 are injective and α_1 is surjective then α_3 is injective.

(3) Let R be a PID and M a finitely generated R-module. Prove that $\operatorname{Hom}_R(M, R)$ is a free R-module.

(4) Give an example of a ring R and an R-module P such that the functor $\operatorname{Hom}(P, \cdot)$ is not exact. That is, there is a short exact sequence of R-modules

$$0 \to L \to M \to N \to 0$$

such that the induced sequence

$$0 \to \operatorname{Hom}(P, L) \to \operatorname{Hom}(P, M) \to \operatorname{Hom}(P, N) \to 0$$

is not exact. (Justify your answer carefully.)

(5) Let R be a ring and let $I, J \subset R$ be ideals of R. We define the *colon ideal*

$$(I:J) := \{ r \in R \mid r \cdot I \subset J \}.$$

- (a) Show that (I:J) is an ideal of R and $J \subset (I:J)$.
- (b) Show that the *R*-module $\operatorname{Hom}_R(R/I, R/J)$ is isomorphic to the quotient module (I:J)/J.
- (c) Let F be a field, R = F[x, y], I = (x, y), and $J = (x^2, xy, y^2)$. Describe the R-module $\operatorname{Hom}_R(R/I, R/J)$ explicitly. What is the dimension of $\operatorname{Hom}_R(R/I, R/J)$ when regarded as an F-vector space?
- (6) (a) Show that the abelian group C[×] (the non-zero complex numbers with group operation multiplication) is an injective Z-module. [Recall that an abelian group can be regarded as a Z-module. However care is needed here because the group A = C[×] is written multiplicatively, so that scalar multiplication n ⋅ a of an element a ∈ A by n ∈ Z in the Z-module structure is equal to aⁿ.]
 - (b) By part (a), the contravariant functor Hom(·, C[×]) from the category of abelian groups (or Z-modules) to itself is exact. Check this explicitly for the short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

for $n \in \mathbb{N}$ (describe the sequence obtained by applying the functor explicitly and verify that it is exact).

(7) (Optional) Let F be a field, R = F[x, y, z], and $M = (x, y, z) \subset R$. Determine a presentation of the R-module M. (8) Recall that we say a *R*-module *P* is *projective* if the functor $\operatorname{Hom}_R(P, \cdot)$ is exact. Show that a finitely generated *R*-module is projective iff it is a direct summand of a free module.

[Remark: The same is true for any R-module provided we allow free modules of infinite rank.]

- (9) Let $R = R_1 \times R_2$ be the direct product of two rings R_1 and R_2 . Show that R_1 and R_2 are projective *R*-modules.
- (10) Let R be a ring and $I, J \subset R$ ideals of R such that I + J = R. Then $IJ = I \cap J$ (why?).
 - (a) Show that we have an exact sequence of R-modules

$$0 \to IJ \to I \oplus J \to R \to 0.$$

(b) Deduce that we have an isomorphism of R-modules

$$I \oplus J \simeq IJ \oplus R.$$

- (c) Now suppose that R is an integral domain and IJ is principal. Deduce that I and J are projective R-modules.
- (d) Let $R = \mathbb{Z}[\sqrt{-5}]$ and $I = (3, 1 + \sqrt{-5})$, $J = (3, 1 \sqrt{-5})$. Show that I + J = R, and IJ is principal but I and J are not principal. Deduce that I and J are projective R-modules which are not free.

Hints:

- 1 Check exactness at each term by diagram chasing. Note that by definition $L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ is *exact* at M if $\operatorname{im} \alpha = \ker \beta$; equivalently $\beta \circ \alpha = 0$ and $\ker \beta \subset \operatorname{im} \alpha$.
- 2 Another diagram chase.
- 3 What is the structure theorem for finitely generated modules over a PID?
- 4 Consider e.g. $R = \mathbb{Z}$ and $P = \mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{N}$.
- 5 (a) Recall a subset $I \subset R$ is an ideal iff $0 \in I$ and I is closed under addition and scalar multiplication by elements of R. (b) A R-module homomorphism $\theta: R/I \to R/J$ is determined by $\theta(1)$ (because the Rmodule R/I is generated by $1 \in R/I$). (c) Use part (b) and compute explicitly.
- 6 (a) We proved in class that an abelian group A is an injective \mathbb{Z} -module iff for all $a \in A$ and $n \in \mathbb{N}$ there exists $b \in A$ such that $n \cdot b = a$ (we say A is *divisible*).
- 7 Consider the surjective *R*-module homomorphism $\varphi \colon \mathbb{R}^3 \to M$ sending the standard basis vectors e_1, e_2, e_3 to the generators x, y, z of M. Write down some elements of ker φ and prove that they generate ker φ .
- 8 If $0 \to L \to M \to N \to 0$ is a short exact sequence of R-modules and N is projective then the exact sequence is split, in particular $M \simeq L \oplus N$. A module M is finitely generated iff there is a surjection $R^n \to M$. For the converse, note that a free module F is projective, and if $F = P \oplus Q$ then $\operatorname{Hom}(F, \cdot) = \operatorname{Hom}(P, \cdot) \oplus \operatorname{Hom}(Q, \cdot)$.
- 9 Use Q8.
- 10 We have $I \cap J = IJ$ because $I \cap J = (I \cap J)(I + J) \subset IJ$ (using the assumption I + J = R). (a) This is a special case of a (straightforward) result proved in class: if $L_1, L_2 \subset M$ are submodules of a module M, then $L_1 + L_2 \simeq L_1 \oplus L_2/L_1 \cap L_2$, where the inclusion $L_1 \cap L_2 \to L_1 \oplus L_2$ is given by $l \mapsto l \oplus (-l)$. (b) The exact sequence of (a) splits (why?). (c) Use Q8. (d) Use the norm $N(a + b\sqrt{-5}) = a^2 + 5b^2$ to show I and J are not principal (cf. MATH 611). Now use part (c).