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Introduction.

An important problem in finite-group theory is the determination
of an abstract definition for a given group $, that is, a set of relations

M81,....,Sl) = E, (i = l n) (1)

"between k generating operations Si, Sk of <$, such that every
other relation between Sx , Sk is an algebraic consequence of (1).

The number of groups for which abstract definitions are actually
known is relatively small, but a remarkable feature of the results
already obtained is the extreme simplicity of the relations (1) in the
case of several groups of quite high order. This fact constitutes an
additional incentive to the search for abstract definitions, and many
elegant results have doubtless yet to be discovered.

Of the various methods which have hitherto been employed to
obtain abstract definitions, one only, that of enumeration by cosets,
is of general application. This method has been employed with
limited success hitherto, for in all but the simplest cases it has
involved considerable manipulative ingenuity, and for many groups
of moderately high order the length of the necessary calculations
makes the method impracticable. The aim of the present paper is to
show that such calculations can be dispensed with entirely; in fact,
the method can be reduced to a purely mechanical process, which
becomes a useful tool with a wide range of application. Bearing in
mind what we have said above concerning the simplicity of the
abstract definitions of many known groups, we venture to predict
that our method will prove quite practicable for most groups (at any
rate such as occur naturally in geometry or analysis) of order less
than a thousand, and for many groups of much higher order.
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The first section of the paper gives an outline of the theory
underlying the "method of cosets"; our rationalisation of the
technique is described in §2. The rest of the paper is devoted to
illustrative examples, some being known definitions of groups and
others being new. We have tested the method by verifying a large
number of other abstract definitions, but space does not permit us
to give details.

§ 1. The method of " enumeration by cosets "must in principle date
back to the earliest years of abstract group-theory, but it first seems
to have been seriously exploited with a view to obtaining abstract
definitions by Moore and Dickson1. The principle of the method is
as follows. A group ®, of order g, being given, the equations (1) are
proposed as an abstract definition of ®. In practice, these equations
are obtained by taking a set of generators of ($> and noting down
some of the relations satisfied by them. We naturally select as far as
possible relations of a simple form, such as those which express the
periods of the generators or of simple combinations of them. The
number of such relations which will be necessary to define $ is a
matter for experiment, and the "method of cosets" is the way we
test the success of the experiment. In this (or some other) manner
we verify that ($ possesses a set of generators whiqh. satisfy (1). It
follows that the abstract group $ ' defined by (1) either coincides with
® or possesses an invariant sub-group ^ such that the factor-group
($'/($>i is simply isomorphic with $. If then we can verify that the
order of $ ' does not exceed g, it follows that $ ' is simply isomorphic
with $. To verify whether this is or is not the case, we pick out a

sub-set T1 , Ti of operations of <$' (in an extreme case the set
might consist merely of the identity) such that the relations (1) imply
the relations

<f>i{T1 Tt)=E, (j= 1, . . . . , m ) (2)

which are already known to be the abstract definition of a group $ '
of order h < g. Conceivably the relations (1) imply other relations
between the T's independent of (2), in which case the sub-group $ of
<£' generated by the T's will not be £' but some factor-group #'/#i-
In all cases the order of £ is at most h. We now consider the sets of
operations 8Q, got by multiplying the operations of $ on the left by

tSee, e.g., Moore, Proc. London Math. Soc. (1), 28 (1897) 357-366; Dickson,
Linear Groups (Leipzig, 1901).



28 J. A. TODD AND H. S. M. COXETEB

the various elements of ($'. Two such sets either coincide or have no
common member, and every operation of <§T belongs to at least one
such set. If then we can show that of these sets only g/h are distinct,
it follows that the order of ®' is at most h.g/h = g, and hence that QJ'
is simply isomorphic with $ . The method further gives a representa-
tion of (gi as a permutation group on the g/h cosets, but it may be
remarked that the isomorphism between <|J and this permutation
group may well be multiple1.

To avoid the complications involved in carrying out this process
in practice, we are always careful to choose § to have as large an
order as possible, i.e. to make g/h as small as we can. Even so, the
task of showing the existence of just g/h cosets which are permuted
among themselves by Su . . . ., Sk would be impracticable in all but
the simplest cases without some systematic technique. Such a
technique, obviating calculation of any kind, will now be described.

§2. Let us write a typical one of the relations (1) in the form

TC....T2TX = E, (3)

where Tu ...., Tc are certain of the generators and their inverses,
repeated if necessary. We denote the g/h cosets (in an order to be
defined presently) by the numbers 1,2, . . . . , g/h. For each of the n
relations (1) we gradually construct a table of cosets with g/h columns
and c+ 1 rows, c being the number of operations in the expression (1)
when written in the form (3). Each row contains every coset just
once, and the first and last rows are identical. The rows, except the
first, are labelled in order, Tlt T2, Tc, and in any part of the
table, a coset in the pth row is obtained from the coset immediately
above it by (left) multiplication with TP_t, or from the coset immedi-
ately below it by multiplication with T~x. The coset 1 is defined as
the set of operators of the sub-group Q, and the coset 2 as the set
Sa. 1 where Sa is a suitably chosen generator of $ ' not belonging
to $. Now, and hereafter, we fill up as much as possible of all the
tables before introducing any new coset. Thus, before defining the
coset 3 we make sure that every row of each table shall contain both
1 and 2. We next define a new coset by inserting the symbol 3 in
any vacant space immediately above or below a 1 or a 2, and fill up
as much as possible of the tables as before. We then insert 4, and
so on. Whenever a column in one of the tables becomes complete,

1See, e.g., Burnside, Theory of Groups, 2nd Ed. (Cambridge, 1911), Ch. XII.
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some additional information is obtained, which in turn enables us to
fill other columns. When all the tables are complete the process is
at an end.

In the course of the work it may happen that the information
given by the completion of a column implies that two of the numbers
in the table represent the same coset. (In actual practice this occurs
rather infrequently, and is soon detected). In that case we replace
the larger of the two numbers by the smaller throughout, and note
any other coincidences which may be involved. When all these have
been adjusted we can proceed in the usual manner. If these
coincidences ultimately involve the collapse of the whole table, it
is a sign that the relations (1) are inconsistent1.

If there is a generator S whose order is not directly specified by
the relations (3), it is desirable, for purposes of reference, to con-
struct an auxiliary table of two rows to record the effect of multi-
plying each coset by S. If any one of the relations (1) is of the form
(SP Sq .. .. <Sr)

x = E, then the number of columns in the table may be
reduced, since most of them occur in several trivially distinct forms.

If the proposed relations are insufficient to define <§£, the tables
will fail to close up after g/h cosets have been introduced. If
conversely the table fails to close when these cosets have been
defined, then either the relations (1) are insufficient to determine $,
or else there are some undiscovered coincidences between the cosets
already introduced. If the tables are "nearly" complete, it is
probably the latter circumstance that has occurred, and the intro-
duction of a few more cosets will demonstrate the coincidences. If
on the other hand there are large gaps in the table, it is a sign that
the relations (1) are probably insufficient to define <§£. In that case,
since $ ' contains a factor-group simply isomorphic with ($, its order
must be at least 2g, and hence the table cannot close with less than
double the number of columns.

Note.—The arrangement of rows and columns explained above
depends on regarding the elements of the group as left operators, and
corresponding tables of columns and rows could be made for right
operators, with the formal advantage that the headings of the
columns (formerly rows) are then written out from left to right as
they stand in (3), instead of from bottom to top.

1 We use this word by analogy with the case of a set of homogeneous linear
•equations whose only solution is the trivial one: 0, 0, , 0.
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§ 3. In further explanation we propose to give a few examples. We-
start by using the method to show that the relations

S* = Ts = (ST)2 = E (4)

define a group of order 60 (the icosahedral group). As this is a
well-known result we omit the verification that the group in question
possesses generators satisfying (4), and proceed at once to the
construction of the table.

We take for $ the cyclic group of order five generated by <SL
We have three tables to construct, corresponding to the three
relations (4); as each of these relations expresses the order of a
function of the generators, the number of columns is less than
twelve.
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The set 1 being {S}, it is invariant on multiplication with S, and
so the first column of the S table is given at once. We define 2 as
T . 1 and 3 as T . 2. The T table then shows that T . 3 =1 , and the
ST table gives 5 .2 = 3. We now define S. 3 = 4, 5.4 = 5, 5. 5 = 6,
so that S .6 = 2. The ST table then gives T . 4 = 6. We now define
7 as T . 6. Then T . 7 = 4. Put 8 = T . 5. Then the ST table gives
S . 8 = 7. If 9 is T . 8 then T . 9 = 5, and the &21 table gives £ . 7 = 9.
Next put S . 9 = 10, 8 . 10 = 11. Then from the £ table, 5.11 = 8,
and from the ST table T . 10 = 11. Put now 12 = T . 11. From the
T table T . 12 = 10, and from the ST table 5.12 = 12. All the tables
are now complete, and the verification that there are .only twelve
cosets is accomplished.

It should be noticed that the table itself contains all the
necessary " working," and no auxiliary calculations are necessary.
The reader may convince himself of this by constructing the tables
for the following groups, neither of which is of large order. He will,
we believe, soon be convinced that the method we have explained
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avoids the manipulative ingenuity usually associated with work
of this description.

Olta : S? = T* = (ST)2 = (-S-1 Tf = E.
Gso : S5 = T5 = (/ST)2 = (-S-1 T~^ STf = E.

In the two examples which follow, the explanation is confined to
a note of the definitions of the successive cosets.

As an example of a group where the tables involve rather more
•columns, we show that the relations

S'° = T5 = (ST)2 = {S-1 Tf = E (5)

define a group of order 360, simply isomorphic with the alternating group
of degree six. As permutations of the letters a, b, c, d, e, f, we may
take S = (abcde), T = (afedc). These satisfy (5) and generate the
alternating group. We take as the subgroup $ the cyclic Gb

generated by 8. The tables, and the definitions of the cosets, are
as follows.
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28 29 30 32 33 35 37 38 40 43 47 48 49 52 57 62 65 70
T 29 30 26 33 34 31 38 39 36 44 48 49 50 53 58 63 61 66
5 39 42 46 53 54 61 60 44 69 71 55 58 64 59 63 68 67 72
T 40 43 47 54 55 62 56 45 70 71 51 59 65 60 64 69 68 72
5 ! 28 29 30 32 33 35 37 38 40 43 47 48 49 52 57 62 65 70

1 . 2 3 6 8 9 11 14 18 21 23 26 28 29 31 34 36 61

T 2 3 4 7 9 10 12 15 19 22 24 27 29 30 32 35 37 62
5 " 1 7 22 12 16 32 27 37 17 42 46 24 67 43 47 54 62 56 69
T 8 23 13 17 33 28 38 18 43 47 25 68 44 48 55 63 57 70
5-i

T

s-1
T
5-i

i 1 5
11

1 5
1

j 1
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41
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51

52

60

56
21
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The coset 1 is the set {5}, and the others are defined as follows:

n + 1 = T . n except in the following cases;

6 = 5 .3 , 1 1 = 5 . 5 , 16=5.11, 21 = 5.4, 26 = 5.6,

31=5 .10 , 36 = 5.13, 41=5.20, 46 = 5.26, 51 = 5.19,

56 = 5.21, 61=5 .31 , 66 = 5.28, 71 = 5.44, 72 = 5.66.

The table contains all the necessary working, except that where
two columns of the table are found to be identical save for a cyclic
permutation of the sets, we have only written one of them.

The reader may find it a useful exercise to verify that the
relations

511 = T2 = (ST)3 = (53 Tf = (54 Tf = E

define a group of order 660 (actually the simple group of this order)
by taking 1 as the coset formed by 5 and its powers and showing
that all the tables are complete when 60 cosets have been introduced.

Our final example is of a group with three generators. We shall
use the method to show that the relations

S\ = St = Sl = (S1 S2)* = (S153)
2 = (52 53)3 = E (6)

define the group [3, 4, 3]', of order 576. This is the group of rotations
of the regular 24-cell in four dimensions, and this definition was
originally obtained by the " method of cosets " involving calculations
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which could not be printed. The notation here agrees with that
used previously1.

We take for § the group generated by Si and S2, subject to the
relations

s\ = sl = (st s2y = E
which define the octahedral group of order 24, choosing this in
preference to that generated by other pairs of the operations because
it has a larger order. The other cosets are defined thus:

2 = £ 3 . 1 , 3 = S2.2, 4 = £ 1 . 3 , 5 = S j . 4, 6 = S2 . 4, 7 = S2 . 5,
8 = /S1.7, 9 = # 2 . 8 , 1 0 = £ 3 . 6 , 11 =SS. 7, 1 2 = £ 3 . 8 , 13 = /SS.9,
14 = S2.12, 15 = tf2.13, 16 = ^ . 1 4 , 17 = ^ . 1 6 , 18 = # x . 15,
19 = ^ . 1 8 , 20 = $2-18, 2 1 = £ 2 . 1 9 , 22 = ^ . 2 1 , 23 = £ 2 .22 ,
24 = <S3. 23.

The tables are as follows:
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S2 I 1 2 4 11 12 13 16 18 24
Si 1 2 5 10 11 13 17 19 24

, Proc. Camb. Phil. Soc, 27(1931), 221.
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1 3 5 6 7 8 9 14 15 17 20 21 23

2 3 4 10 11 12 13 15 14 18 21 20 24
2 4 5 12 10 11 13 18 16 19 22 21 24

1 5 4 8 6 7 9 17 19 16 22 20 23
1 3 5 6 7 8 9 14 15 17 20 21 23


