Math 611 Homework 5

Paul Hacking

November 23, 2019

Reading: Dummit and Foote, Sections 8.1, 8.2, 8.3, 9.1, 9.2, 9.3, 9.4, and 9.5.

Justify your answers carefully (complete proofs are expected). All rings are assumed commutative with 1 unless explicitly stated otherwise.

(1) (Optional) Let

$$R = \mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C},$$

the subring of \mathbb{C} generated by $\sqrt{-2}$. Prove that R is a UFD.

(2) Let $\omega = \frac{1}{2}(1 + \sqrt{-3})$, a primitive cube root of unity, and

$$R = \mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C},\$$

the subring of \mathbb{C} generated by ω . Prove that R is a UFD. What are the units in R?

- (3) (Optional)
 - (a) Let R be a UFD and F = ff R its field of fractions. Suppose $f \in R[x]$ is a monic polynomial (a polynomial with leading coefficient equal to 1). Suppose $\alpha \in F$ satisfies $f(\alpha) = 0$. Prove that $\alpha \in R$. (We say a UFD is *integrally closed*.)
 - (b) Suppose $d \in \mathbb{Z}$ and d is not a square, and let $R = \mathbb{Z}[\sqrt{d}]$. Using part (a) or otherwise, show that R is not a UFD if either (i) there is a prime $p \in \mathbb{N}$ such that p^2 divides d or (ii) $d \equiv 1 \mod 4$.
 - (c) Using part (a) or otherwise, show that $\mathbb{C}[x, y]/(y^2 x^3)$ is not a UFD.

- (4) Let $n \in \mathbb{N}$ and $R = \mathbb{Z}[\sqrt{-n}]$. Prove that R is not a UFD for $n \ge 3$.
- (5) Let $R = \mathbb{Z}[\sqrt{2}]$. Define

$$\theta \colon R \to R, \quad \theta(a + b\sqrt{2}) = a - b\sqrt{2},$$

and

$$\sigma \colon R \to \mathbb{Z}_{\geq 0}, \quad \sigma(\alpha) = |\alpha \cdot \theta(\alpha)|;$$

explicitly

$$\sigma(a+b\sqrt{2}) = |a^2 - 2b^2|.$$

- (a) Show that θ is a ring homomorphism. Deduce that $\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta)$.
- (b) Show that $\sigma(\alpha) \neq 0$ for $\alpha \neq 0$.
- (c) Show that $\alpha \in R$ is a unit iff $\sigma(\alpha) = 1$.
- (d) Find a unit $\alpha \in R$, and use it to prove that there are infinitely many units in R.
- (e) Show that R is a UFD.
- (6) (Optional) Let F be a field. Prove that there are infinitely many monic irreducible polynomials in F[x].
- (7) (Optional) Determine the irreducible polynomials in $\mathbb{Z}/2\mathbb{Z}[x]$ of degree ≤ 4 .
- (8) For each of the following polynomials, determine its factorization into irreducibles in $\mathbb{Q}[x]$.
 - (a) $x^3 + 4x + 1$.
 - (b) $x^4 + 10x^2 + 9$.
 - (c) $x^6 1$.
 - (d) $x^4 + 3x^3 + 5x^2 + x + 7$.
 - (e) $x^n + 57$, where $n \in \mathbb{N}$.

(9) Let $f(x) = x^6 + x^4 + x + 3$. Here are the factorizations of the reduction of f modulo p into irreducibles for the first few primes p:

f(x)	\equiv	$(x+1)(x^2+x+1)(x^3+x+1)$	$\mod 2$
f(x)	\equiv	$x(x+2)(x^4+x^3+2x^2+2x+2)$	$\mod 3$
f(x)	\equiv	$(x+3)^2(x^4+4x^3+3x^2+x+2)$	$\mod 5$
f(x)	\equiv	$(x^2 + 5x + 2)(x^4 + 2x^3 + 3x^2 + 2x + 5)$	$\mod 7$
f(x)	\equiv	$(x+6)(x^5+5x^4+4x^3+9x^2+x+6)$	$\mod 11$

Prove that f is irreducible in $\mathbb{Q}[x]$.

- (10) Let n be a positive integer.
 - (a) Show that $x^n + y^n 1$ is irreducible in $\mathbb{C}[x, y]$.
 - (b) Show that $x^n y + y^n z + z^n x$ is irreducible in $\mathbb{C}[x, y, z]$.
- (11) Let $n \in \mathbb{N}$ be a positive integer and $p \in \mathbb{N}$ be a prime. Let

$$f = a_{2n+1}x^{2n+1} + \dots + a_1x + a_0 \in \mathbb{Z}[x]$$

be a polynomial of odd degree 2n + 1 with integer coefficients. Suppose that p does not divide the leading coefficient a_{2n+1} , p divides $a_{2n}, a_{2n-1}, \ldots, a_{n+1}, p^2$ divides $a_n, a_{n-1}, \ldots, a_0$, and p^3 does not divide a_0 . Prove that f is irreducible in $\mathbb{Q}[x]$.

(12) Let $\alpha \in \mathbb{C}$ be a complex number. Consider the ring homomorphism

$$\varphi : \mathbb{Q}[x] \to \mathbb{C}, \quad \varphi(f(x)) = f(\alpha).$$

- (a) Show that either ker(φ) = {0}, in which case we say α is transcendental, or ker(φ) = (m) where $m \in \mathbb{Q}[x]$ is a monic irreducible polynomial, in which case we say α is algebraic and m is the minimal polynomial of α over \mathbb{Q} .
- (b) Show that $\mathbb{Q}[\alpha] := \varphi(\mathbb{Q}[x])$ is a field iff α is algebraic.
- (13) (Optional) Let $p \in \mathbb{N}$ be a prime, and $R = \mathbb{Z}[i]$ the ring of Gaussian integers. Show that the ring R/(p) is (i) a field of order p^2 for $p \equiv 3 \mod 4$, (ii) isomorphic to $(\mathbb{Z}/p\mathbb{Z})^2$ for $p \equiv 1 \mod 4$, and (iii) isomorphic to $(\mathbb{Z}/p\mathbb{Z})[x]/(x^2)$ for p = 2.

Hints:

- 1 Prove that R is a Euclidean domain (similar to the proof for $\mathbb{Z}[i]$ given in class).
- 2 Similar to Q1.
- 3 a Write α as a fraction in its lowest terms and clear denominators in the equation $f(\alpha) = 0$. bc Find an element $\alpha \in \text{ff } R \setminus R$ that satisfies a monic polynomial equation with integer coefficients.
- 4 Use the norm $N(\alpha) = \alpha \bar{\alpha}$ to show that 2 is irreducible, and divide into cases *n* even or odd.
- 5 e Prove that R is a Euclidean domain with size function σ .
- 6 Adapt the usual argument for prime integers.
- 7 Use the polynomial version of the Sieve of Eratosthenes. Note that if F is a field and $f \in F[x]$ is reducible then f has an irreducible factor g such that deg $g \leq \deg f/2$.
- 8 a If $f \in \mathbb{Q}[x]$ has deg $f \leq 3$, and f has no roots in \mathbb{Q} , then F is irreducible in $\mathbb{Q}[x]$ (why?). Also if $f = a_n x^n + \cdots + a_0$ and $\alpha = a/b \in \mathbb{Q}$ is a rational root of f expressed in its lowest terms, then b divides a_n and a divides a_0 . d Consider reduction modulo a prime. e What is Eisenstein's criterion?
- 9 What are the possible degrees of irreducible factors of f?
- 10 Use the generalized Eisenstein criterion.
- 11 Similar to the proof of the Eisentein criterion, suppose f is reducible in $\mathbb{Q}[x]$, then using the Gauss Lemma f = gh, some $g, h \in \mathbb{Z}[x]$, $0 < \deg g < \deg h$ (note $\deg g \neq \deg h$ because $\deg f$ is odd). Reduce modulo p, and consider the coefficient of x^m in f, where $m = \deg g$. Deduce p^3 divides a_0 , a contradiction.
- 12 What are the prime ideals in a PID?
- 13 $\mathbb{Z}[i] \simeq \mathbb{Z}[x]/(x^2+1)$, so $\mathbb{Z}[i]/(p) \simeq \mathbb{Z}/p\mathbb{Z}[x]/(x^2+1)$. What are the solutions of $x^2+1 \equiv 0 \mod p$?