
Math 461 Homework 8

Paul Hacking

November 19, 2019

Justify your answers carefully.

(1) Let ∆ABC be a spherical triangle such that ∠BAC = π/2.

(a) Using the spherical cosine rule or otherwise, derive the spherical
version of Pythagoras’ theorem relating the side lengths α, β, γ
of ∆ABC.

(b) Check your formula in the case that B = (0, 0, 1) is the north pole
and A and C lie on the equator (the intersection of S2 with the
xy-plane).

(2) Let ∆ABC be a spherical triangle.

(a) Show that there is a unique spherical circle passing through the
vertices A,B,C. This is called the circumscribed circle of the
spherical triangle.

(b) Find the spherical center and spherical radius of the circumscribed
circle of the spherical triangle ∆ABC with vertices A = (1, 0, 0),
B = (0, 1, 0), C = (0, 0, 1).

(c) Find a formula for the spherical center of the circumscribed circle
of a spherical triangle ∆ABC in terms of the position vectors−→
OA,

−−→
OB,

−→
OC using the cross product. (Assume that the vertices

A,B,C of the triangle ∆ABC occur in that order as we traverse
the boundary of the triangle in the counterclockwise direction.)

[See HW7Q6 for the definition of a spherical circle and some useful
properties.]
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(3) (a) Find all solutions of the equation 1
p

+ 1
q

+ 1
r

= 1 where p, q, r ∈ N,
2 ≤ p ≤ q ≤ r.

(b) Show that, for each solution (p, q, r) from part (a), there is a tiling
of the plane R2 by congruent triangles with angles π/p, π/q, π/r,
such that all the angles meeting at a vertex of the tiling are the
same.

[Hint: (a) There are three solutions. (b) First tile the plane with regular
polygons, then subdivide the polygons into triangles with the desired
angles.]

(4) (a) Find all solutions of the inequality 1
p

+ 1
q

+ 1
r
> 1 where p, q, r ∈ N,

2 ≤ p ≤ q ≤ r.

(b) Show that, for each solution (p, q, r) from part (a), there is a tiling
of the sphere by spherical triangles with angles π/p, π/q, π/r, such
that all the angles meeting at a vertex of the tiling are the same.

(c) Find a uniform formula for the number of triangles in the tiling
in terms of p, q, r.

[Hint: (a) There is one infinite sequence of solutions and three addi-
tional solutions. (b) For the infinite sequence, use triangles as in Q1b
(and their reflections in the xy-plane). For the three additional solu-
tions, the following construction can be used: start with one of the
following Platonic solids: the tetrahedron, the cube, or the dodecahe-
dron, with vertices on the sphere. Now project the faces of the polytope
onto the sphere from the origin O to obtain a tiling of the sphere by
spherical polygons. Finally, subdivide the faces of the Platonic solid
into triangles and, projecting again, obtain a subdivision of the spheri-
cal polygons into spherical triangles. (c) What is the area of a spherical
triangle?]

(5) In class we showed that the image of a spherical circle C on S2 under
stereographic projection is either a circle or a line in the plane. Describe
the image precisely in the following cases.

(a) C1 = Π1 ∩ S2 where Π1 ⊂ R3 is the plane with equation

x+ 2y + 3z = 3.
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(b) C2 = Π2 ∩ S2 where Π2 ⊂ R3 is the plane with equation

3x+ 4y + 5z = 6.

[Hint: Recall that the image of C is a line if C contains the north pole
N and a circle otherwise. In the first case the line is just the intersection
of the plane Π containing C with the xy-plane. In the second case we
can find the equation of the image circle using the algebraic formula
for the inverse of F : F−1(u, v) = (2u, 2v, u2 + v2 − 1)/(u2 + v2 + 1).]

(6) Let R : S2 → S2 be the reflection in the xy-plane. Let F : S2 \ {N} →
R2 be the stereographic projection. Notice that R interchanges the
north pole N = (0, 0, 1) and the south pole S = (0, 0,−1), and F (S) =
(0, 0). It follows that the composition T = F ◦R◦F−1 defines a bijection

T : R2 \ {(0, 0)} → R2 \ {(0, 0)}.

This is the transformation of the plane (with the origin removed) cor-
responding to the reflection R of S2 in the equator under stereographic
projection.

(a) Determine a formula for R(x, y, z).

(b) Determine a formula for T (u, v).

(c) Show that T fixes the circle

C = {(u, v) | u2 + v2 = 1} ⊂ R2

with center the origin and radius 1 and interchanges the inside
and the outside of C (that is, if P ∈ R2 \ {(0, 0)} is inside C then
T (P ) is outside C and vice versa). The transformation T is called
inversion in the circle C.

(7) (Optional) A spherical polygon with vertices A1, . . . , An ∈ S2 is a region
P ⊂ S2 bounded by the shortest paths from A1 to A2, A2 to A3,. . .,
An−1 to An, and An to A1. We say that a spherical polygon is convex
if for all points A,B ∈ P the shortest path from A to B is contained
in P .

(a) Let P be a convex spherical polygon with n vertices. Show that
the sum of the interior angles of P equals (n − 2)π plus the area
of P .
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(b) Now suppose given a tiling of the sphere by convex spherical poly-
gons. Use part (a) to show that the numbers V,E, F of vertices,
edges, and faces of the tiling satisfy Euler’s formula

V − E + F = 2.

[Hint: (a) Use the same argument as in the plane (see HW2Q1b). (b)
The area 4π of the sphere is equal to the sum of the areas of the spherical
polygons in the tiling. Now express this sum in terms of V,E, F using
the formula from part (a).]

(8) (Optional) Let ∆ABC be a spherical triangle, with angles a,b,c and
side lengths α,β,γ. We define the polar spherical triangle ∆A′B′C ′ as
follows: Let ΠBC be the plane passing through the points O, B and
C. (So S2 ∩ ΠBC is the spherical line passing through B and C.) The

position vector
−−→
OA′ of A′ is the normal vector to the plane ΠBC which

has length 1 and lies on the same side of ΠBC as A. We define B′ and
C ′ analogously.

(a) Show that the side lengths of the polar spherical triangle ∆A′B′C ′

are given by α′ = π − a, β′ = π − b, γ′ = π − c.
(b) Show that the polar spherical triangle of ∆A′B′C ′ is ∆ABC.

(That is, if we apply the polar construction twice we recover the
original spherical triangle.)

(c) Deduce that the angles of the polar spherical triangle are given by
a′ = π − α, b′ = π − β, c′ = π − γ.

(9) (Optional) Given a spherical triangle, the spherical cosine rule can be
used to determine the angles of the triangle given the side lengths. (The
same is true of the usual cosine rule for plane triangles.)

Given a spherical triangle, apply the spherical cosine rule to the polar
triangle (see Q8 above) to obtain a formula (called the second spherical
cosine rule), which can be used to determine the side lengths of the
spherical triangle in terms of its angles. (Of course this is not possible
for plane triangles!)
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