Math 461 Homework 6

Paul Hacking

November 3, 2019

Reading: Stillwell, Sections 3.7, 3.8, and 4.7.

Justify your answers carefully. Complete proofs are expected (as in MATH 300).

(1) Let L be a line in \mathbb{R}^2 . Recall that Refl_L denotes reflection in the line L, an isometry of \mathbb{R}^2 .

Let P, Q be two points in \mathbb{R}^2 on the same side as L. Suppose we place a mirror on the line L (standing vertically, perpendicular to the plane), with the silvered side pointing towards P and Q. Show that the perceived position of P for an observer at Q looking in the mirror is $\operatorname{Refl}_L(P)$. (In other words, light from the object at P reflected in the mirror travels the same distance to Q and arrives in the same direction as light from an object at $\operatorname{Refl}_L(P)$ when the mirror is removed.)

[Hint: For reflection of light rays in a mirror, the incoming ray makes the same angle with the mirror as the outgoing ray ("angle of incidence equals angle of reflection").]

- (2) Give a precise geometric description of each of the following compositions of isometries as a translation, rotation, reflection, or glide reflection.
 - (a) Reflection in the line L_1 with equation y = 3 followed by reflection in the line L_2 with equation y = x + 1.
 - (b) Rotation about the point (1, 4) through angle π counterclockwise followed by rotation about the point (3, 4) through angle $\pi/2$ counterclockwise.
 - (c) Translation by the vector (0, 6) followed by rotation about the point (1, 2) through angle $\pi/3$.

- (3) Let L and M be two distinct lines in the plane. Show that $\operatorname{Refl}_M \circ \operatorname{Refl}_L = \operatorname{Refl}_L \circ \operatorname{Refl}_M$ if and only if L and M are perpendicular.
- (4) Recall that $\operatorname{Rot}(P, \theta)$ denotes rotation about a point P through angle θ counterclockwise. Let ABCD be a square such that the vertices A, B, C, D are in counterclockwise order. Determine the composition

 $\operatorname{Rot}(A, \pi/2) \circ \operatorname{Rot}(B, \pi/2) \circ \operatorname{Rot}(C, \pi/2) \circ \operatorname{Rot}(D, \pi/2).$

Justify your answer carefully.

(5) Let $\triangle ABC$ be an equilateral triangle with vertices A, B, C in counterclockwise order. Determine the composition

 $\operatorname{Rot}(A, 2\pi/3) \circ \operatorname{Rot}(B, 2\pi/3) \circ \operatorname{Rot}(C, 2\pi/3).$

- (6) Express the isometry $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + 6, 4 y) as a composite of at most 3 reflections.
- (7) Let A = (0,0), B = (1,0), C = (0,2), and A' = (3,5), B' = (3,4), C' = (1,5). Find an isometry T sending ΔABC to $\Delta A'B'C'$. (Give a geometric description and an explicit algebraic formula.)
- (8) Give an algebraic proof that the composition $\operatorname{Rot}(Q, \phi) \circ \operatorname{Rot}(P, \theta)$ of two rotations is a translation (or the identity) if $\theta + \phi$ is a multiple of 2π and a rotation about another point R through angle $\theta + \phi$ otherwise.

[Hint: Any isometry $T: \mathbb{R}^2 \to \mathbb{R}^2$ has an algebraic formula $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector. What is the matrix A if $T = \operatorname{Rot}(P, \theta)$ is rotation about a point P through angle θ counterclockwise? If $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ and $U(\mathbf{x}) = C\mathbf{x} + \mathbf{d}$, what is the algebraic formula for the composition $U \circ T$?]