
Math 461 Homework 4

Paul Hacking

October 1, 2019

Justify your answers carefully. Complete proofs are expected (as in MATH 300).

(1) Let ∆ABC be a triangle. Let C be the unique circle passing through
A, B, and C (see HW1Q3b). Let L be the tangent line to the circle
at the point A. Prove that the angle between the line L and the line
segment AC is equal to the angle ∠ABC.

[Hint: Review Section 2.7, Angles in a circle. What is the angle in a
semicircle?]

(2) (a) Let ∆DEF be a triangle. Show that the perpendicular bisectors
of the line segments DE, EF , and FD all meet at a point P .

(b) Let ∆ABC be a triangle. Draw the line L through A parallel
to BC, the line M through B parallel to CA, and the line N
through C parallel to AB. Let D be the intersection point of L
and M , let E be the intersection point of M and N , and let F
be the intersection point of N and L. Show that |AD| = |AF |,
|BD| = |BE|, and |CE| = |CF |.

(c) Let ∆ABC be a triangle. Let H be the line through A perpendic-
ular to BC, let I be the line through B perpendicular to AC, and
let J be the line through C perpendicular to AB. Using parts (a)
and (b) or otherwise, show that the lines H, I, and J all meet at
a point.

[Hints: (a) Compare HW1Q3b. (b) Identify some congruent triangles
in the diagram. (c) What does this have to do with part (a)?]
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(3) Consider a triangle ∆ABC with |AB| = |AC| = 1 and ∠BAC = 2θ.
Let L be the line through A perpendicular to BC andD the intersection
point of L and BC. Let M be the line through B perpendicular to AC
and E the intersection point of M and AC. Using basic trigonometry
(“SOHCAHTOA”) applied to this diagram, give a geometric proof of
the formulas

sin 2θ = 2 sin θ cos θ

and
cos 2θ = 1− 2(sin θ)2.

[Remark: The second formula is equivalent to cos 2θ = (cos θ)2−(sin θ)2

using (cos θ)2 + (sin θ)2 = 1.]

[Hint: First determine ∠BAD and ∠CBE.]

(4) (a) Using the formulas

cos(A+B) = cosA cosB − sinA sinB,

cos 2θ = (cos θ)2 − (sin θ)2,

sin 2θ = 2 sin θ cos θ,

and
(cos θ)2 + (sin θ)2 = 1

or otherwise, prove the formula

cos 3θ = 4(cos θ)3 − 3 cos θ.

[Hint: cos(3θ) = cos(2θ + θ).]

[Remark: An alternative approach uses the formula

cos θ = (eiθ + e−iθ)/2,

which follows from Euler’s formula

eiθ = cos θ + i sin θ.

]
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(b) Using part (a) or otherwise, determine a cubic polynomial p(X) =
aX3 + bX2 + cX + d with integer coefficients a, b, c, d such that
p(cos(2π/9)) = 0.

(5) (a) Show that the regular 10-gon can be constructed using ruler and
compass.

(b) Show that the regular 15-gon can be constructed using ruler and
compass.

[Hints: The regular n-gon can be constructed if the angle 2π/n can
be constructed (why?). You may assume (as proved in class) that the
angle 2π/5 can be constructed.]

(6) Using the cosine rule or otherwise, prove the triangle inequality : If
a, b, c are the lengths of the sides of a triangle, then a < b+ c.

(7) (a) Using Q8 below or otherwise, find a rational solution of the equa-
tion X3 + 3X − 14 = 0.

(b) Check Tartaglia’s formula in this case using your calculator: The
solutions of X3 + aX + b = 0 are given by

X =
3

√
−b/2 +

√
D − 3

√
b/2 +

√
D

where D = (b/2)2 + (a/3)3.

[Remark: If you prefer to avoid using your calculator, you can check
by hand that (1 +

√
2)3 = 7 + 5

√
2 and (−1 +

√
2)3 = −7 + 5

√
2 using

the binomial theorem (A+B)3 = A3 + 3A2B + 3AB2 +B3.]

(8) (Optional) Let p(X) = anX
n + an−1X

n−1 + · · · + a2X
2 + a1X + a0

be a polynomial of degree n with integer coefficients an, an−1, . . . , a0.
Suppose α is a rational number (a fraction) such that p(α) = 0. Write
α in its lowest terms: α = a/b, where a and b are integers such that
b > 0 and the greatest common divisor gcd(a, b) = 1. Show that a
divides a0 and b divides an.

[Hint: Recall from MATH 300 that if a, b, c are integers, a divides bc,
and gcd(a, b) = 1, then a divides c. Clear denominators in the equation
p(α) = 0 and use this fact.]
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(9) (Optional) For n a positive integer, the Euler totient function φ(n) is
defined by

φ(n) = |{a ∈ N | 1 ≤ a ≤ n and gcd(a, n) = 1}|.

That is, φ(n) equals the number of positive integers a less than or equal
to n such that gcd(a, n) = 1.

(a) Show that if p is a prime then φ(p) = p− 1.

(b) Show that if p is a prime and α is a positive integer then φ(pα) =
pα−1(p− 1).

(c) It follows from the Chinese remainder theorem that if gcd(m,n) =
1 then φ(mn) = φ(m)φ(n). So, if

n = pα1
1 p

α2
2 · · · pαr

r

is the (unique) prime factorization of a positive integer n (here
p1 < p2 < . . . < pr are distinct primes and the exponents α1, . . . , αr
are positive integers), then

φ(n) = pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαr−1
r (pr − 1).

Gauss’ theorem can be stated as follows: the regular n-gon can be
constructed using ruler and compass if and only if φ(n) is a power
of 2. Show that this condition holds if and only if

n = 2αp1p2 · · · ps

where p1 < . . . < ps are distinct primes such that pi−1 is a power
of 2 for each i = 1, . . . , s.

(d) Suppose p is a prime and p − 1 = 2m is a power of 2. Show that
m is necessarily a power of 2.

[Hint: Suppose for a contradiction that m is not a power of 2.
Then we can write m as a product ab of positive integers a, b such
that b is odd and b > 1. Now substitute X = 2a in the identity
Xb + 1 = (X + 1)(Xb−1 −Xb−2 + · · ·+X2 −X + 1) to show that
p = 2m + 1 is not prime, a contradiction.]

[Remark: The primes p of the form p = 2(2k) +1 are called Fermat
primes. The only known examples are p = 3, 5, 17, 257, 65537
corresponding to k = 0, 1, 2, 3, 4.]
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