Math 461 Homework 1

Paul Hacking

September 10, 2019

Reading: Stillwell, Sections 1.1, 1.2, 1.3, 2.1, and 2.2.

Justify your answers carefully. Complete proofs are expected (as in MATH 300).

(1) Suppose given two lines L_1 and L_2 intersecting at a point P at angle α , and another line M_1 and a point Q on M_1 . Describe a ruler and compass construction of a line M_2 through Q such that the angle between M_1 and M_2 equals α . Prove that your construction is correct.

[Hint: What are the congruence criteria? Given a triangle ΔABC , a point A' and a line L through A', how can we construct a congruent triangle $\Delta A'B'C'$ with base A'B' contained in L?]

(2) Suppose given two triangles ΔABC and $\Delta A'B'C'$ such that $\angle CAB = \angle C'A'B'$, |AB| = |A'B'| and |BC| = |B'C'|. Does it follow that the triangles are congruent? Give a proof or a counterexample.

[Hint: Given triangle $\triangle ABC$, draw two lines L and M intersecting at a point A' at angle $\angle CAB$, mark a point B' on L such that |A'B'| = |AB|, draw the circle C with center B' and radius |BC|, and consider the intersection points of the circle C with the line M. What happens when $\angle CAB < \angle BCA$?]

- (3) Let A, B, C be 3 distinct points in the plane.
 - (a) Show that the perpendicular bisectors of AB and BC intersect if and only if the points A,B,C do not lie on a line.[Hint: What is the parallel axiom?]
 - (b) Prove that if the points A,B,C do not lie on a line then there exists a unique circle passing through the points.

- (4) Recall that we say a *n*-sided polygon is *regular* if all the sides have equal lengths and all the angles are equal. Given a circle with center O and a point P on the circle, describe a ruler and compass construction of a regular *n*-gon whose vertices lie on the circle in the cases (a) n = 4 and (b) n = 6. Prove carefully that your construction is correct in each case.
- (5) (a) Let C be a circle with center O and P a point on C. Let L be a line passing through P. We say L is tangent to C at P if L∩C = {P}. Prove that if OP is perpendicular to L then L is tangent to C. [Hint: What is the contrapositive statement? Suppose L intersects the circle C at another point Q. What can you say about the angle ∠OPQ?]
 - (b) Prove the converse statement: If L is tangent to C then OP is perpendicular to L.