235 Final exam review questions

Paul Hacking

December 4, 2013

- (1) Let A be an $n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = A\mathbf{x}$ the linear transformation with matrix A. What does it mean to say that a vector $\mathbf{v} \in \mathbb{R}^n$ is an eigenvector of A (or T) with eigenvalue λ ?
- (2) Arguing geometrically, describe the eigenvalues and eigenvectors of the following linear transformations.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by reflection in the line y = 2x.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by orthogonal projection onto the line y = 3x.
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ the horizontal shear given by $T(\mathbf{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x}$.
- (3) Let A be an $n \times n$ matrix. Here is the strategy to find the eigenvalues and eigenvectors of A:
 - (a) Solve the characteristic equation $\det(A \lambda I) = 0$ to find the eigenvalues.
 - (b) For each eigenvalue λ solve the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$ to find the eigenvectors \mathbf{v} with eigenvalue λ .

[Why does this work? The equation $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is obtained from the equation $A\mathbf{v} = \lambda \mathbf{v}$ by rearranging the terms. This equation has a nonzero solution $\mathbf{v} \in \mathbb{R}^n$ exactly when $(A - \lambda I)$ is *not* invertible, equivalently $\det(A - \lambda I) = 0$.]

The function $\det(A - \lambda I)$ is a polynomial of degree n in the variable λ . In particular if n = 2 and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then

$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc)$$

and we can solve the characteristic equation using the quadratic formula. If n=3 we can determine the polynomial $\det(A-\lambda I)$ by computing the determinant using either Sarrus' rule or expansion along a row or column.

(4) For each of the following matrices, find all the eigenvalues and eigenvectors.

(a)
$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(5) Let

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$$

The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(\mathbf{x}) = A\mathbf{x}$ is given by rotation about a line L through some angle θ . Find the line L.

[Hint: A vector \mathbf{v} in the direction of L is an eigenvector of A (why?). What is the corresponding eigenvalue?]

(6) Let A be an $n \times n$ matrix. We say A is diagonalizable if there is a basis \mathcal{B} of \mathbb{R}^n consisting of eigenvectors of A. In this case, let $\mathcal{B} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be the basis of eigenvectors, with eigenvalues $\lambda_1, \dots, \lambda_n$. Then the \mathcal{B} -matrix of the transformation $T(\mathbf{x}) = A\mathbf{x}$ is the diagonal matrix D with diagonal entries the eigenvalues $\lambda_1, \dots, \lambda_n$ (why?). Equivalently, writing S for the matrix with columns the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, we have

$$A = SDS^{-1}.$$

We can determine whether A is diagonalizable as follows: for each eigenvalue λ , find a basis of the eigenspace $E_{\lambda} = \ker(A - \lambda I)$ (the subspace of \mathbb{R}^n consisting of all the eigenvectors with eigenvalue λ together with the zero vector). Now combine the bases of all the eigenspaces. These vectors are linearly independent. If there are n vectors, then they form a basis \mathcal{B} of \mathbb{R}^n and A is diagonalizable, otherwise A is not diagonalizable.

- (7) For each of the matrices A of Q4, determine whether A is diagonalizable. If A is diagonalizable identify a basis \mathcal{B} of \mathbb{R}^n consisting of eigenvectors of A and write down the \mathcal{B} -matrix of the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.
- (8) For which values of a and b is the matrix $A = \begin{pmatrix} 2 & a \\ 0 & b \end{pmatrix}$ diagonalizable?
- (9) If A is diagonalizable we can compute an explicit formula for powers of A as follows: Write $A = SDS^{-1}$ as above where D is the diagonal matrix with diagonal entries the eigenvalues $\lambda_1, \ldots, \lambda_n$. Then for any positive integer k we have

$$A^k = SD^k S^{-1}$$

(why?) and D^k is the diagonal matrix with diagonal entries $\lambda_1^k, \ldots, \lambda_n^k$.

(10) For the matrices A of Q4(a) and (b) compute a formula for A^k .

(11) Let $W \subset \mathbb{R}^3$ be the subspace with basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ where

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}.$$

- (a) Using the Gram-Schmidt process, find an orthonormal basis $C = (\mathbf{u}_1, \mathbf{u}_2)$ for W.
- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by orthogonal projection onto W. Write down a formula for $T(\mathbf{x})$ in terms of \mathbf{u}_1 and \mathbf{u}_2 , and use it to compute $T\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.
- (12) Let $W \subset \mathbb{R}^4$ be the subspace with basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$ where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 1 \end{pmatrix}.$$

- (a) Using the Gram-Schmidt process, find an orthonormal basis $C = (\mathbf{u}_1, \mathbf{u}_2)$ of W.
- (b) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be orthogonal projection onto W. Compute $T\begin{pmatrix}3\\5\\1\\3\end{pmatrix}$.
- (13) Let

$$\mathbf{u}_1 = \frac{1}{9} \begin{pmatrix} 4 \\ -1 \\ -8 \end{pmatrix}, \mathbf{u}_2 = \frac{1}{9} \begin{pmatrix} -7 \\ 4 \\ -4 \end{pmatrix}, \mathbf{u}_3 = \frac{1}{9} \begin{pmatrix} 4 \\ 8 \\ 1 \end{pmatrix}.$$

- (a) Show that $\mathcal{B} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ is an orthonormal basis of \mathbb{R}^3 .
- (b) Let $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Using part (a) or otherwise, compute the \mathcal{B} -coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ of \mathbf{v} .

(14) Find all solutions of the following system of linear equations. Write your answer as a linear combination of vectors in \mathbb{R}^5 .

- (15) Let V be a linear space and $T: V \to V$ a function (or transformation) from V to V. What does it mean to say that T is linear? (There are two conditions that must be satisfied.) If T is linear what is T(0)?
- (16) What does it mean to say that a subset $W \subset \mathbb{R}^n$ is a subspace? (There are 3 conditions that must be satisfied.) If $T \colon \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation and $\lambda \in \mathbb{R}$, let W be the subset of \mathbb{R}^n consisting of all the vectors \mathbf{v} such that $T(\mathbf{v}) = \lambda \mathbf{v}$. Show that W is a subspace of \mathbb{R}^n . [Remark: The subspace W is the eigenspace E_{λ} consisting of all the eigenvectors of T with eigenvalue λ together with the zero vector.]
- (17) What is the rank-nullity theorem? If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, what can you say about the kernel of T if n > m?
- (18) Let V be a linear space and \mathcal{B} a basis of V. Let $T \colon V \to V$ be a linear transformation. What is the \mathcal{B} -matrix of T and how can it be computed? In each of the following examples, write down a basis \mathcal{B} of V, compute the \mathcal{B} -matrix of T, and determine whether T is an isomorphism.
 - (a) $V = \mathcal{P}_2$, the linear space of polynomials f(x) of degree ≤ 2 , and $T: V \to V$, T(f(x)) = f(x) + f'(x) + f''(x).
 - (b) $V = \mathbb{R}^{2\times 2}$, the linear space of 2×2 matrices, and $T \colon \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, T(X) = AX + XB where $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.