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CHAPTER 1

Overview

In this chapter, we give an overview of the contents of the book.

1.1. Classical field theory and factorization algebras

The main aim of this book is to present a deformation-quantization approach to quan-
tum field theory. In this section we will outline how a classical field theory gives rise to
the classical algebraic structure we consider.

We use the Lagrangian formulation throughout. Thus, classical field theory means the
study of the critical locus of an action functional. In fact, we use the language of derived
geometry, in which it becomes clear that functions on a derived critical locus (section
5.1) should form a P0 algebra (section 2.3), that is, a commutative algebra with a Poisson
bracket of cohomological degree 1. (For an overview of these ideas, see the section 1.4.)

Applying these ideas to infinite-dimensional spaces, such as the space of smooth func-
tions on a manifold, one runs into analytic problems. Although there is no difficulty in
constructing a commutative algebra Obscl of classical observabes, we find that the Poisson
bracket on Obscl is not always well-defined. However, we show the following.

1.1.0.1 Theorem. For a classical field theory (section 5.4) on a manifold M, there is a sub-
commutative factorization algebra Õbs

c
l of the commutative factorization algebra Obscl on which

the Poisson bracket is defined, so that Õbs
cl

forms a P0 factorization algebra. Further, the inclusion

Õbs
cl
→ Obscl is a quasi-isomorphism of factorization algebras.

Remark: Our approach to field theory involves both cochain complexes of infinite-dimensional
vector spaces and families over manifolds (and dg manifolds). The infinite-dimensional
vector spaces that appear are of the type studied in functional analysis: for example,
spaces of smooth functions and of distributions. One approach to working with such
vector spaces is to treat them as topological vector spaces. In this book, we will instead
treat them as differentiable vector spaces. In particular, Obscl will be a factorization alge-
bra valued in differentiable vector spaces. For a careful discussion of differential vector
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2 1. OVERVIEW

spaces, see Appendix ??. The basic idea is as follows: a differentiable vector space is a vec-
tor space V with a smooth structure, meaning that we have a well-defined set of smooth
maps from any manifold X into V; and further, we have enough structure to be able to
differentiate any smooth map into V. These notions make it possible to efficiently study
cochain complexes of vector spaces in families over manifolds.

1.1.1. A gloss of the main ideas. In the rest of this section, we will outline why one
would expect that classical observables should form a P0 algebra. More details are avail-
able in section 3.

The idea of the construction is very simple: if U ⊂ M is an open subset, we will
let EL(U) be the derived space of solutions to the Euler-Lagrange equation on U. Since
we are dealing with perturbative field theory, we are interested in those solutions to the
equations of motion which are infinitely close to a given solution.

The differential graded algebra Obscl(U) is defined to be the space of functions on
EL(U). (Since EL(U) is an infinite dimensional space, it takes some work to define
Obscl(U). Details will be presented later (Chapter ??).

On a compact manifold M, the solutions to the Euler-Lagrange equations are the criti-
cal points of the action functional. If we work on an open subset U ⊂ M, this is no longer
strictly true, because the integral of the action functional over U is not defined. However,
fields on U have a natural foliation, where tangent vectors lying in the leaves of the foli-
ation correspond to variations φ → φ + δφ, where δφ has compact support. In this case,
the Euler-Lagrange equations are the critical points of a closed one-form dS defined along
the leaves of this foliation.

Any derived scheme which arises as the derived critical locus (section 5.1) of a func-
tion acquires an extra structure: it’s ring of functions is equipped with the structure of a
P0 algebra. The same holds for a derived scheme arising as the derived critical locus of
a closed one-form define along some foliation. Thus, we would expect that Obscl(U) is
equipped with a natural structure of P0 algebra; and that, more generally, the commuta-
tive factorization algebra Obscl should be equipped with the structure of P0 factorization
algebra.

1.2. Quantum field theory and factorization algebras

Another aim of the book is to relate perturbative quantum field theory, as developed
in [Cos11b], to factorization algebras. We give a natural definition of an observable of a
quantum field theory, which leads to the following theorem.
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1.2.0.1 Theorem. For a classical field theory (section 5.4) and a choice of BV quantization (section
8.2), the quantum observables Obsq form a factorization algebra over the ring R[[h̄]]. Moreover,
the factorization algebra of classical observables Obscl is homotopy equivalent to Obsq mod h̄ as a
factorization algebra.

Thus, the quantum observables form a factorization algebra and, in a very weak sense,
are related to the classical observables. The quantization theorems will sharpen the rela-
tionship between classical and quantum observables.

The main result of [Cos11b] allows one to construct perturbative quantum field the-
ories, term by term in h̄, using cohomological methods. This theorem therefore gives a
general method to quantize the factorization algebra associated to classical field theory.

1.3. The quantization theorem

We have explained how a classical field theory gives rise to P0 factorization algebra
Obscl , and how a quantum field theory (in the sense of [Cos11b]) gives rise to a factoriza-
tion algebra Obsq over R[[h̄]], which specializes at h̄ = 0 to the factorization algebra Obscl

of classical observables. In this section we will state our quantization theorem, which says
that the Poisson bracket on Obscl is compatible, in a certain sense, with the quantization
given by Obsq.

This statement is the analog, in our setting, of a familiar statement in quantum-mechanical
deformation quantization. Recall (section ??) that in that setting, we require that the asso-
ciative product on the algebra Aq of quantum observables is related to the Poisson bracket
on the Poisson algebra Acl of classical observables by the formula

{a, b} = lim
h̄→0

h̄−1[ã, b̃]

where ã, b̃ are any lifts of the elements a, b ∈ Acl to Aq.

One can make a similar definition in the world of P0 algebras. If Acl is any com-
mutative differential graded algebra, and Aq is a cochain complex flat over R[[h̄]] which
reduces to Acl modulo h̄, then we can define a cochain map

{−,−}Aq : Acl ⊗ Acl → Acl

which measures the failure of the commutative product on Acl to lift to a product on Aq,
to first order in h̄. (A precise definition is given in section 2.3).

Now, suppose that Acl is a P0 algebra. Let Aq be a cochain complex flat over R[[h̄]]
which reduces to Acl modulo h̄. We say that Aq is a quantization of Acl if the bracket
{−,−}Aq on Acl , induced by Aq, is homotopic to the given Poisson bracket on Acl .



4 1. OVERVIEW

This is a very loose notion, because the bracket {−,−}Aq on Acl need not be a Poisson
bracket; it is simply a bilinear map. When we discuss the notion of rigid quantization (sec-
tion 1.4), we will explain how to put a certain operadic structure on Aq which guarantees
that this induced bracket is a Poisson bracket.

1.3.1. The quantization theorem. Now that we have the definition of quantization at
hand, we can state our quantization theorem.

For every open subset U ⊂ M, Obscl(U) is a lax P0 algebra. Given a BV quantization
of our classical field theory, Obsq(U) is a cochain complex flat over R[[h̄]] which coin-
cides, modulo h̄, with Obscl(U). Our definition of quantization makes sense with minor
modifications for lax P0 algebras as well as for ordinary P0 algebras.

1.3.1.1 Theorem (The quantization theorem). For every U ⊂ M, the cochain complex Obsq(U)

of classical observables on U is a quantization of the lax P0 algebra Obscl(U).

1.4. The rigid quantization conjecture

We have seen (section 1.3) how the observables of a quantum field theory are a quanti-
zation, in a weak sense, of the lax P0 algebra of observables of a quantum field theory. The
definition of quantization appearing in this theorem is somewhat unsatisfactory, however,
because the bracket on the classical observables arising from the quantum observables is
not a Poisson bracket.

In this section we will explain a stricter notion of quantization. We would like to show
that the quantization of the classical observables of a field theory we construct lifts to a
rigid quantization. However, this is unfortunately is still a conjecture (except for the case
of free fields).

1.4.0.1 Definition. A BD algebra is a cochain complex A, flat over C[[h̄]], equipped with a
commutative product and a Poisson bracket of cohomological degree 1, satisfying the identity

(1.4.0.1) d(a · b) = a · (db)± (da) · b + h̄{a, b}.

The BD operad is investigated in detail in section 2.4. Note that, modulo h̄, a BD
algebra is a P0 algebra.

1.4.0.2 Definition. A quantization of a P0 algebra Acl is a BD algebra Aq, flat over C[[h̄]],
together with an equivalence of P0 algebras between Aq/h̄ and Acl .

More generally, one can (using standard operadic techniques) define a concept of ho-
motopy BD algebra. This leads to a definition of a homotopy quantization of a P0 algebra.
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Recall that the classical observables Obscl of a classical field theory have the structure
of a P0 factorization algebra on our space-time manifold M.

1.4.0.3 Definition. Let F cl be a P0 factorization algebra on M. Then, a rigid quantization of
F cl is a lift of F cl to a homotopy BD factorization algebra F q, such that F q(U) is a quantization
(in the sense described above) of F cl .

We conjecture that our construction of the factorization algebra of quantum observ-
ables associated to a quantum field theory has this structure. More precisely,

Conjecture. Suppose we have a classical field theory on M, and a BV quantization of the theory.
Then, Obsq has the structure of a homotopy BD factorization algebra quantizing the P0 factoriza-
tion algebra Obscl .





CHAPTER 2

Structured factorization algebras and quantization

In this chapter we will define what it means to have a factorization algebra endowed
with the structure of an algebra over an operad. Not all operads work for this construc-
tion: only operads endowed with an extra structure – that of a Hopf operad – can be used.
The issue is that we need to mix the structure maps of the factorization algebra with those
of an algebra over an operad P, so we need to know how to tensor together P-algebras.
(See the definition ?? in appendix A.)

After explaining the relevant machinery, we focus on the cases of interest for us: the
P0 and BD operads that appear in the classical and quantum BV formalisms, respectively.
These operads play a central role in our quantization theorem, the main result of this
book, and thus we will have formulated the goal toward which the next two parts of the
book are devoted.

Since, in this book, we are principally concerned with factorization algebras taking
values in the category of differentiable cochain complexes we will restrict attention to this
case in the present section.

2.1. Structured factorization algebras

2.1.0.1 Definition. A Hopf operad is an operad in the category of differential graded cocommu-
tative coalgebras.

Any Hopf operad P is, in particular, a differential graded operad. In addition, the
cochain complexes P(n) are endowed with the structure of differential graded commuta-
tive coalgebra. The operadic composition maps

◦i : P(n)⊗ P(m)→ P(n + m− 1)

are maps of coalgebras, as are the maps arising from the symmetric group action on P(n).

If P is a Hopf operad, then the category of dg P-algebras becomes a symmetric monoidal
category. If A, B are P-algebras, the tensor product A⊗C B is also a P-algebra. The struc-
ture map

PA⊗B : P(n)⊗ (A⊗ B)⊗n → A⊗ B

7
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is defined to be the composition

P(n)⊗ (A⊗ B)⊗n c(n)−−→ P(n)⊗ P(n)⊗ A⊗n ⊗ B⊗n PA⊗PB−−−→ A⊗ B.

In this diagram, c(n) : P(n)→ P(n)⊗2 is the comultiplication on c(n).

Any dg operad that is the homology operad of an operad in topological spaces is a
Hopf operad (because topological spaces are automatically cocommutative coalgebras,
with comultiplication defined by the diagonal map). For example, the commutative op-
erad Com is a Hopf operad, with coproduct defined on the generator ? ∈ Com(2) by

c(?) = ?⊗ ?.

With the comultiplication defined in this way, the tensor product of commutative algebras
is the usual one. If A and B are commutative algebras, the product on A⊗ B is defined by

(a⊗ b) ? (a′ ⊗ b′) = (−1)|a
′||b|(a ? a′)⊗ (b ? b′).

The Poisson operad is also a Hopf operad, with coproduct defined (on the generators
?, {−,−} by

c(?) = ?⊗ ?

c({−,−}) = {−,−}⊗ ?+ ?⊗ {−,−}.

If A, B are Poisson algebras, then the tensor product A ⊗ B is a Poisson algebra with
product and bracket defined by

(a⊗ b) ? (a′ ⊗ b′) = (−1)|a
′||b|(a ? a′)⊗ (b ? b′)

{a⊗ b, a′ ⊗ b′} = (−1)|a
′||b| ({a, a′} ⊗ (b ? b′) + (a ? a′)⊗ {b, b′}

)
.

2.1.0.2 Definition. Let P be a differential graded Hopf operad. A prefactorization P-algebra
is a prefactorization algebra with values in the multicategory of P-algebras. A factorization P-
algebra is a prefactorization P-algebra, such that the underlying prefactorization algebra with
values in cochain complexes is a factorization algebra.

We can unpack this definition as follows. Suppose that F is a factorization P-algebra.
Then F is a factorization algebra; and, in addition, for all U ⊂ M, F (U) is a P-algebra.
The structure maps

F (U1)× · · · × F (Un)→ F (V)

(defined when U1, . . . , Un are disjoint open subsets of V) are required to be P-algebra maps
in the sense defined above.
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2.2. Commutative factorization algebras

One of the most important examples is when P is the operad Com of commutative
algebras. Then, we find that F (U) is a commutative algebra for each U. Further, if
U1, . . . , Uk ⊂ V are as above, the product map

m : F (U1)× · · · × F (Uk)→ F (V)

is compatible with the commutative algebra structures, in the following sense.

(1) If 1 ∈ F (Ui) is the unit for the commutative product on each F(Ui), then

m(1, . . . , 1) = 1.

(2) If αi, βi ∈ F (Ui), then

m(α1β1, . . . , αkβk) = ±m(α1, . . . , αk)m(β1, . . . , βk)

where ± indicates the usual Koszul rule of signs.

Note that the axioms of a factorization algebra imply that F (∅) is the ground ring k
(which we normally take to be R or C for classical theories and R[[h̄]] or C[[h̄]] for quan-
tum field theories). The axioms above, in the case that k = 1 and U1 = ∅, imply that the
map

F (∅)→ F (U)

is a map of unital commutative algebras.

If F is a commutative prefactorization algebra, then we can recover F uniquely from
the underlying cosheaf of commutative algebras. Indeed, the maps

F (U1)× · · · × F (Uk)→ F (V)

can be described in terms of the commutative product on F (V) and the maps F (Ui) →
F (V).

2.3. The P0 operad

Recall that the collection of observables in quantum mechanics form an associative
algebra. The observables of a classical mechanical system form a Poisson algebra. In
the deformation quantization approach to quantum mechanics, one starts with a Poisson
algebra Acl , and attempts to construct an associative algebra Aq, which is an algebra flat
over the ring C[[h̄]], together with an isomorphism of associative algebras Aq/h̄ ∼= Acl . In
addition, if a, b ∈ Acl , and ã, b̃ are any lifts of a, b to Aq, then

lim
h̄→0

1
h̄
[ã, b̃] = {a, b} ∈ Acl .
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This book concerns the analog, in quantum field theory, of the deformation quanti-
zation picture in quantum mechanics. We have seen that the sheaf of solutions to the
Euler-Lagrange equation of a classical field theory can be encoded by a commutative fac-
torization algebra. A commutative factorization algebra is the analog, in our setting, of the
commutative algebra appearing in deformation quantization. We have argued (section
1.2) that the observables of a quantum field theory should form a factorization algebra.
This factorization algebra is the analog of the associative algebra appearing in deforma-
tion quantization.

In deformation quantization, the commutative algebra of classical observables has an
extra structure – a Poisson bracket – which makes it “want” to deform into an associative
algebra. In this section we will explain the analogous structure on a commutative factor-
ization algebra which makes it want to deform into a factorization algebra. Later (section
6.2) we will see that the commutative factorization algebra associated to a classical field
theory has this extra structure.

2.3.1. The E0 operad.

2.3.1.1 Definition. Let E0 be the operad defined by

E0(n) =

{
0 if n > 0
R if n = 0

Thus, an E0 algebra in the category of real vector spaces is a real vector space with
a distinguished element in it. More generally, an E0 algebra in a symmetric monoidal
category C is the same thing as an object A of C together with a map 1C → A

The reason for the terminology E0 is that this operad can be interpreted as the operad
of little 0-discs.

The inclusion of the empty set into every open set implies that, for any factorization
algebra F , there is a unique map from the unit factorization algebra R→ F .

2.3.2. The P0 operad. The Poisson operad is an object interpolating between the com-
mutative operad and the associative (or E1) operad. We would like to find an analog of the
Poisson operad which interpolates between the commutative operad and the E0 operad.

Let us define the Pk operad to be the operad whose algebras are commutative algebras
equipped with a Poisson bracket of degree 1− k. With this notation, the usual Poisson
operad is the P1 operad.
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Recall that the homology of the En operad is the Pn operad, for n > 1. Thus, just as the
semi-classical version of an algebra over the E1 operad is a Poisson algebra in the usual
sense (that is, a P1 algebra), the semi-classical version of an En algebra is a Pn algebra.

Thus, we have the following table:

Classical Quantum
? E0 operad

P1 operad E1 operad
P2 operad E2 operad

...
...

This immediately suggests that the P0 operad is the semi-classical version of the E0 operad.

Note that the P0 operad is a Hopf operad: the coproduct is defined by

c(?) = ?⊗ ?

c({−,−}) = {−,−}⊗ ?+ ?⊗ {−,−}.

In concrete terms, this means that if A and B are P0 algebras, their tensor product A⊗ B
is again a P0 algebra, with product and bracket defined by

(a⊗ b) ? (a′ ⊗ b′) = (−1)|a
′||b|(a ? a′)⊗ (b ? b′)

{a⊗ b, a′ ⊗ b′} = (−1)|a
′||b| ({a, a′} ⊗ (b ? b′) + (a ? a′)⊗ {b, b′}

)
.

2.3.3. P0 factorization algebras. Since the P0 operad is a Hopf operad, it makes sense
to talk about P0 factorization algebras. We can give an explicit description of this struc-
ture. A P0 factorization algebra is a commutative factorization algebra F , together with a
Poisson bracket of cohomological degree 1 on each commutative algebra F (U), with the
following additional properties. Firstly, if U ⊂ V, the map

F (U)→ F (V)

must be a homomorphism of P0 algebras.

The second condition is that observables coming from disjoint sets must Poisson com-
mute. More precisely, let U1, U2 be disjoint subsets f V. . Let ji : F (Ui) → F (V) be the
natural maps. Let αi ∈ F (Ui), and ji(αi) ∈ F (V). Then, we require that

{j1(α1), j2(α2)} = 0 ∈ F (V)

where {−,−} is the Poisson bracket on F (V).
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2.3.4. Quantization of P0 algebras. We know what it means to quantize an Poisson
algebra in the ordinary sense (that is, a P1 algebra) into an E1 algebra.

There is a similar notion of quantization for P0 algebras. A quantization is simply an
E0 algebra over R[[h̄]] which, modulo h̄, is the original P0 algebra, and for which there is
a certain compatibility between the Poisson bracket on the P0 algebra and the quantized
E0 algebra.

Let A be a commutative algebra in the category of cochain complexes. Let A1 be an E0

algebra flat over R[[h̄]]/h̄2, and suppose that we have an isomorphism of chain complexes

A1 ⊗R[[h̄]]/h̄2 R ∼= A.

In this situation, we can define a bracket on A of degree 1, as follows.

We have an exact sequence

0→ h̄A→ A1 → A→ 0.

The boundary map of this exact sequence is a cochain map

D : A→ A

(well-defined up to homotopy).

Let us define a bracket on A by the formula

{a, b} = D(ab)− (−1)|a|aDb− (Da)b.

Because D is well-defined up to homotopy, so is this bracket. However, unless D is an
order two differential operator, this bracket is simply a cochain map A⊗ A→ A, and not
a Poisson bracket of degree 1.

In particular, this bracket induces one on the cohomology H∗(A) of A. The cohomo-
logical bracket is independent of any choices.

2.3.4.1 Definition. Let A be a P0 algebra in the category of cochain complexes. Then a quantiza-
tion of A is an E0 algebra Ã over R[[h̄]], together with a quasi-isomorphism of E0 algebras

Ã⊗R[[h̄]] R ∼= A,

which satisfies the following correspondence principle: the bracket on H∗(A) induced by Ã
must coincide with that given by the P0 structure on A.

In the next section we will consider a more sophisticated, operadic notion of quantiza-
tion, which is strictly stronger than this one. To distinguish between the two notions, one
could call the definition of quantization presented here a quantization, while the definition
introduced later will be called a rigid quantization.
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2.4. The Beilinson-Drinfeld operad

Beilinson and Drinfeld [BD04] constructed an operad over the formal disc which
generically is equivalent to the E0 operad, but which at 0 is equivalent to the P0 operad.
We call this operad the Beilinson-Drinfeld operad.

The operad P0 is generated by a commutative associative product − ?−, of degree 0;
and a Poisson bracket {−,−} of degree +1.

2.4.0.1 Definition. The Beilinson-Drinfeld (or BD) operad is the differential graded operad
over the ring R[[h̄]] which, as a graded operad, is simply

BD = P0 ⊗R[[h̄]];

but with differential defined by
d(− ?−) = h̄{−,−}.

If M is a flat differential graded R[[h̄]] module, then giving M the structure of a BD al-
gebra amounts to giving M a commutative associative product, of degree 0, and a Poisson
bracket of degree 1, such that the differential on M is a derivation of the Poisson bracket,
and the following identity is satisfied:

d(m ? n) = (dm) ? n + (−1)|m|m ? (dn) + (−1)|m|h̄{m, n}

2.4.0.2 Lemma. There is an isomorphism of operads,

BD⊗R[[h̄]] R ∼= P0,

and a quasi-isomorphism of operads over R((h̄)),

BD⊗R[[h̄]] R((h̄)) ' E0 ⊗R((h̄)).

Thus, the operad BD interpolates between the P0 operad and the E0 operad.

BD is an operad in the category of differential graded R[[h̄]] modules. Thus, we can
talk about BD algebras in this category, or in any symmetric monoidal category enriched
over the category of differential graded R[[h̄]] modules.

The BD algebra is, in addition, a Hopf operad, with coproduct defined in the same
way as in the P0 operad. Thus, one can talk about BD factorization algebras.

2.4.1. BD quantization of P0 algebras.

2.4.1.1 Definition. Let A be a P0 algebra (in the category of cochain complexes). A BD quanti-
zation of A is a flat R[[h̄]] module Aq, flat over R[[h̄]], which is equipped with the structure of a
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BD algebra, and with an isomorphism of P0 algebras

Aq ⊗R[[h̄]] R ∼= A.

Similarly, an order k BD quantization of A is a differential graded R[[h̄]]/h̄k+1 module Aq,
flat over R[[h̄]]/h̄k+1, which is equipped with the structure of an algebra over the operad

BD⊗R[[h̄]] R[[h̄]]/h̄k+1,

and with an isomorphism of P0 algebras

Aq ⊗
R[[h̄]]/h̄k+1 R ∼= A.

This definition applies without any change in the world of factorization algebras.

2.4.1.2 Definition. Let F be a P0 factorization algebra on M. Then a BD quantization of F is
a BD factorization algebra F̃ equipped with a quasi-isomorphism

F̃ ⊗R[[h̄]] R ' F

of P0 factorization algebras on M.

2.4.2. Operadic description of ordinary deformation quantization. We will finish
this section by explaining how the ordinary deformation quantization picture can be
phrased in similar operadic terms.

Consider the following operad BD1 over R[[h̄]]. BD1 is generated by two binary oper-
ations, a product ∗ and a bracket [−,−]. The relations are that the product is associative;
the bracket is antisymmetric and satisfies the Jacobi identity; the bracket and the product
satisfy a certain Leibniz relation, expressed in the identity

[ab, c] = a[b, c]± [b, c]a

(where ± indicates the Koszul sign rule); and finally the relation

a ∗ b∓ b ∗ a = h̄[a, b]

holds. This operad was introduced by Ed Segal [Seg10].

Note that, modulo h̄, BD1 is the ordinary Poisson operad P1. If we set h̄ = 1, we find
that BD1 is the operad E1 of associative algebras. Thus, BD1 interpolates between P1 and
E1 in the same way that BD0 interpolates between P0 and E0.

Let A be a P1 algebra. Let us consider possible lifts of A to a BD1 algebra.

2.4.2.1 Lemma. A lift of A to a BD1 algebra, flat over R[[h̄]], is the same as a deformation
quantization of A in the usual sense.
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PROOF. We need to describe BD1 structures on A[[h̄]] compatible with the given Pois-
son structure. To give such a BD1 structure is the same as to give an associative product
on A[[h̄]], linear over R[[h̄]], and which modulo h̄ is the given commutative product on A.
Further, the relations in the BD1 operad imply that the Poisson bracket on A is related to
the associative product on A[[h̄]] by the formula

h̄−1 (a ∗ b∓ b ∗ a) = {a, b} mod h̄.

�





Part 1

Classical field theory





CHAPTER 3

Introduction to classical field theory

Our goal here is to describe how the observables of a classical field theory naturally
form a factorization algebra (section ??). More accurately, we are interested in what might
be called classical perturbative field theory. “Classical” means that the main object of
interest is the sheaf of solutions to the Euler-Lagrange equations for some local action
functional. “Perturbative” means that we will only consider those solutions which are
infinitesimally close to a given solution. Much of this part of the book is devoted to
providing a precise mathematical definition of these ideas, with inspiration taken from
deformation theory and derived geometry. In this chapter, then, we will simply sketch
the essential ideas.

3.1. The Euler-Lagrange equations

The fundamental objects of a physical theory are the observables of a theory, that is,
the measurements one can make in that theory. In a classical field theory, the fields that
appear “in nature” are constrained to be solutions to the Euler-Lagrange equations (also
called the equations of motion). Thus, the measurements one can make are the functions
on the space of solutions to the Euler-Lagrange equations.

However, it is essential that we do not take the naive moduli space of solutions. In-
stead, we consider the derived moduli space of solutions. Since we are working perturba-
tively — that is, infinitesimally close to a given solution — this derived moduli space will
be a “formal moduli problem” [?, Lur11]. In the physics literature, the procedure of tak-
ing the derived critical locus of the action functional is implemented by the BV formalism.
Thus, the first step (chapter 4.1.3) in our treatment of classical field theory is to develop a
language to treat formal moduli problems cut out by systems of partial differential equa-
tions on a manifold M. Since it is essential that the differential equations we consider are
elliptic, we call such an object a formal elliptic moduli problem.

Since one can consider the solutions to a differential equation on any open subset
U ⊂ M, a formal elliptic moduli problem F yields, in particular, a sheaf of formal moduli
problems on M. This sheaf sends U to the formal moduli space F (U) of solutions on U.

19
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We will use the notation EL to denote the formal elliptic moduli problem of solutions
to the Euler-Lagrange equation on M; thus, EL(U) will denote the space of solutions on
an open subset U ⊂ M.

3.2. Observables

In a field theory, we tend to focus on measurements that are localized in spacetime.
Hence, we want a method that associates a set of observables to each region in M. If
U ⊂ M is an open subset, the observables on U are

Obscl(U) = O(EL(U)),

our notation for the algebra of functions on the formal moduli space EL(U) of solutions
to the Euler-Lagrange equations on U. (We will be more precise about which class of
functions we are using later.) As we are working in the derived world, Obscl(U) is a
differential-graded commutative algebra. Using these functions, we can answer any ques-
tion we might ask about the behavior of our system in the region U.

The factorization algebra structure arises naturally on the observables in a classical
field theory. Let U be an open set in M, and V1, . . . , Vk a disjoint collection of open subsets
of U. Then restriction of solutions from U to each Vi induces a natural map

EL(U)→ EL(V1)× · · · × EL(Vk).

Since functions pullback under maps of spaces, we get a natural map

Obscl(V1)⊗ · · · ⊗Obscl(Vk)→ Obscl(U)

so that Obscl forms a prefactorization algebra. To see that Obscl is indeed a factorization
algebra, it suffices to observe that the functor EL is a sheaf.

Since the space Obscl(U) of observables on a subset U ⊂ M is a commutative algebra,
and not just a vector space, we see that the observables of a classical field theory form a
commutative factorization algebra (section 2).

3.3. The symplectic structure

Above, we outlined a way to construct, from the elliptic moduli problem associated
to the Euler-Lagrange equations, a commutative factorization algebra. This construction,
however, would apply equally well to any system of differential equations. The Euler-
Lagrange equations, of course, have the special property that they arise as the critical
points of a functional.

In finite dimensions, a formal moduli problem which arises as the derived critical
locus (section 5.1) of a function is equipped with an extra structure: a symplectic form of
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cohomological degree −1. For us, this symplectic form is an intrinsic way of indicating
that a formal moduli problem arises as the critical locus of a functional. Indeed, any
formal moduli problem with such a symplectic form can be expressed (non-uniquely) in
this way.

We give (section 5.2) a definition of symplectic form on an elliptic moduli problem. We
then simply define a classical field theory to be a formal elliptic moduli problem equipped
with a symplectic form of cohomological degree −1.

Given a local action functional satisfying certain non-degeneracy properties, we con-
struct (section 5.3.1) an elliptic moduli problem describing the corresponding Euler-Lagrange
equations, and show that this elliptic moduli problem has a symplectic form of degree−1.

In ordinary symplectic geometry, the simplest construction of a symplectic manifold
is as a cotangent bundle. In our setting, there is a similar construction: given any ellip-
tic moduli problem F , we construct (section 5.6) a new elliptic moduli problem T∗[−1]F
which has a symplectic form of degree −1. It turns out that many examples of field theo-
ries of interest in mathematics and physics arise in this way.

3.4. The P0 structure

In finite dimensions, if X is a formal moduli problem with a symplectic form of degree
−1, then the dg algebra O(X) of functions on X is equipped with a Poisson bracket of
degree 1. In other words, O(X) is a P0 algebra (section 2.3).

In infinite dimensions, we show that something similar happens. If F is a classical
field theory, then we show that on every open U, the commutative algebra O(F (U)) =

Obscl(U) has a P0 structure. We then show that the commutative factorization algebra
Obscl forms a P0 factorization algebra. This is not quite trivial; it is at this point that we
need the assumption that our Euler-Lagrange equations are elliptic.





CHAPTER 4

Elliptic moduli problems

The essential data of a classical field theory is the moduli space of solutions to the
equations of motion of the field theory. For us, it is essential that we take not the naive
moduli space of solutions, but rather the derived moduli space of solutions. In the physics
literature, the procedure of taking the derived moduli of solutions to the Euler-Lagrange
equations is known as the classical Batalin-Vilkovisky formalism.

The derived moduli space of solutions to the equations of motion of a field theory on
X is a sheaf on X. In this chapter we will introduce a general language for discussing
sheaves of “derived spaces” on X that are cut out by differential equations.

Our focus in this book is on perturbative field theory, so we sketch the heuristic pic-
ture from physics before we introduce a mathematical language that formalizes the pic-
ture. Suppose we have a field theory and we have found a solution to the Euler-Lagrange
equations φ0. We want to find the nearby solutions, and a time-honored approach is to
consider a formal series expansion around φ0,

φt = φ0 + tφ1 + t2φ2 + · · · ,

and to solve iteratively the Euler-Lagrange equations for the higher terms φn. Of course,
such an expansion is often not convergent in any reasonable sense, but this perturbative
method has provided insights into many physical problems. In mathematics, particularly
the deformation theory of algebraic geometry, this method has also flourished and ac-
quired a systematic geometric interpretation. Here, though, we work in place of t with a
parameter ε that is nilpotent, so that there is some integer n such that εn+1 = 0. Let

φ = φ0 + εφ1 + ε2φ2 + · · ·+ εnφn.

Again, the Euler-Lagrange equation applied to φ becomes a system of simpler differential
equations organized by each power of ε. As we let the order of ε go to infinity and find
the nearby solutions, we describe the formal neighborhood of φ0 in the space of all solutions
to the Euler-Lagrange equations. (Although this procedure may seem narrow in scope,
its range expands considerably by considering families of solutions, rather a single fixed
solution. Our formalism is built to work in families.)

23



24 4. ELLIPTIC MODULI PROBLEMS

In this chapter we will introduce a mathematical formalism for this procedure, which
includes derived perturbations (i.e., ε has nonzero cohomological degree). In mathemat-
ics, this formalism is part of derived deformation theory or formal derived geometry.
Thus, before we discuss the concepts specific to classical field theory, we will explain some
general techniques from deformation theory. A key role is played by a deep relationship
between Lie algebras and formal moduli spaces.

4.1. Formal moduli problems and Lie algebras

In ordinary algebraic geometry, the fundamental objects are commutative algebras. In
derived algebraic geometry, commutative algebras are replaced by commutative differ-
ential graded algebras concentrated in non-positive degrees (or, if one prefers, simplicial
commutative algebras; over Q, there is no difference).

We are interested in formal derived geometry, which is described by nilpotent com-
mutative dg algebras.

4.1.0.1 Definition. An Artinian dg algebra over a field K of characteristic zero is a differential
graded commutative K-algebra R, concentrated in degrees ≤ 0, such that

(1) each graded component Ri is finite dimensional, and Ri = 0 for i� 0;
(2) R has a unique maximal differential ideal m such that R/m = K, and such that mN = 0

for N � 0.

Given the first condition, the second condition is equivalent to the statement that
H0(R) is Artinian in the classical sense.

The category of Artinian dg algebras is simplicially enriched in a natural way. A
map R → S is simply a map of dg algebras taking the maximal ideal mR to that of mS.
Equivalently, such a map is a map of non-unital dg algebras mR → mS. An n-simplex in
the space Maps(R, S) of maps from R to S is defined to be a map of non-unital dg algebras

mR → mS ⊗Ω∗(4n)

where Ω∗(4n) is some commutative algebra model for the cochains on the n-simplex.
(Normally, we will work over R, and Ω∗(4n) will be the usual de Rham complex.)

We will (temporarily) let Artk denote the simplicially enriched category of Artinian dg
algebras over k.

4.1.0.2 Definition. A formal moduli problem over a field k is a functor (of simplicially enriched
categories)

F : Artk → sSets
from Artk to the category sSets of simplicial sets, with the following additional properties.
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(1) F(k) is contractible.
(2) F takes surjective maps of dg Artinian algebras to fibrations of simplicial sets.
(3) Suppose that A, B, C are dg Artinian algebras, and that B → A, C → A are surjective

maps. Then we can form the fiber product B×A C. We require that the natural map

F(B×A C)→ F(B)×F(A) F(C)

is a weak homotopy equivalence.

We remark that such a moduli problem F is pointed: F assigns to k a point, up to
homotopy, since F(k) is contractible. Since we work mostly with pointed moduli problems
in this book, we will not emphasize this issue. Whenever we work with more general
moduli problems, we will indicate it explicitly.

Note that, in light of the second property, the fiber product F(B)×F(A) F(C) coincides
with the homotopy fiber product.

The category of formal moduli problems is itself simplicially enriched, in an evident
way. If F, G are formal moduli problems, and φ : F → G is a map, we say that φ is a weak
equivalence if for all dg Artinian algebras R, the map

φ(R) : F(R)→ G(R)

is a weak homotopy equivalence of simplicial sets.

4.1.1. Formal moduli problems and L∞ algebras. One very important way in which
formal moduli problems arise is as the solutions to the Maurer-Cartan equation in an L∞
algebra. As we will see later, all formal moduli problems are equivalent to formal moduli
problems of this form.

If g is an L∞ algebra, and (R, m) is a dg Artinian algebra, we will let

MC(g⊗m)

denote the simplicial set of solutions to the Maurer-Cartan equation in g⊗ m. Thus, an
n-simplex in this simplicial set is an element

α ∈ g⊗m⊗Ω∗(4n)

of cohomological degree 1, which satisfies the Maurer-Cartan equation

dα + ∑
n≥2

1
n! ln(α, . . . , α) = 0.

It is a well-known result in derived deformation theory that sending R to MC(g ⊗ m)
defines a formal moduli problem (see [Get09], [Hin01]). We will often use the notation Bg
to denote this formal moduli problem.
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If g is finite dimensional, then a Maurer-Cartan element of g⊗m is the same thing as
a map of commutative dg algebras

C∗(g)→ R

which takes the maximal ideal of C∗(g) to that of R.

Thus, we can think of the Chevalley-Eilenberg cochain complex C∗(g) as the algebra
of functions on Bg.

Under the dictionary between formal moduli problems and L∞ algebras, a dg vector
bundle on Bg is the same thing as a dg module over g. The cotangent complex to Bg cor-
responds to the g-module g∨[−1], with the shifted coadjoint action. The tangent complex
corresponds to the g-module g[1], with the shifted adjoint action.

If M is a g-module, then sections of the corresponding vector bundle on Bg is the
Chevalley-Eilenberg cochains with coefficients in M. Thus, we can define Ω1(Bg) to be

Ω1(Bg) = C∗(g, g∨[−1]).

Similarly, the complex of vector fields on Bg is

Vect(Bg) = C∗(g, g[1]).

Note that, if g is finite dimensional, this is the same as the cochain complex of derivations
of C∗(g). Even if g is not finite dimensional, the complex Vect(Bg) is, up to a shift of one,
the Lie algebra controlling deformations of the L∞ structure on g.

4.1.2. The fundamental theorem of deformation theory. The following statement is
at the heart of the philosophy of deformation theory:

There is an equivalence of (∞, 1) categories between the category of dif-
ferential graded Lie algebras and the category of formal pointed moduli
problems.

In a different guise, this statement goes back to Quillen’s work [Qui69] on rational homo-
topy theory. A precise formulation of this theorem has been proved by Hinich [Hin01];
more general theorems of this nature are considered in [Lur11], [?] and in [?], which is
also an excellent survey of these ideas.

It would take us too far afield to describe the language in which this statement can
be made precise. We will simply use this statement as motivation: we will only consider
formal moduli problems described by L∞ algebras, and this statement asserts that we lose
no information in doing so.
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4.1.3. Elliptic moduli problems. We are interested in formal moduli problems which
describe solutions to differential equations on a manifold M. Since we can discuss solu-
tions to a differential equation on any open subset of M, such an object will give a sheaf
of derived moduli problems on M, described by a sheaf of homotopy Lie algebras. Let us
give a formal definition of such a sheaf.

4.1.3.1 Definition. Let M be a manifold. A local L∞ algebra on M consists of the following
data.

(1) A graded vector bundle L on M, whose space of smooth sections will be denoted L.
(2) A differential operator d : L → L, of cohomological degree 1 and square 0.
(3) A collection of poly-differential operators

ln : L⊗n → L

for n ≥ 2, which are alternating, are of cohomological degree 2− n, and endow L with
the structure of L∞ algebra.

4.1.3.2 Definition. An elliptic L∞ algebra is a local L∞ algebra L as above with the property
that (L, d) is an elliptic complex.

Remark: The reader who is not comfortable with the language of L∞ algebras will lose
little by only considering elliptic dg Lie algebras. Most of our examples of classical field
theories will be described using dg Lie algebra rather than L∞ algebras.

If L is a local L∞ algebra on a manifold M, then it yields a presheaf BL of formal
moduli problems on M. This presheaf sends a dg Artinian algebra (R, m) and an open
subset U ⊂ M to the simplicial set

BL(U)(R) = MC(L(U)⊗m)

of Maurer-Cartan elements of the L∞ algebra L(U)⊗m (where L(U) refers to the sections
of L on U). We will think of this as the R-points of the formal pointed moduli problem
associated to L(U). One can show, using the fact that L is a fine sheaf, that this sheaf of
formal moduli problems is actually a homotopy sheaf, i.e. it satisfies Čech descent. Since
this point plays no role in our work, we will not elaborate further.

4.1.3.3 Definition. A formal pointed elliptic moduli problem (or simply elliptic moduli
problem) is a sheaf of formal moduli problems on M that is represented by an elliptic L∞ algebra.

The basepoint of the moduli problem corresponds, in the setting of field theory, to the
distinguished solution we are expanding around.
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4.2. Examples of elliptic moduli problems related to scalar field theories

4.2.1. The free scalar field theory. Let us start with the most basic example of an
elliptic moduli problem, that of harmonic functions. Let M be a Riemannian manifold.
We want to consider the formal moduli problem describing functions φ on M that are
harmonic, namely, functions that satisfy D φ = 0 where D is the Laplacian. The base point
of this formal moduli problem is the zero function.

The elliptic L∞ algebra describing this formal moduli problem is defined by

L = C∞(M)[−1] D−→ C∞(M)[−2].

This complex is thus situated in degrees 1 and 2. The products ln in this L∞ algebra are all
zero for n ≥ 2.

In order to justify this definition, let us analyze the Maurer-Cartan functor of this L∞
algebra. Let R be an ordinary (not dg) Artinian algebra, and let m be the maximal ideal of
R. The set of 0-simplices of the simplicial set MCL(R) is the set

{φ ∈ C∞(M)⊗m | D φ = 0.}
Indeed, because the L∞ algebra L is Abelian, the set of solutions to the Maurer-Cartan
equation is simply the set of closed degree 1 elements of the cochain complex L⊗m. All
higher simplices in the simplicial set MCL(R) are constant. To see this, note that if φ ∈
L⊗m⊗Ω∗(4n) is a closed element in degree 1, then φ must be in C∞(M)⊗m⊗Ω0(4n).
The fact that φ is closed amounts to the statement that D φ = 0 and that ddRφ = 0, where
ddR is the de Rham differential on Ω∗(4n).

Let us now consider the Maurer-Cartan simplicial set associated to a differential graded
Artinian algebra (R, m) with differential dR. The the set of 0-simplices of MCL(R) is the
set

{φ ∈ C∞(M)⊗m0, ψ ∈ C∞(M)⊗m−1 | D φ = dRψ.}
(The superscripts on m indicate the cohomological degree.) Thus, the 0-simplices of our
simplicial set can be identified with the set R-valued smooth functions φ on M that are
harmonic up to a homotopy given by ψ and also vanish modulo the maximal ideal m.

Next, let us identify the set of 1-simplices of the Maurer-Cartan simplicial set MCL(R).
This is the set of closed degree 1 elements of L ⊗ m⊗Ω∗([0, 1]). Such a closed degree 1
element has four terms:

φ0(t) ∈ C∞(M)⊗m0 ⊗Ω0([0, 1])

φ1(t)dt ∈ C∞(M)⊗m−1 ⊗Ω1([0, 1])

ψ0(t) ∈ C∞(M)⊗m−1 ⊗Ω0([0, 1])

ψ1(t)dt ∈ C∞(M)⊗m−2 ⊗Ω1([0, 1]).
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Being closed amounts to satisfying the three equations

D φ0(t) = dRψ0(t)
d
dt

φ0(t) = dRφ1(t)

D φ1(t) +
d
dt

ψ0(t) = dRψ1(t).

These equations can be interpreted as follows. We think of φ0(t) as providing a family
of R-valued smooth functions on M, which are harmonic up to a homotopy specified by
ψ0(t). Further, φ0(t) is independent of t, up to a homotopy specified by φ1(t). Finally, we
have a coherence condition among our two homotopies.

The higher simplices of the simplicial set have a similar interpretation.

4.2.2. Interacting scalar field theories. Next, we will consider an elliptic moduli prob-
lem that arises as the Euler-Lagrange equation for an interacting scalar field theory. Let
φ denote a smooth function on the Riemannian manifold M with metric g. The action
functional is

S(φ) =
∫

M

1
2 φ D φ + 1

4! φ
4 dvolg .

The Euler-Lagrange equation for the action functional S is

D φ + 1
3! φ

3 = 0,

a nonlinear PDE, whose space of solutions is hard to describe.

Instead of trying to describe the actual space of solutions to this nonlinear PDE, we
will describe the formal moduli problem of solutions to this equation where φ is infinites-
imally close to zero.

The formal moduli problem of solutions to this equation can be described as the so-
lutions to the Maurer-Cartan equation in a certain elliptic L∞ algebra which continue we
call L. As a cochain complex, L is

L = C∞(M)[−1] D−→ C∞(M)[−2].

Thus, C∞(M) is situated in degrees 1 and 2, and the differential is the Laplacian.

The L∞ brackets ln are all zero except for l3. The cubic bracket l3 is the map

l3 : C∞(M)⊗3 → C∞(M)

φ1 ⊗ φ2 ⊗ φ3 7→ φ1φ2φ3.

Here, the copy of C∞(M) appearing in the source of l3 is the one situated in degree 1,
whereas that appearing in the target is the one situated in degree 2.
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If R is an ordinary (not dg) Artinian algebra, then the Maurer-Cartan simplicial set
MCL(R) associated to R has for 0-simplices the set φ ∈ C∞(M) ⊗ m such that D φ +
1
3! φ

3 = 0. This equation may look as complicated as the full nonlinear PDE, but it is
substantially simpler than the original problem. For example, consider R = R[ε]/(ε2), the
“dual numbers.” Then φ = εφ1 and the Maurer-Cartan equation becomes D φ1 = 0. For
R = R[ε]/(ε4), we have φ = εφ1 + ε2φ2 + ε3φ3 and the Maurer-Cartan equation becomes
a triple of simpler linear PDE:

D φ1 = 0, D φ2 = 0, and Dφ3 +
1
2 φ3

1 = 0.

We are simply reading off the εk components of the Maurer-Cartan equation. The higher
simplices of this simplicial set are constant.

If R is a dg Artinian algebra, then the simplicial set MCL(R) has for 0-simplices the
set of pairs φ ∈ C∞(M)⊗m0 and ψ ∈ C∞(M)⊗m−1 such that

D φ + 1
3! φ

3 = dRψ.

We should interpret this as saying that φ satisfies the Euler-Lagrange equations up to a
homotopy given by ψ.

The higher simplices of this simplicial set have an interpretation similar to that de-
scribed for the free theory.

4.3. Examples of elliptic moduli problems related to gauge theories

4.3.1. Flat bundles. Next, let us discuss a more geometric example of an elliptic mod-
uli problem: the moduli problem describing flat bundles on a manifold M. In this case,
because flat bundles have automorphisms, it is more difficult to give a direct definition of
the formal moduli problem.

Thus, let G be a Lie group, and let P → M be a principal G-bundle equipped with a
flat connection ∇0. Let gP be the adjoint bundle (associated to P by the adjoint action of
G on its Lie algebra g). Then gP is a bundle of Lie algebras on M, equipped with a flat
connection that we will also denote ∇0.

For each Artinian dg algebra R, we want to define the simplicial set DefP(R) of R-
families of flat G-bundles on M that deform P. The question is “what local L∞ algebra
yields this elliptic moduli problem?”

The answer is L = Ω∗(M, gP), where the differential is d∇0 , the de Rham differential
coupled to our connection ∇0. But we need to explain how to find this answer so we will
provide the reasoning behind our answer. This reasoning is a model for finding the local
L∞ algebras associated to field theories.
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Let us start by being more precise about the formal moduli problem that we are study-
ing. We will begin by considering only on the deformations before we examine the issue
of gauge equivalence. In other words, we start by just discussing the 0-simplices of our
formal moduli problem.

As the underlying topological bundle of P is rigid, we can only deform the flat con-
nection on P. Let’s consider deformations over a dg Artinian ring R with maximal ideal
m. A deformation of the connection ∇0 on P is given by an element

A ∈ Ω1(M, gP)⊗m0,

since the difference ∇−∇0 between any connection and our initial connection is a gP-
valued 1-form. The curvature of the deformed connection ∇0 + A is

F(A) = d∇0 A + 1
2 [A, A] ∈ Ω2(M, gP)⊗m.

Note that, by the Bianchi identity, d∇0 F(A) + [A, F(A)] = 0.

Our first attempt to define the formal moduli functor DefP might be that our moduli
problem only returns deformations A such that F(A) = 0. From a homotopical perspec-
tive, it is more natural to loosen up this strict condition by requiring instead that F(A) be
exact in the cochain complex Ω2(M, gP)⊗ m of m-valued 2-forms on M. In other words,
we ask for A to be flat up to homotopy. However, we should also ask that F(A) is exact
in a way compatible with the Bianchi identity, because a curvature always satisfies this
condition.

Thus, as a tentative version of the formal moduli functor DefP, we will define the
0-simplices of the deformation functor by

Defprelim
P (R)[0] =

{A ∈ Ω1(M, gP)⊗m0, B ∈ Ω2(M, gP)⊗m−1 | F(A) = dRB, d∇0 B + [A, B] = 0}.

These equations say precisely that there exists a term B making F(A) exact and that B
satisfies a condition that enforces the Bianchi identity on F(A).

This functor Defprelim
P [0] does not behave the way that we want, though. Consider

fixing our Artinian algebra to be R = R[εn]/(ε2
n), where |εn| = −n, which is a shifted

version of the “dual numbers.” The functor Defprelim
P [0](R) is then a presheaf of sets on M,

which assigns to each open U the set

{a ∈ Ω1(U, gP), b ∈ Ω2(U, gP) | d∇0 a = 0, d∇0 b = 0}.

In other words, we obtain the sheaf of sets Ω1
cl(−, gP)×Ω2

cl(−, gP), which returns closed
1-forms and closed 2-forms. This sheaf is not, however, a homotopy sheaf, because these
sheaves are not fine and hence have higher cohomology groups.



32 4. ELLIPTIC MODULI PROBLEMS

How do we ensure that we obtain a homotopy sheaf of formal moduli problems?
We will ask that B satisfy the Bianchi constraint up a sequence of higher homotopies,
rather than satisfy the constraint strictly. Thus, the 0-simplices of our simplicial set of
deformations are defined by

DefP(R)[0] = {A ∈ Ω1(M, gP)⊗m0, B ∈
⊕
k≥2

Ωk(M, gP)⊗m1−k

| F(A) + dB + [A, B] + 1
2 [B, B] = 0.}.

Here, d refers to the total differential d∇0 + dR on the tensor product cochain complex
Ω≥2(M, gP)⊗m.

If we let Bi ∈ Ωi(M, gP)⊗m1−i, then the first few constraints on the Bi can be written
as

d∇0 B2 + [A, B2] + dRB3 = 0

d∇0 B3 + [A, B3] +
1
2 [B2, B2] + dRB4 = 0.

Thus, B2 satisfies the Bianchi constraint up to a homotopy defined by B3, and so on.

The higher simplices of this simplicial set must relate gauge-equivalent solutions. If
we restricted our attention to ordinary Artinian algebras — i.e., to dg algebras R concen-
trated in degree 0 (and so with zero differential) — then we could define the simplicial set
DefP(R) to be the homotopy quotient of DefP(R)[0] by the nilpotent group associated to
the nilpotent Lie algebra Ω0(M, gP) ⊗ m, which acts on DefP(R)[0] in the standard way
(see, for instance, [KS] or [Man09]).

This approach, however, does not extend well to the dg Artinian algebras. When
the algebra R is not concentrated in degree 0, the higher simplices of DefP(R) must also
involve elements of R of negative cohomological degree. Indeed, degree 0 elements of
R should be thought of as homotopies between degree 1 elements of R, and so should
contribute 1-simplices to our simplicial set.

A slick way to define a simplicial set with both desiderata is to set

DefP(R)[n] = {A ∈ Ω∗(M, gP)⊗m⊗Ω∗(4n) | d∇0 A + dR A + d4n A + 1
2 [A, A] = 0},

where d4n denotes the exterior derivative on Ω∗(4n).

Suppose that R is concentrated in degree 0 (so that the differential on R is zero). Then,
the higher forms on M don’t play any role, and

DefP(R)[0] = {A ∈ Ω1(M, gP)⊗m | d∇0 A + 1
2 [A, A] = 0}.

One can show (see [Get09]) that in this case, the simplicial set DefP(R) is weakly homo-
topy equivalent to the homotopy quotient of DefP(R)[0] by the nilpotent group associ-
ated to the nilpotent Lie algebra Ω0(M, gP)⊗m. Indeed, a 1-simplex in the simplicial set
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DefP(R) is given by a family of the form A0(t) + A1(t)dt, where A0(t) is a smooth family
of elements of Ω1(M, gP) ⊗ m depending on t ∈ [0, 1], and A1(t) is a smooth family of
elements of Ω0(M, gP)⊗m. The Maurer-Cartan equation in this context says that

d∇0 A0(t) + 1
2 [A0(t), A0(t)] = 0

d
dt A0(t) + [A1(t), A0(t)] = 0.

The first equation says that A0(t) defines a family of flat connections. The second equation
says that the gauge equivalence class of A0(t) is independent of t. In this way, gauge
equivalences are represented by 1-simplices in DefP(R).

It is immediate that the formal moduli problem DefP(R) is represented by the elliptic
dg Lie algebra

L = Ω∗(M, g).
The differential on L is the de Rham differential d∇0 on M coupled to the flat connection
on g. The only nontrivial bracket is l2, which just arises by extending the bracket of g over
the commutative dg algebra Ω∗(M) in the appropriate way.

4.3.2. Self-dual bundles. Next, we will discuss the formal moduli problem associ-
ated to the self-duality equations on a 4-manifold. We won’t go into as much detail as we
did for flat connections; instead, we will simply write down the elliptic L∞ algebra rep-
resenting this formal moduli problem. (For a careful explanation, see the original article
[AHS78].)

Let M be an oriented 4-manifold. Let G be a Lie group, and let P → M be a principal
G-bundle, and let gP be the adjoint bundle of Lie algebras. Suppose we have a connection
A on P with anti-self-dual curvature:

F(A)+ = 0 ∈ Ω2
+(M, gP)

(here Ω2
+(M) denotes the space of self-dual two-forms).

Then, the elliptic Lie algebra controlling deformations of (P, A) is described by the
diagram

Ω0(M, gP)
d−→ Ω1(M, gP)

d+−→ Ω2
+(M, gP).

Here d+ is the composition of the de Rham differential (coupled to the connection on gP)
with the projection onto Ω2

+(M, gP).

Note that this elliptic Lie algebra is a quotient of that describing the moduli of flat
G-bundles on M.

4.3.3. Holomorphic bundles. In a similar way, if M is a complex manifold and if
P→ M is a holomorphic principal G-bundle, then the elliptic dg Lie algebra Ω0,∗(M, gP),
with differential ∂, describes the formal moduli space of holomorphic G-bundles on M.
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4.4. Cochains of a local L∞ algebra

Let L be a local L∞ algebra on M. If U ⊂ M is an open subset, then L(U) denotes the
L∞ algebra of smooth sections of L on U. Let Lc(U) ⊂ L(U) denote the sub-L∞ algebra
of compactly supported sections.

In the appendix (section B.1) we defined the algebra of functions on the space of sec-
tions on a vector bundle on a manifold. We are interested in the algebra

O(L(U)[1]) = ∏
n≥0

Hom
(
(L(U)[1])⊗n, R

)
Sn

where the tensor product is the completed projective tensor product, and Hom denotes
the space of continuous linear maps.

This space is naturally a graded differentiable vector space (that is, we can view it as a
sheaf of graded vector spaces on the site of smooth manifolds). However, it is important
that we treat this object as a differentiable pro-vector space. Basic facts about differentiable
pro-vector spaces are developed in the Appendix ??. The pro-structure comes from the
filtration

FiO(L(U)[1]) = ∏
n≥i

Hom
(
(L(U)[1])⊗n, R

)
Sn

,

which is the usual filtration on “power series.”

The L∞ algebra structure on L(U) gives, as usual, a differential on O(L(U)[1]), mak-
ing O(L(U)[1]) into a differentiable pro-cochain complex.

4.4.0.1 Definition. Define the Lie algebra cochain complex C∗(L(U)) to be

C∗(L(U)) = O(L(U)[1])

equipped with the usual Chevalley-Eilenberg differential. Similarly, define

C∗red(L(U)) ⊂ C∗(L(U))

to be the reduced Chevalley-Eilenberg complex, that is, the kernel of the natural augmentation
map C∗(L(U))→ R. These are both differentiable pro-cochain complexes.

One defines C∗(Lc(U)) in the same way, everywhere substituting Lc for L.

We will think of C∗(L(U)) as the algebra of functions on the formal moduli problem
BL(U) associated to the L∞ algebra L(U).

4.4.1. Cochains with coefficients in a module. Let L be a local L∞ algebra on M, and
let L denote the smooth sections. Let E be a graded vector bundle on M and equip the
global smooth sections E with a differential that is a differential operator.
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4.4.1.1 Definition. A local action of L on E is an action of L on E with the property that the
structure maps

L⊗n ⊗ E → E

(defined for n ≥ 1) are all polydifferential operators.

Note that L has an action on itself, called the adjoint action, where the differential on
L is the one coming from the L∞ structure, and the action map

µn : L⊗n ⊗L → L

is the L∞ structure map ln+1.

Let L! = L∨ ⊗C∞
M

DensM. Then, L! has a natural local L-action, which we should
think of as the coadjoint action. This action is defined by saying that if α1, . . . , αn ∈ L, the
differential operator

µn(α1, . . . , αn,−) : L! → L!

is the formal adjoint to the corresponding differential operator arising from the action of
L on itself.

has the structure of a local module over L.

If E is a local module over L, then, for each U ⊂ M, we can define the Chevalley-
Eilenberg cochains

C∗(L(U), E (U))

of L(U) with coefficients in E (U). As above, one needs to take account of the topologies
on the vector spaces L(U) and E (U) when defining this Chevalley-Eilenberg cochain
complex. Thus, as a graded vector space,

C∗(L(U), E (U)) = ∏
n≥0

Hom((L(U)[1])⊗n, E (U))Sn

where the tensor product is the completed projective tensor product, and Hom denotes
the space of continuous linear maps. Again, we treat this object as a differentiable pro-
cochain complex.

As explained in the section on formal moduli problems (section 4.1), we should think
of a local module E over L as providing, on each open subset U ⊂ M, a vector bundle
on the formal moduli problem BL(U) associated to L(U). Then the Chevalley-Eilenberg
cochain complex C∗(L(U), E (U)) should be thought of as the space of sections of this
vector bundle.
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4.5. D-modules and local L∞ algebras

Our definition of a local L∞ algebra is designed to encode the derived moduli space
of solutions to a system of non-linear differential equations. An alternative language for
describing differential equations is the theory of D-modules. In this section we will show
how our local L∞ algebras can also be viewed as L∞ algebras in the symmetric monoidal
category of D-modules.

The main motivation for this extra layer of formalism is that local action functionals
— which play a central role in classical field theory — are elegantly described using the
language of D-modules.

Let C∞
M denote the sheaf of smooth functions on the manifold M, let DensM denote

the sheaf of smooth densities, and let DM the sheaf of differential operators with smooth
coefficients. The ∞-jet bundle Jet(E) of a vector bundle E is the vector bundle whose fiber
at a point x ∈ M is the space of jets (or formal germs) at x of sections of E. The sheaf
of sections of Jet(E), denoted J(E), is equipped with a canonical DM-module structure,
i.e., the natural flat connection sometimes known as the Cartan distribution. This flat
connection is characterized by the property that flat sections of J(E) are those sections
which arise by taking the jet at every point of a section of the vector bundle E. (For
motivation, observe that a field φ (a section of E) gives a section of Jet(E) that encodes all
the local information about φ.)

The category of DM modules has a symmetric monoidal structure, given by tensoring
over C∞

M. The following lemma allows us to translate our definition of local L∞ algebra
into the world of D-modules.

4.5.0.1 Lemma. Let E1, . . . , En, F be vector bundles on M, and let Ei, F denote their spaces of
global sections. Then, there is a natural bijection

PolyDiff(E1 × · · · × En, F ) ∼= HomDM(J(E1)⊗ · · · ⊗ J(En), J(F))

where PolyDiff refers to the space of polydifferential operators. On the right hand side, we need to
consider maps which are continuous with respect to the natural adic topology on the bundle of jets.

Further, this bijection is compatible with composition.

A more formal statement of this lemma is that the multi-category of vector bundles
on M, with morphisms given by polydifferential operators, is a full subcategory of the
symmetric monoidal category of DM modules. The embedding is given by taking jets.
The proof of this lemma (which is straightforward) is presented in [Cos11b], Chapter 5.

This lemma immediately tells us how to interpret a local L∞ algebra in the language
of D-modules.
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4.5.0.2 Corollary. Let L be a local L∞ algebra on M. Then J(L) has the structure of L∞ algebra
in the category of DM modules.

Indeed, the lemma implies that to give a local L∞ algebra on M is the same as to give
a graded vector bundle L on M together with an L∞ structure on the DM module J(L).

We are interested in the Chevalley-Eilenberg cochains of J(L), but taken now in the
category of DM modules. Because J(L) is an inverse limit of the sheaves of finite-order jets,
some care needs to be taken when defining this Chevalley-Eilenberg cochain complex.

In general, if E is a vector bundle, let J(E)∨ denote the sheaf HomC∞
M
(J(E), C∞

M), where
HomC∞

M
denotes continuous linear maps of C∞

M-modules. This sheaf is naturally a DM-
module. We can form the completed symmetric algebra

Ored(J(E)) = ∏
n>0

Symn
C∞

M

(
J(E)∨

)
= ∏

n>0
HomC∞

M
(J(E)⊗n, C∞

M)Sn .

Note that Ored(J(E) is a DM-algebra, as it is defined by taking the completed symmetric
algebra of J(E)∨ in the symmetric monoidal category of DM-modules where the tensor
product is taken over C∞

M.

We can equivalently view J(E)∨ as an infinite-rank vector bundle with a flat connec-
tion. The symmetric power sheaf Symn

C∞
M
(J(E)∨) is the sheaf of sections of the infinite-rank

bundle whose fibre at x is the symmetric power of the fibre of J(E)∨ at x.

In the case that E is the trivial bundle R, the sheaf J(R)∨ is naturally isomorphic to
DM as a left DM-module. In this case, sections of the sheaf Symn

C∞
M
(DM) are objects which

in local coordinates are finite sums of expressions like

f (xi)∂I1 . . . ∂In .

where ∂Ij is the partial differentiation operator corresponding to a multi-index.

We should think of an element of Ored(J(E)) as a Lagrangian on the space E of sections
of E (a Lagrangian in the sense that an action functional is given by a Lagrangian density).
Indeed, every element of Ored(J(E)) has a Taylor expansion F = ∑ Fn where each Fn is a
section

Fn ∈ HomC∞
M
(J(E)⊗n, C∞

M)Sn .

Each such Fn is a multilinear map which takes sections φ1, . . . , φn ∈ E and yields a smooth
function Fn(φ1, . . . , φn) ∈ C∞(M), with the property that Fn(φ1, . . . , φn)(x) only depends
on the ∞-jet of φi at x.
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In the same way, we can interpret an element F ∈ Ored(J(E)) as something that takes
a section φ ∈ E and yields a smooth function

∑ Fn(φ, . . . , φ) ∈ C∞(M),

with the property that F(φ)(x) only depends on the jet of φ at x.

Of course, the functional F is a formal power series in the variable φ. One cannot
evaluate most formal power series, since the putative infinite sum makes no sense. In-
stead, it only makes sense to evaluate a formal power series on infinitesimal elements. In
particular, one can always evaluate a formal power series on nilpotent elements of a ring.

Indeed, a formal way to characterize a formal power series is to use the functor of
points perspective on Artinian algebras: if R is an auxiliary graded Artinian algebra with
maximal ideal m and if φ ∈ E ⊗m, then F(φ) is an element of C∞(M)⊗m. This assign-
ment is functorial with respect to maps of graded Artin algebras.

4.5.1. Local functionals. We have seen that we can interpret Ored(J(E)) as the sheaf
of Lagrangians on a graded vector bundle E on M. Thus, the sheaf

DensM⊗C∞
M
Ored(J(E))

is the sheaf of Lagrangian densities on M. A section F of this sheaf is something which
takes as input a section φ ∈ E of E and produces a density F(φ) on M, in such a way that
F(φ)(x) only depends on the jet of φ at x. (As before, F is a formal power series in the
variable φ.)

The sheaf of local action functionals is the sheaf of Lagrangian densities modulo total
derivatives. Two Lagrangian densities that differ by a total derivative define the same
local functional on (compactly supported) sections because the integral of total derivative
vanishes. Thus, we do not want to distinguish them, as they lead to the same physics.
The formal definition is as follows.

4.5.1.1 Definition. Let E be a graded vector bundle on M, whose space of global sections is E .
Then the space of local action functionals on E is

Oloc(E ) = DensM⊗DMOred(J(E)).

Here, DensM is the right DM-module of densities on M.

Let Ored(Ec) denote the algebra of functionals modulo constants on the space Ec of
compactly supported sections of E. Integration induces a natural inclusion

ι : Oloc(E )→ Ored(Ec),
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where the Lagrangian density S ∈ Oloc(E ) becomes the functional ι(S) : φ 7→
∫

M S(φ).
(Again, φ must be nilpotent and compactly supported.) From here on, we will use this
inclusion without explicitly mentioning it.

4.5.2. Local Chevalley-Eilenberg complex of a local L∞ algebra. Let L be a local L∞
algebra. Then we can form, as above, the reduced Chevalley-Eilenberg cochain complex
C∗red(J(L)) of L. This is the DM-algebra Ored(J(L)[1]) equipped with a differential encoding
the L∞ structure on L.

4.5.2.1 Definition. If L is a local L∞-algebra, define the local Chevalley-Eilenberg complex to be

C∗red,loc(L) = DensM⊗DM C∗red(J(L)).

This is the space of local action functionals on L[1], equipped with the Chevalley-
Eilenberg differential. In general, if g is an L∞ algebra, we think of the Lie algebra cochain
complex C∗(g) as being the algebra of functions on Bg. In this spirit, we sometimes use
the notation Oloc(BL) for the complex C∗red,loc(L).

Note that C∗red,loc(L) is not a commutative algebra. Although the DM-module C∗red(J(L))
is a commutative DM-module, the functor DensM⊗DM− is not a symmetric monoidal
functor from DM-modules to cochain complexes, so it does not take commutative alge-
bras to commutative algebras.

Note that there’s a natural inclusion of cochain complexes

C∗red,loc(L)→ C∗red(Lc(M)),

where Lc(M) denotes the L∞ algebra of compactly supported sections of L. The complex
on the right hand side was defined earlier (see definition 4.4.0.1) and includes nonlocal
functionals.

4.5.3. Central extensions and local cochains. In this section we will explain how local
cochains are in bijection with certain central extensions of a local L∞ algebra. To avoid
some minor analytical difficulties, we will only consider central extensions that are split
as precosheaves of graded vector spaces.

4.5.3.1 Definition. Let L be a local L∞ algebra on M. A k-shifted local central extension of
L is an L∞ structure on the precosheaf Lc ⊕C[k], where C is the constant precosheaf which takes
value C on any open subset. We use the notation L̃c for the precosheaf Lc ⊕C[k]. We require that
this L∞ structure has the following properties.

(1) The sequence

0→ C[k]→ L̃c → Lc → 0
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is an exact sequence of precosheaves of L∞ algebras, where C[k] is given the abelian struc-
ture and Lc is given its original structure.

(2) This implies that the L∞ structure on L̃c is determined from that on Lc by L∞ structure
maps

l̃n : Lc → C[k]
for n ≥ 1. We require that these structure maps are given by local action functionals.

Two such central extensions, say L̃c and L̃′c, are isomorphic if there is an L∞-isomorphism

L̃c → L̃′c
that is the identity on C[k] and on the quotientLc. This L∞ isomorphism must satisfy an additional
property: the terms in this L∞ -isomorphism, which are given (using the decomposition of L̃c and
L̃′c as Lc ⊕C[k]) by functionals

L⊗n
c → C[k],

must be local.

This definition refines the definition of central extension given in section ?? to include
an extra locality property.

Example: Let Σ be a Riemann surface, and let g be a Lie algebra with an invariant pairing.
Let L = Ω0,∗

Σ ⊗ g. Consider the Kac-Moody central extension, as defined in section ?? of
?? We let

L̃c = C · c⊕Lc,
where the central parameter c is of degree 1 and the Lie bracket is defined by

[α, β]L̃c
= [α, β]Lc + c

∫
α∂β.

This is a local central extension. As shown in section ?? of chapter ??, the factorization
envelope of this extension recovers the vertex algebra of an associated affine Kac-Moody
algebra. ♦

4.5.3.2 Lemma. Let L be a local L∞ algebra on a manifold M. There is a bijection between
isomorphism classes of k-shifted local central extensions of L and classes in Hk+2(Oloc(BL)).

PROOF. This result is almost immediate. Indeed, any closed degree k + 2 element of
Oloc(BL) give a local L∞ structure on C[k]⊕Lc, where the L∞ structure maps

l̃n : Lc(U)→ C[k]

arise from the natural cochain map Oloc(BL)→ C∗red(Lc(U)). The fact that we start with a
closed element of Oloc(BL) corresponds to the fact that the L∞ axioms hold. Isomorphisms
of local central extensions correspond to adding an exact cocycle to a closed degree k + 2
element in Oloc(BL). �
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Particularly important is the case when we have a −1-shifted central extension. As
explained in subsection ?? in Chapter ??, in this situation we can form the twisted factor-
ization envelope, which is a factorization algebra over C[t] (where t is of degree 0) defined
by sending an open subset U to the Chevalley-Eilenberg chain complex

U 7→ C∗(L̃c(U)).

We think of C[t] as the Chevalley-Eilenberg chains of the Abelian Lie algebra C[−1]. In
this situation, we can set t to be a particular value, leading to a twisted factorization enve-
lope of L. Twisted factorization envelopes will play a central role in our formulation of
Noether’s theorem at the quantum level in chapter 12.

4.5.4. Calculations of local L∞ algebra cohomology play an important role in quan-
tum field theory. Indeed, the obstruction-deformation complex describing quantizations
of a classical field theory are local L∞ algebra cohomology groups. Thus, it will be helpful
to be able to compute some examples.

Before we start, let us describe a general result which will facilitate computation.

4.5.4.1 Lemma. Let M be an oriented manifold and let L be a local L∞-algebra on M. Then, there
is a natural quasi-isomorphism

Ω∗(M, C∗red(J(L)))[dimM] ∼= C∗red,loc(L).

PROOF. By definition,

O(BL) = DensM⊗DM C∗red J(L)
where DM is the sheaf of C∞ differential operators. The DM-module C∗red(J(L)) is flat
(this was checked in [Cos11b]), so we can replace the tensor product over DM with the
left-derived tensor product.

Since M is oriented, we can replace DensM by Ωd
M where d = dim M. The right DM-

module Ωd
M has a free resolution of the form

· · · → Ωd−1
M ⊗C∞

M
DM → Ωd M⊗C∞

M
DM

where Ωi
M ⊗C∞

M
DM is in cohomological degree −i, and the differential in this complex is

the de Rham differential coupled to the left DM-module structure on DM. (This is some-
times called the Spenser resolution).

It follows that we the derived tensor product can be represented as

Ωd
M ⊗mbbL

DM
C∗red(J(L)) = Ω∗(M, C∗red(J(L)))[d]

as desired.

�
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4.5.4.2 Lemma. Let Σ be a Riemann surface. Let L be the local L∞ algebra on Σ defined by
L(U) = Ω0,∗(U, TU). In other words, L is the Dolbeault resolution of the sheaf of holomorphic
vector fields on Σ.

Then,
Hi(O(BL)) = H∗(Σ)[−1].

Remark: The class in H1(O(BL)) corresponding to the class 1 ∈ H0(Σ) leads to a local cen-
tral extension of L. One can check that the corresponding twisted factorization envelope
corresponds to the Virasoro vertex algebra, in the same way that we showed in section ??
that the Kac-Moody extension above leads to the Kac-Moody vertex algebra. ♦

PROOF. The previous lemma tells us that we need to compute the de Rham cohomol-
ogy with coefficients in the DΣ-module C∗red(J(L))[2]. Suppose we want to compute the de
Rham cohomology with coefficients in any complex M of DΣ-modules. There is a spectral
sequence converging to this cohomology, associated to the filtration on Ω∗(Σ, M) by form
degree. The E2 page of this spectral sequence is the de Rham complex Ω∗(Σ,H∗(M)) with
coefficients in the cohomology DΣ-moduleH∗(M).

We will use this spectral sequence in our example. The first step is to compute the
cohomology of the DΣ-module C∗red(J(L)). We will compute the cohomology of the fibres
of this sheaf at an arbitrary point x ∈ Σ. Let us choose a holomorphic coordinate z at
x. The fibre Jx(L) at x is the dg Lie algebra C[[z, z, dz]]∂z with differential ∂. This dg Lie
algebra is quasi-isomorphic to the Lie algebra of formal vector fields C[[z]]∂z.

A calculation performed by Gelfand-Fuchs [] shows that the reduced Lie algebra co-
homology of C[[z]]∂z is concentrated in degree 3, where it is one-dimensional. A cochain
representative for the unique non-zero cohomology class is ∂∨z (z∂z)∨(z2∂z)∨where (zk∂z)∨

refers to the element in (C[[z]]∂z)∨ in the dual basis.

Thus, we find that the cohomology of C∗red(J(L)) is a rank one local system situated
in cohomological degree 3. Choosing a formal coordinate at a point in a Riemann surface
trivializes the fibre of this line bundle. The trivialization is independent of the coordinate
choice, and compatible with the flat connection. From this we deduce that

H∗(C∗red(J(L))) = C∞
Σ [−3]

is the trivial rank one local system, situated in cohomological degree 3.

Therefore, the cohomology of Oloc(BL) is a shift by−1 of the de Rham cohomology of
this trivial flat line bundle, completing the result. �

4.5.5. Cochains with coefficients in a local module for a local L∞ algebras. Let L be
a local L∞ algebra on M, and let E be a local module for L. Then J(E) has an action of the
L∞ algebra J(L), in a way compatible with the DM-module on both J(E) and J(L).
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4.5.5.1 Definition. Suppose that E has a local action of L. Then the local cochains C∗loc(L, E )
of L with coefficients in E is defined to be the flat sections of the DM-module of cochains of J(L)
with coefficients in J(E).

More explicitly, the DM-module C∗(J(L), J(E) is

∏
n≥0

HomC∞
M

(
(J(L)[1])⊗n, J(E)

)
Sn

,

equipped with the usual Chevalley-Eilenberg differential. The sheaf of flat sections of this
DM module is the subsheaf

∏
n≥0

HomDM

(
(J(L)[1])⊗n, J(E)

)
Sn

,

where the maps must be DM-linear. In light of the fact that

HomDM

(
J(L)⊗n, J(E)

)
= PolyDiff(L⊗n, E ),

we see that C∗loc(L, E ) is precisely the subcomplex of the Chevalley-Eilenberg cochain
complex

C∗(L, E ) = ∏
n≥0

HomR((L[1])⊗n, E )Sn

consisting of those cochains built up from polydifferential operators.





CHAPTER 5

The classical Batalin-Vilkovisky formalism

In the preceding chapter we explained how to encode the formal neighborhood of a
solution to the Euler-Lagrange equations — a formal elliptic moduli problem — by an
elliptic L∞ algebra. As we explain in this chapter, the elliptic moduli problems arising
from action functionals possess even more structure: a shifted symplectic form, so that
the formal moduli problem is a derived symplectic space.

Our starting point is the finite-dimensional model that motivates the Batalin-Vilkovisky
formalism for classical field theory. With this model in mind, we then develop the rele-
vant definitions in the language of elliptic L∞ algebras. The end of the chapter is devoted
to several examples of classical BV theories, notably cotangent field theories, which are the
analogs of cotangent bundles in ordinary symplectic geometry.

5.1. The classical BV formalism in finite dimensions

Before we discuss the Batalin-Vilkovisky formalism for classical field theory, we will
discuss a finite-dimensional toy model (which we can think of as a 0-dimensional classical
field theory). Our model for the space of fields is a finite-dimensional smooth manifold
manifold M. The “action functional” is given by a smooth function S ∈ C∞(M). Classical
field theory is concerned with solutions to the equations of motion. In our setting, the
equations of motion are given by the subspace Crit(S) ⊂ M. Our toy model will not
change if M is a smooth algebraic variety or a complex manifold, or indeed a smooth
formal scheme. Thus we will write O(M) to indicate whatever class of functions (smooth,
polynomial, holomorphic, power series) we are considering on M.

If S is not a nice function, then this critical set can by highly singular. The classical
Batalin-Vilkovisky formalism tells us to take, instead the derived critical locus of S. (Of
course, this is exactly what a derived algebraic geometer — see [Lur09], [Toë06] — would
tell us to do as well.) We will explain the essential idea without formulating it precisely
inside any particular formalism for derived geometry. For such a treatment, see [Vez11].

The critical locus of S is the intersection of the graph

Γ(dS) ⊂ T∗M

45
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with the zero-section of the cotangent bundle of M. Algebraically, this means that we can
write the algebra O(Crit(S)) of functions on Crit(S) as a tensor product

O(Crit(S)) = O(Γ(dS))⊗O(T∗M) O(M).

Derived algebraic geometry tells us that the derived critical locus is obtained by replacing
this tensor product with a derived tensor product. Thus, the derived critical locus of S,
which we denote Crith(S), is an object whose ring of functions is the commutative dg
algebra

O(Crith(S)) = O(Γ(dS))⊗L
O(T∗M) O(M).

In derived algebraic geometry, as in ordinary algebraic geometry, spaces are determined
by their algebras of functions. In derived geometry, however, one allows differential-
graded algebras as algebras of functions (normally one restricts attention to differential-
graded algebras concentrated in non-positive cohomological degrees).

We will take this derived tensor product as a definition of O(Crith(S)).

5.1.1. An explicit model. It is convenient to consider an explicit model for the de-
rived tensor product. By taking a standard Koszul resolution of O(M) as a module over
O(T∗M), one sees that O(Crith(S)) can be realized as the complex

O(Crith(S)) ' . . . ∨dS−−→ Γ(M,∧2TM)
∨dS−−→ Γ(M, TM)

∨dS−−→ O(M).

In other words, we can identify O(Crith(S)) with functions on the “graded manifold”
T∗[−1]M, equipped with the differential given by contracting with the 1-form dS. This
notation T∗[−1]M denotes the ordinary smooth manifold M equipped with the graded-
commutative algebra SymC∞

M
(Γ(M, TM)[1]) as its ring of functions.

Note that
O(T∗[−1]M) = Γ(M,∧∗TM)

has a Poisson bracket of cohomological degree 1, called the Schouten-Nijenhuis bracket.
This Poisson bracket is characterized by the fact that if f , g ∈ O(M) and X, Y ∈ Γ(M, TM),
then

{X, Y} = [X, Y]

{X, f } = X f

{ f , g} = 0

and the Poisson bracket between other elements of O(T∗[−1]M) is inferred from the Leib-
niz rule.

The differential on O(T∗[−1]M) corresponding to that on O(Crith(S)) is given by

dφ = {S, φ}
for φ ∈ O(T∗[−1]M).
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The derived critical locus of any function thus has a symplectic form of cohomolog-
ical degree −1. It is manifest in this model and hence can be found in others. In the
Batalin-Vilkovisky formalism, the space of fields always has such a symplectic structure.
However, one does not require that the space of fields arises as the derived critical locus
of a function.

5.2. The classical BV formalism in infinite dimensions

We would like to consider classical field theories in the BV formalism. We have already
explained how the language of elliptic moduli problems captures the formal geometry of
solutions to a system of PDE. Now we need to discuss the shifted symplectic structures
possessed by a derived critical locus. For us, a classical field theory will be specified by an
elliptic moduli problem equipped with a symplectic form of cohomological degree −1.

We defined the notion of formal elliptic moduli problem on a manifold M using the
language of L∞ algebras. Thus, in order to give the definition of a classical field theory,
we need to understand the following question: what extra structure on an L∞ algebra g
endows the corresponding formal moduli problem with a symplectic form?

In order to answer this question, we first need to understand a little about what it
means to put a shifted symplectic form on a (formal) derived stack.

In the seminal work of Schwarz [Sch93, AKSZ97], a definition of a shifted symplectic
form on a dg manifold is given. Dg manifolds where an early attempt to develop a theory
of derived geometry. It turns out that dg manifolds are sufficient to capture some aspects
of the modern theory of derived geometry, including formal derived geometry.

In the world of dg manifolds, as in any model of derived geometry, all spaces of ten-
sors are cochain complexes. In particular, the space of i-forms Ωi(M) on a dg manifold is
a cochain complex. The differential on this cochain complex is called the internal differen-
tial on i-forms. In addition to the internal differential, there is also a de Rham differential
ddR : Ωi(M) → Ωi+1(M) which is a cochain map. Schwarz defined a symplectic form
on a dg manifold M to be a two-form ω which is both closed in the differential on the
complex of two-forms, and which is also closed under the de Rham differential mapping
two-forms to three-forms. A symplectic form is also required to be non-degenerate. The
symplectic two-form ω will have some cohomological degree, which for the case relevant
to the BV formalsim is −1.

Following these ideas, Pantev et al. [PTVV11] give a definition of (shifted) symplectic
structure in the more modern language of derived stacks. In this approach, instead of
asking that the two-form defining the symplectic structure be closed both in the internal
differential on two-forms and closed under the de Rham differential, one constructs a
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double complex

Ω≥2 = Ω2 → Ω3[−1]→ . . .

as the subcomplex of the de Rham complex consisting of 2 and higher forms. One then
looks for an element of this double complex which is closed under the total differential
(the sum of the de Rham differential and the internal differential on each space of k-forms)
and whose 2-form component is non-degenerate in a suitable sense.

However, it turns out that, in the case of formal derived stacks, the definition given by
Schwarz and that given by Pantev et al. coincides. One can also show that in this situation
there is a Darboux lemma, showing that we can take the symplectic form to have constant
coefficients. In order to explain what we mean by this, let us explain how to understand
forms on a formal derived stack in terms of the associated L∞-algebra.

Given a pointed formal moduli problem M, the associated L∞ algebra gM has the
property that

gM = TpM[−1].

Further, we can identify geometric objects onM in terms of gM as follows.

C∗(gM) the algebra O(M) of functions onM
gM-modules OM-modules
C∗(gM, V) the OM-module corresponding to the gM-module V

the gM-module gM[1] TM

Following this logic, we see that the complex of 2-forms onM is identified with C∗(gM,∧2(g∨M[−1])).

As we have seen, according to Schwarz, a symplectic form onM is a two-form onM
which is closed for both the internal and de Rham differentials. Any constant-coefficient
two-form is automatically closed under the de Rham differential. A constant-coefficient
two-form of degree k is an element of Sym2(gM)∨ of cohomological degree k − 2, i.e.
a symmetric pairing on gM of this degree. Such a two-form is closed for the internal
differential if and only if it is invariant.

To give a formal pointed moduli problem with a symplectic form of cohomological
degree k is the same as to give an L∞ algebra with an invariant and non-degenerate pairing
of cohomological degree k− 2.

Thus, we find that constant coefficient symplectic two-forms of degree k on M are
precisely the same as non-degenerate symmetric invariant pairings on gM. The relation
between derived symplectic geometry and invariant pairings on Lie algebras was first
developed by Kontsevich [Kon93].

The following formal Darboux lemma makes this relationship into an equivalence.
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5.2.0.1 Lemma. Let g be a finite-dimensional L∞ algebra. Then, k-shifted symplectic structures
on the formal derived stack Bg (in the sense of Pantev et al.) are the same as symmetric invariant
non-degenerate pairings on g of cohomological degree k− 2.

The proof is a little technical, and appears in an appendix ??. The proof of a closely
related statement in a non-commutative setting was given by Kontsevich and Soibelman
[KS06]. In the statement of the lemma, “the same” means that simplicial sets parametriz-
ing the two objects are canonically equivalent.

Following this idea, we will define a classical field theory to be an elliptic L∞ algebra
equipped with a non-degenerate invariant pairing of cohomological degree −3. Let us
first define what it means to have an invariant pairing on an elliptic L∞ algebra.

5.2.0.2 Definition. Let M be a manifold, and let E be an elliptic L∞ algebra on M. An invariant
pairing on E of cohomological degree k is a symmetric vector bundle map

〈−,−〉E : E⊗ E→ Dens(M)[k]

satisfying some additional conditions:

(1) Non-degeneracy: we require that this pairing induces a vector bundle isomorphism

E→ E∨ ⊗Dens(M)[−3].

(2) Invariance: let Ec denotes the space of compactly supported sections of E. The pairing
on E induces an inner product on Ec, defined by

〈−,−〉 : Ec ⊗ Ec → R

α⊗ β→
∫

M
〈α, β〉 .

We require it to be an invariant pairing on the L∞ algebra Ec.

Recall that a symmetric pairing on an L∞ algebra g is called invariant if, for all n, the
linear map

g⊗n+1 → R

α1 ⊗ · · · ⊗ αn+1 7→ 〈ln(α1, . . . , αn), αn+1〉

is graded anti-symmetric in the αi.

5.2.0.3 Definition. A formal pointed elliptic moduli problem with a symplectic form of
cohomological degree k on a manifold M is an elliptic L∞ algebra on M with an invariant
pairing of cohomological degree k− 2.

5.2.0.4 Definition. In the BV formalism, a (perturbative) classical field theory on M is a
formal pointed elliptic moduli problem on M with a symplectic form of cohomological degree −1.
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5.3. The derived critical locus of an action functional

The critical locus of a function f is, of course, the zero locus of the 1-form d f . We are
interested in constructing the derived critical locus of a local functional S ∈ Oloc(BL) on
the formal moduli problem associated to a local L∞ algebra L on a manifold M. Thus,
we need to understand what kind of object the exterior derivative dS of such an action
functional S is.

If g is an L∞ algebra, then we should think of C∗red(g) as the algebra of functions on the
formal moduli problem Bg that vanish at the base point. Similarly, C∗(g, g∨[−1]) should
be the thought of as the space of 1-forms on Bg. The exterior derivative is thus a map

d : C∗red(g)→ C∗(g, g∨[−1]),

namely the universal derivation.

We will define a similar exterior derivative for a local Lie algebra L on M. The analog
of g∨ is the L-module L!, whose sections are (up to completion) the Verdier dual of the
sheaf L. Thus, our exterior derivative will be a map

d : Oloc(BL)→ C∗loc(L,L![−1]).

Recall that Oloc(BL) denotes the subcomplex of C∗red(Lc(M)) consisting of local func-
tionals. The exterior derivative for the L∞ algebra Lc(M) is a map

d : C∗red(Lc(M))→ C∗(Lc(M),Lc(M)∨[−1]).

Note that the dual Lc(M)∨ of Lc(M) is the space L!
(M) of distributional sections of the

bundle L! on M. Thus, the exterior derivative is a map

d : C∗red(Lc(M))→ C∗(Lc(M),L!
(M)[−1]).

Note that
C∗loc(L,L![−1]) ⊂ C∗(Lc(M),L!(M)) ⊂ C∗(Lc(M),L!

(M)).

We will now show that d preserves locality and more.

5.3.0.1 Lemma. The exterior derivative takes the subcomplex Oloc(BL) of C∗red(Lc(M)) to the

subcomplex C∗loc(L,L![−1]) of C∗(Lc(M),L!
(M)).

PROOF. The content of this lemma is the familiar statement that the Euler-Lagrange
equations associated to a local action functional are differential equations. We will give a
formal proof, but the reader will see that we only use integration by parts.

Any functional
F ∈ Oloc(BL)
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can be written as a sum F = ∑ Fn where

Fn ∈ DensM⊗DM HomC∞
M

(
J(L)⊗n, C∞

M
)

Sn
.

Any such Fn can be written as a finite sum

Fn = ∑
i

ωDi
1 . . . Di

n

where ω is a section of DensM and Di
j are differential operators from L to C∞

M. (The nota-
tion ωDi

1 . . . Di
n means simply to multiply the density ω by the outputs of the differential

operators, which are smooth functions.)

If we view F ∈ O(Lc(M)), then the nth Taylor component of F is the linear map

Lc(M)⊗n → R

defined by

φ1 ⊗ · · · ⊗ φn →∑
i

∫
M

ω(Di
1φ1) . . . (Di

nφn).

Thus, the (n− 1)th Taylor component of dF is given by the linear map

dFn : Lc(M)⊗n−1 → L!
(M) = Lc(M)∨

φ1 ⊗ · · · ⊗ φn−1 ∑
i
7→ ω(Di

1φ1) . . . (Di
n−1φn−1)Di

n(−) + symmetric terms

where the right hand side is viewed as a linear map from Lc(M) to R. Now, by integration
by parts, we see that

(dFn)(φ1, . . . , φn−1)

is in the subspace L!(M) ⊂ L!
(M) of smooth sections of the bundle L!(M), inside the

space of distributional sections.

It is clear from the explicit expressions that the map

dFn : Lc(M)⊗n−1 → L!(M)

is a polydifferential operator, and so defines an element of C∗loc(L,L![−1]) as desired. �

5.3.1. Field theories from action functionals. Physicists normally think of a classical
field theory as being associated to an action functional. In this section we will show how
to construct a classical field theory in our sense from an action functional.

We will work in a very general setting. Recall (section 4.1.3) that we defined a local L∞
algebra on a manifold M to be a sheaf of L∞ algebras where the structure maps are given
by differential operators. We will think of a local L∞ algebra L on M as defining a formal
moduli problem cut out by some differential equations. We will use the notation BL to
denote this formal moduli problem.
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We want to take the derived critical locus of a local action functional

S ∈ Oloc(BL)
of cohomological degree 0. (We also need to assume that S is at least quadratic: this
condition insures that the base-point of our formal moduli problem BL is a critical point
of S). We have seen (section 5.3) how to apply the exterior derivative to a local action
functional S yields an element

dS ∈ C∗loc(L,L![−1]),

which we think of as being a local 1-form on BL.

The critical locus of S is the zero locus of dS. We thus need to explain how to construct
a new local L∞ algebra that we interpret as being the derived zero locus of dS.

5.3.2. Finite dimensional model. We will first describe the analogous construction in
finite dimensions. Let g be an L∞ algebra, M be a g-module of finite total dimension, and
α be a closed, degree zero element of C∗red(g, M). The subscript red indicates that we are
taking the reduced cochain complex, so that α is in the kernel of the augmentation map
C∗(g, M)→ M.

We think of M as a dg vector bundle on the formal moduli problem Bg, and so α is
a section of this vector bundle. The condition that α is in the reduced cochain complex
translates into the statement that α vanishes at the basepoint of Bg. We are interested in
constructing the L∞ algebra representing the zero locus of α.

We start by writing down the usual Koszul complex associated to a section of a vector
bundle. In our context, the commutative dg algebra representing this zero locus of α is
given by the total complex of the double complex

· · · → C∗(g,∧2M∨) ∨α−→ C∗(g, M∨) ∨α−→ C∗(g).

In words, we have written down the symmetric algebra on the dual of g[1]⊕ M[−1]. It
follows that this commutative dg algebra is the Chevalley-Eilenberg cochain complex of
g⊕M[−2], equipped with an L∞ structure arising from the differential on this complex.

Note that the direct sum g ⊕ M[−2] (without a differential depending on α) has a
natural semi-direct product L∞ structure, arising from the L∞ structure on g and the action
of g on M[−2]. This L∞ structure corresponds to the case α = 0.

5.3.2.1 Lemma. The L∞ structure on g⊕M[−2] describing the zero locus of α is a deformation
of the semidirect product L∞ structure, obtained by adding to the structure maps ln the maps

Dnα : g⊗n → M

X1 ⊗ · · · ⊗ Xn 7→
∂

∂X1
. . .

∂

∂Xn
α.
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This is a curved L∞ algebra unless the section α vanishes at 0 ∈ g.

PROOF. The proof is a straightforward computation. �

Note that the maps Dnα in the statement of the lemma are simply the homogeneous
components of the cochain α.

We will let Z(α) denote g⊕M[−2], equipped with this L∞ structure arising from α.

Recall that the formal moduli problem Bg is the functor from dg Artin rings (R, m) to
simplicial sets, sending (R, m) to the simplicial set of Maurer-Cartan elements of g⊗ m.
In order to check that we have constructed the correct derived zero locus for α, we should
describe the formal moduli problem associated Z(α).

Thus, let (R, m) be a dg Artin ring, and x ∈ g ⊗ m be an element of degree 1, and
y ∈ M⊗m be an element of degree −1. Then (x, y) satisfies the Maurer-Cartan equation
in Z(α) if and only if

(1) x satisfies the Maurer-Cartan equation in g⊗m and
(2) α(x) = dxy ∈ M, where

dx = dy + µ1(x, y) + 1
2! µ2(x, x, y) + · · · : M→ M

is the differential obtained by deforming the original differential by that arising
from the Maurer-Cartan element x. (Here µn : g⊗n ⊗ M → M are the action
maps.)

In other words, we see that an R-point of BZ(α) is both an R-point x of Bg and a homotopy
between α(x) and 0 in the fiber Mx of the bundle M at x ∈ Bg. The fibre Mx is the cochain
complex M with differential dx arising from the solution x to the Maurer-Cartan equation.
Thus, we are described the homotopy fiber product between the section α and the zero
section in the bundle M, as desired.

Let us make thigs

5.3.3. The derived critical locus of a local functional. Let us now return to the situ-
ation where L is a local L∞ algebra on a manifold M and S ∈ O(BL) is a local functional
that is at least quadratic. Let

dS ∈ C∗loc(L,L![−1])
denote the exterior derivative of S. Note that dS is in the reduced cochain complex, i.e.
the kernel of the augmentation map C∗loc(L,L![−1])→ L![−1].

Let
dnS : L⊗n → L!
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be the nth Taylor component of dS. The fact that dS is a local cochain means that dnS is a
polydifferential operator.

5.3.3.1 Definition. The derived critical locus of S is the local L∞ algebra obtained by adding
the maps

dnS : L⊗n → L!

to the structure maps ln of the semi-direct product L∞ algebra L ⊕ L![−3]. We denote this local
L∞ algebra by Crit(S).

If (R, m) is an auxiliary Artinian dg ring, then a solution to the Maurer-Cartan equa-
tion in Crit(S)⊗m consists of the following data:

(1) a Maurer-Cartan element x ∈ L⊗m and
(2) an element y ∈ L! ⊗m such that

(dS)(x) = dxy.

Here dxy is the differential on L!⊗m induced by the Maurer-Cartan element x. These two
equations say that x is an R-point of BL that satisfies the Euler-Lagrange equations up to
a homotopy specified by y.

5.3.4. Symplectic structure on the derived critical locus. Recall that a classical field
theory is given by a local L∞ algebra that is elliptic and has an invariant pairing of degree
−3. The pairing on the local L∞ algebra Crit(S) constructed above is evident: it is given
by the natural bundle isomorphism

(L⊕ L![−3])![−3] ∼= L![−3]⊕ L.

In other words, the pairing arises, by a shift, from the natural bundle map L ⊗ L! →
DensM .

5.3.4.1 Lemma. This pairing on Crit(S) is invariant.

PROOF. The original L∞ structure on L⊕L![−3] (that is, the L∞ structure not involv-
ing S) is easily seen to be invariant. We will verify that the deformation of this structure
coming from S is also invariant.

We need to show that if

α1, . . . , αn+1 ∈ Lc ⊕L!
c[−3]

are compactly supported sections of L⊕ L1[−3], then

〈ln(α1, . . . , αn), αn+1〉
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is totally antisymmetric in the variables αi. Now, the part of this expression that comes
from S is just (

∂

∂α1
. . .

∂

∂αn+1

)
S(0).

The fact that partial derivatives commute — combined with the shift in grading due to
C∗(Lc) = O(Lc[1]) — immediately implies that this term is totally antisymmetric. �

Note that, although the local L∞ algebra Crit(S) always has a symplectic form, it does
not always define a classical field theory, in our sense. To be a classical field theory, we
also require that the local L∞ algebra Crit(S) is elliptic.

5.4. A succinct definition of a classical field theory

We defined a classical field theory to be a formal elliptic moduli problem equipped
with a symplectic form of degree −1. In this section we will rewrite this definition in a
more concise (but less conceptual) way. This version is included largely for consistency
with [Cos11b] — where the language of elliptic moduli problems is not used — and for
ease of reference when we discuss the quantum theory.

5.4.0.1 Definition. Let E be a graded vector bundle on a manifold M. A degree −1 symplectic
structure on E is an isomorphism of graded vector bundles

φ : E ∼= E![−1]

that is anti-symmetric, in the sense that φ∗ = −φ where φ∗ is the formal adjoint of φ.

Note that if L is an elliptic L∞ algebra on M with an invariant pairing of degree −3,
then the graded vector bundle L[1] on M has a−1 symplectic form. Indeed, by definition,
L is equipped with a symmetric isomorphism L ∼= L![−3], which becomes an antisym-
metric isomorphism L[1] ∼= (L[1])![−1].

Note also that the tangent space at the basepoint to the formal moduli problem BL
associated to L is L[1] (equipped with the differential induced from that on L). Thus, the
algebra C∗(L) of cochains of L is isomorphic, as a graded algebra without the differential,
to the algebra O(L[1]) of functionals on L[1].

Now suppose that E is a graded vector bundle equipped with a −1 symplectic form.
Let Oloc(E ) denote the space of local functionals on E , as defined in section 4.5.1.

5.4.0.2 Proposition. For E a graded vector bundle equipped with a −1 symplectic form, let
Oloc(E ) denote the space of local functionals on E . Then we have the following.

(1) The symplectic form on E induces a Poisson bracket on Oloc(E ), of degree +1.
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(2) Equipping E[−1] with a local L∞ algebra structure compatible with the given pairing on
E[−1] is equivalent to picking an element S ∈ Oloc(E ) that has cohomological degree 0,
is at least quadratic, and satisfies the classical master equation

{S, S} = 0.

PROOF. Let L = E[−1]. Note that L is a local L∞ algebra, with the zero differential and
zero higher brackets (i.e., a totally abelian L∞ algebra). We write Oloc(BL) or C∗red,loc(L) for
the reduced local cochains of L. This is a complex with zero differential which coincides
with Oloc(E ).

We have seen that the exterior derivative (section 5.3) gives a map

d : Oloc(E ) = Oloc(BL)→ C∗loc(L,L![−1]).

Note that the isomorphism
L ∼= L![−3]

gives an isomorphism
C∗loc(L,L![−1]) ∼= C∗loc(L,L[2]).

Finally, C∗loc(L,L[2]) is the L∞ algebra controlling deformations of L as a local L∞ alge-
bra. It thus remains to verify that Oloc(BL) ⊂ C∗loc(L,L[2]) is a sub L∞ algebra, which is
straightforward. �

Note that the finite-dimensional analog of this statement is simply the fact that on a
formal symplectic manifold, all symplectic derivations (which correspond, after a shift, to
deformations of the formal symplectic manifold) are given by Hamiltonian functions, de-
fined up to the addition of an additive constant. The additive constant is not mentioned in
our formulation because Oloc(E ), by definition, consists of functionals without a constant
term.

Thus, we can make a concise definition of a field theory.

5.4.0.3 Definition. A pre-classical field theory on a manifold M consists of a graded vector
bundle E on M, equipped with a symplectic pairing of degree −1, and a local functional

S ∈ Oloc(Ec(M))

of cohomological degree 0, satisfying the following properties.

(1) S satisfies the classical master equation {S, S} = 0.
(2) S is at least quadratic (so that 0 ∈ Ec(M) is a critical point of S).

In this situation, we can write S as a sum (in a unique way)

S(e) = 〈e, Qe〉+ I(e)
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where Q : E → E is a skew self-adjoint differential operator of cohomological degree 1
and square zero.

5.4.0.4 Definition. A pre-classical field is a classical field theory if the complex (E , Q) is ellip-
tic.

There is one more property we need of a classical field theories in order to be apply
the quantization machinery of [Cos11b].

5.4.0.5 Definition. A gauge fixing operator is a map

QGF : E (M)→ E (M)

that is a differential operator of cohomological degree −1 such that (QGF)2 = 0 and

[Q, QGF] : E (M)→ E (M)

is a generalized Laplacian in the sense of [BGV92].

The only classical field theories we will try to quantize are those that admit a gauge
fixing operator. Thus, we will only consider classical field theories which have a gauge
fixing operator. An important point which will be discussed at length in the chapter on
quantum field theory is the fact that the observables of the quantum field theory are inde-
pendent (up to homotopy) of the choice of gauge fixing condition.

5.5. Examples of field theories from action functionals

Let us now give some basic examples of field theories arising as the derived critical
locus of an action functional. We will only discuss scalar field theories in this section.

Let (M, g) be a Riemannian manifold. Let R be the trivial line bundle on M and DensM
the density line bundle. Note that the volume form dVolg provides an isomorphism be-
tween these line bundles. Let

S(φ) = 1
2

∫
M

φ D φ

denote the action functional for the free massless field theory on M. Here D is the Lapla-
cian on M, viewed as a differential operator from C∞(M) to Dens(M), so Dφ = (∆gφ)dVolg.

The derived critical locus of S is described by the elliptic L∞ algebra

L = C∞(M)[−1] D−→ Dens(M)[−2]

where Dens(M) is the global sections of the bundle of densities on M. Thus, C∞(M) is
situated in degree 1, and the space Dens(M) is situated in degree 2. The pairing between
Dens(M) and C∞(M) gives the invariant pairing on L, which is symmetric of degree −3
as desired.
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5.5.1. Interacting scalar field theories. Next, let us write down the derived critical
locus for a basic interacting scalar field theory, given by the action functional

S(φ) = 1
2

∫
M

φ D φ + 1
4!

∫
M

φ4.

The cochain complex underlying our elliptic L∞ algebra is, as before,

L = C∞(M)[−1] D−→ Dens(M)[−2].

The interacting term 1
4!

∫
M φ4 gives rise to a higher bracket l3 on L, defined by the map

C∞(M)⊗3 → Dens(M)

φ1 ⊗ φ2 ⊗ φ3 7→ φ1φ2φ3dVolg.

Let (R, m) be a nilpotent Artinian ring, concentrated in degree 0. Then a section of
φ ∈ C∞(M)⊗m satisfies the Maurer-Cartan equation in this L∞ algebra if and only if

D φ + 1
3! φ

3dVol = 0.

Note that this is precisely the Euler-Lagrange equation for S. Thus, the formal moduli
problem associated to L is, as desired, the derived version of the moduli of solutions to
the Euler-Lagrange equations for S.

5.6. Cotangent field theories

We have defined a field theory to be a formal elliptic moduli problem equipped with
a symplectic form of degree −1. In geometry, cotangent bundles are the basic examples
of symplectic manifolds. We can apply this construction in our setting: given any elliptic
moduli problem, we will produce a new elliptic moduli problem – its shifted cotangent
bundle – that has a symplectic form of degree −1. We call the field theories that arise
by this construction cotangent field theories. It turns out that a surprising number of field
theories of interest in mathematics and physics arise as cotangent theories, including,
for example, both the A- and the B-models of mirror symmetry and their half-twisted
versions.

We should regard cotangent field theories as the simplest and most basic class of non-
linear field theories, just as cotangent bundles are the simplest class of symplectic man-
ifolds. One can show, for example, that the phase space of a cotangent field theory is
always an (infinite-dimensional) cotangent bundle, whose classical Hamiltonian function
is linear on the cotangent fibers.
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5.6.1. The cotangent bundle to an elliptic moduli problem. Let L be an elliptic L∞
algebra on a manifold X, and letML be the associated elliptic moduli problem.

Let L! be the bundle L∨ ⊗Dens(X). Note that there is a natural pairing between com-
pactly supported sections of L and compactly supported sections of L!.

Recall that we use the notation L to denote the space of sections of L. Likewise, we
will let L! denote the space of sections of L!.

5.6.1.1 Definition. Let T∗[k]BL denote the elliptic moduli problem associated to the elliptic L∞
algebra L⊕L![k− 2].

This elliptic L∞ algebra has a pairing of cohomological degree k− 2.

The L∞ structure on the space L ⊕ L![k− 2] of sections of the direct sum bundle L⊕
L![k− 2] arises from the natural L-module structure on L!.

5.6.1.2 Definition. LetM = BL be an elliptic moduli problem corresponding to an elliptic L∞
algebra L. Then the cotangent field theory associated toM is the −1-symplectic elliptic moduli
problem T∗[−1]M, whose elliptic L∞ algebra is L⊕L![−3].

5.6.2. Examples. In this section we will list some basic examples of cotangent theo-
ries, both gauge theories and nonlinear sigma models.

In order to make the discussion more transparent, we will not explicitly describe the
elliptic L∞ algebra related to every elliptic moduli problem we describe. Instead, we may
simply define the elliptic moduli problem in terms of the geometric objects it classifies. In
all examples, it is straightforward using the techniques we have discussed so far to write
down the elliptic L∞ algebra describing the formal neighborhood of a point in the elliptic
moduli problems we will consider.

5.6.3. Self-dual Yang-Mills theory. Let X be an oriented 4-manifold equipped with
a conformal class of a metric. Let G be a compact Lie group. Let M(X, G) denote the
elliptic moduli problem parametrizing principal G-bundles on X with a connection whose
curvature is self-dual.

Then we can consider the cotangent theory T∗[−1]M(X, G). This theory is known in
the physics literature as self-dual Yang-Mills theory.

Let us describe the L∞ algebra of this theory explicitly. Observe that the elliptic L∞
algebra describing the completion ofM(X, G) near a point (P,∇) is

Ω0(X, gP)
d∇−→ Ω1(X, gP)

d−−→ Ω2
−(X, gP)
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where gP is the adjoint bundle of Lie algebras associated to the principal G-bundle P. Here
d− denotes the connection followed by projection onto the anti-self-dual 2-forms.

Thus, the elliptic L∞ algebra describing T∗[−1]M is given by the diagram

Ω0(X, gP)
d∇−→ Ω1(X, gP)

d−−→ Ω2
−(X, gP)

⊕ ⊕
Ω2
−(X, gP)

d∇−→ Ω3(X, gP)
d∇−→ Ω4(X, gP)

This is a standard presentation of the fields of self-dual Yang-Mills theory in the BV for-
malism (see [CCRF+98] and [Cos11b]). Note that it is, in fact, a dg Lie algebra, so there
are no nontrivial higher brackets.

Ordinary Yang-Mills theory arises as a deformation of the self-dual theory. One sim-
ply deforms the differential in the diagram above by including a term that is the identity
from Ω2

−(X, gP) in degree 1 to the copy of Ω2
−(X, gP) situated in degree 2.

5.6.4. The holomorphic σ-model. Let E be an elliptic curve and let X be a com-
plex manifold. Let M(E, X) denote the elliptic moduli problem parametrizing holo-
morphic maps from E → X. As before, there is an associated cotangent field theory
T∗[−1]M(E, X). (In [Cos11a] it is explained how to describe the formal neighborhood of
any point in this mapping space in terms of an elliptic L∞ algebra on E.)

In [Cos10], this field theory was called a holomorphic Chern-Simons theory, because
of the formal similarities between the action functional of this theory and that of the holo-
morphic Chern-Simons gauge theory. In the physics literature ([Wit05], [Kap05]) this the-
ory is known as the twisted (0, 2) supersymmetric sigma model, or as the curved β− γ
system.

This theory has an interesting role in both mathematics and physics. For instance, it
was shown in [Cos10, Cos11a] that the partition function of this theory (at least, the part
which discards the contributions of non-constant maps to X) is the Witten genus of X.

5.6.5. Twisted supersymmetric gauge theories. Of course, there are many more ex-
amples of cotangent theories, as there are very many elliptic moduli problems. In [Cos13],
it is shown how twisted versions of supersymmetric gauge theories can be written as
cotangent theories. We will focus on holomorphic (or minimal) twists. Holomorphic
twists are richer than the more well-studied topological twists, but contain less informa-
tion than the full untwisted supersymmetric theory. As explained in [Cos13], one can
obtain topological twists from holomorphic twists by applying a further twist.

The most basic example is the twisted N = 1 field theory. If X is a complex surface
and G is a complex Lie group, then the N = 1 twisted theory is simply the cotangent
theory to the elliptic moduli problem of holomorphic principal G-bundles on X. If we fix
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a principal G-bundle P → X, then the elliptic L∞ algebra describing this formal moduli
problem near P is

Ω0,∗(X, gP),
where gP is the adjoint bundle of Lie algebras associated to P. It is a classic result of
Kodaira and Spencer that this dg Lie algebra describes deformations of the holomorphic
principal bundle P.

The cotangent theory to this elliptic moduli problem is thus described by the elliptic
L∞ algebra

Ω0,∗(X, gP ⊕ g∨P ⊗ KX[−1].).
Note that KX denotes the canonical line bundle, which is the appropriate holomorphic
substitute for the smooth density line bundle.

5.6.6. The twisted N = 2 theory. Twisted versions of gauge theories with more su-
persymmetry have similar descriptions, as is explained in [Cos13]. The N = 2 theory is
the cotangent theory to the elliptic moduli problem for holomorphic G-bundles P → X
together with a holomorphic section of the adjoint bundle gP. The underlying elliptic L∞
algebra describing this moduli problem is

Ω0,∗(X, gP + gP[−1]).

Thus, the cotangent theory has

Ω0,∗(X, gP + gP[−1]⊕ g∨P ⊗ KX ⊕ g∨P ⊗ KX[−1])

for its elliptic L∞ algebra.

5.6.7. The twisted N = 4 theory. Finally, we will describe the twisted N = 4 the-
ory. There are two versions of this twisted theory: one used in the work of Vafa-Witten
[VW94] on S-duality, and another by Kapustin-Witten [KW06] in their work on geometric
Langlands. Here we will describe only the latter.

Let X again be a complex surface and G a complex Lie group. Then the twisted N =
4 theory is the cotangent theory to the elliptic moduli problem describing principal G-
bundles P→ X, together with a holomorphic section φ ∈ H0(X, T∗X⊗ gP) satisfying

[φ, φ] = 0 ∈ H0(X, KX ⊗ gP).

Here T∗X is the holomorphic cotangent bundle of X.

The elliptic L∞ algebra describing this is

Ω0,∗(X, gP ⊕ T∗X⊗ gP[−1]⊕ KX ⊗ gP[−2]).

Of course, this elliptic L∞ algebra can be rewritten as

(Ω∗,∗(X, gP), ∂),
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where the differential is just ∂ and does not involve ∂. The Lie bracket arises from ex-
tending the Lie bracket on gP by tensoring with the commutative algebra structure on the
algebra Ω∗,∗(X) of forms on X.

Thus, the corresponding cotangent theory has

Ω∗,∗(X, gP)⊕Ω∗,∗(X, gP)[1]

for its elliptic Lie algebra.



CHAPTER 6

The observables of a classical field theory

So far we have given a definition of a classical field theory, combining the ideas of
derived deformation theory and the classical BV formalism. Our goal in this chapter is
to show that the observables for such a theory do indeed form a commutative factor-
ization algebra, denoted Obscl , and to explain how to equip it with a shifted Poisson
bracket. The first part is straightforward — implicitly, we have already done it! — but the
Poisson bracket is somewhat subtle, due to complications that arise when working with

infinite-dimensional vector spaces. We will exhibit a sub-factorization algebra Õbs
cl

of
Obscl which is equipped with a commutative product and Poisson bracket, and such that

the inclusion map Õbs
cl
→ Obscl is a quasi-isomorphism.

6.1. The factorization algebra of classical observables

We have given two descriptions of a classical field theory, and so we provide the two
descriptions of the associated observables.

Let L be the elliptic L∞ algebra of a classical field theory on a manifold M. Thus, the
associated elliptic moduli problem is equipped with a symplectic form of cohomological
degree −1.

6.1.0.1 Definition. The observables with support in the open subset U is the commutative
dg algebra

Obscl(U) = C∗(L(U)).

The factorization algebra of observables for this classical field theory, denoted Obscl , assigns
the cochain complex Obscl(U) to the open U.

The interpretation of this definition should be clear from the preceding chapters. The
elliptic L∞ algebra L encodes the space of solutions to the Euler-Lagrange equations for
the theory (more accurately, the formal neighborhood of the solution given by the base-
point of the formal moduli problem). Its Chevalley-Eilenberg cochains C∗(L(U)) on the
open U are interpreted as the algebra of functions on the space of solutions over the open
U.

63
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By the results of section ??, we know that this construction is in fact a factorization
algebra.

We often call Obscl simply the classical observables, in contrast to the factorization alge-
bras of some quantization, which we will call the quantum observables.

Alternatively, let E be a graded vector bundle on M, equipped with a symplectic pair-
ing of degree −1 and a local action functional S which satisfies the classical master equa-
tion. As we explained in section 5.4 this data is an alternative way of describing a classicla
field theory. The bundle L whose sections are the local L∞ algebra L is E[−1].

6.1.0.2 Definition. The observables with support in the open subset U is the commutative
dg algebra

Obscl(U) = O(E (U)),

equipped with the differential {S,−}.

The factorization algebra of observables for this classical field theory, denoted Obscl , as-
signs the cochain complex Obscl(U) to the open U.

Recall that the operator {S,−} is well-defined because the bracket with the local func-
tional is always well-defined.

The underlying graded-commutative algebra of Obscl(U) is manifestly the functions
on the fields E (U) over the open set U. The differential imposes the relations between
observables arising from the Euler-Lagrange equations for S. In physical language, we
are giving a cochain complex whose cohomology is the “functions on the fields that are
on-shell.”

It is easy to check that this definition of classical observables coincides with the one in
terms of cochains of the sheaf of L∞-algebras L(U).

6.2. The graded Poisson structure on classical observables

Recall the following definition.

6.2.0.1 Definition. A P0 algebra (in the category of cochain complexes) is a commutative differ-
ential graded algebra together with a Poisson bracket {−,−} of cohomological degree 1, which
satisfies the Jacobi identity and the Leibniz rule.

The main result of this chapter is the following.
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6.2.0.2 Theorem. For any classical field theory (section 5.4) on M, there is a P0 factorization

algebra Õbs
cl

, together with a weak equivalence of commutative factorization algebras.

Õbs
cl ∼= Obscl .

Concretely, Õbs
cl
(U) is built from functionals on the space of solutions to the Euler-

Lagrange equations that have more regularity than the functionals in Obscl(U).

The idea of the definition of the P0 structure is very simple. Let us start with a finite-
dimensional model. Let g be an L∞ algebra equipped with an invariant antisymmetric
element P ∈ g⊗ g of cohomological degree 3. This element can be viewed (according to
the correspondence between formal moduli problems and Lie algebras given in section
4.1) as a bivector on Bg, and so it defines a Poisson bracket on O(Bg) = C∗(g). Concretely,
this Poisson bracket is defined, on the generators g∨[−1] of C∗(g), as the map

g∨ ⊗ g∨ → R

determined by the tensor P.

Now let L be an elliptic L∞ algebra describing a classical field theory. Then the ker-
nel for the isomorphism L(U) ∼= L!(U)[−3] is an element P ∈ L(U) ⊗ L(U), which is
symmetric, invariant, and of degree 3.

We would like to use this idea to define the Poisson bracket on

Obscl(U) = C∗(L(U)).

As in the finite dimensional case, in order to define such a Poisson bracket, we would need
an invariant tensor in L(U)⊗2. The tensor representing our pairing is instead in L(U)⊗2,
which contains L(U)⊗2 as a dense subspace. In other words, we run into a standard
problem in analysis: our construction in finite-dimensional vector spaces does not port
immediately to infinite-dimensional vector spaces.

We solve this problem by finding a subcomplex

Õbs
cl
(U) ⊂ Obscl(U)

such that the Poisson bracket is well-defined on the subcomplex and the inclusion is a
weak equivalence. Up to quasi-isomorphism, then, we have the desired Poisson structure.

6.3. The Poisson structure for free field theories

In this section, we will construct a P0 structure on the factorization algebra of observ-
ables of a free field theory. More precisely, we will construct for every open subset U, a



66 6. THE OBSERVABLES OF A CLASSICAL FIELD THEORY

subcomplex

Õbs
cl
(U) ⊂ Obscl(U)

of the complex of classical observables such that

(1) Õbs
cl

forms a sub-commutative factorization algebra of Obscl ;

(2) the inclusion Õbs
cl
(U) ⊂ Obscl(U) is a weak equivalence of differentiable pro-

cochain complexes for every open set U; and

(3) Õbs
cl

has the structure of P0 factorization algebra.

The complex Obscl(U) consists of a product over all n of certain distributional sections

of a vector bundle on Un. The complex Õbs
cl

is defined by considering instead smooth
sections on Un of the same vector bundle.

Let us now make this definition more precise. Recall that a free field theory is a clas-
sical field theory associated to an elliptic L∞ algebra L that is abelian, i.e., where all the
brackets {ln | n ≥ 2} vanish.

Thus, let L be the graded vector bundle associated to an abelian elliptic L∞ algebra,
and let L(U) be the elliptic complex of sections of L on U. To say that L defines a field
theory means we have a symmetric isomorphism L ∼= L![−3].

Recall (section ??) that we use the notation L(U) to denote the space of distributional
sections of L on U. A lemma of Atiyah-Bott (section ??) shows that the inclusion

L(U) ↪→ L(U)

is a continuous homotopy equivalence of topological cochain complexes.

It follows that the natural map

C∗(L(U)) ↪→ C∗(L(U))

is a cochain homotopy equivalence. Indeed, because we are dealing with an abelian L∞
algebra, the Chevalley-Eilenberg cochains become quite simple:

C∗(L(U)) = Ŝym(L(U)∨[−1]),

C∗(L(U)) = Ŝym(L(U)∨[−1]),

where, as always, the symmetric algebra is defined using the completed tensor product.
The differential is simply the differential on, for instance, L(U)∨ extended as a derivation,
so that we are simply taking the completed symmetric algebra of a complex. The complex
C∗(L(U)) is built from distributional sections of the bundle (L!)�n[−n] on Un, and the
complex C∗(L(U)) is built from smooth sections of the same bundle.
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Note that
L(U)∨ = L!

c(U) = Lc(U)[3].

Thus,

C∗(L(U)) = Ŝym(Lc(U)[2]),

C∗(L(U)) = Ŝym(Lc(U)[2]).

We can define a Poisson bracket of degree 1 on C∗(L(U)) as follows. On the generators
Lc(U)[2], it is defined to be the given pairing

〈−,−〉 : Lc(U)×Lc(U)→ R,

since we can pair smooth sections. This pairing extends uniquely, by the Leibniz rule, to
continuous bilinear map

C∗(L(U))× C∗(L(U))→ C∗(L(U)).

In particular, we see that C∗(L(U)) has the structure of a P0 algebra in the multicategory
of differentiable cochain complexes.

Let us define the modified observables in this theory by

Õbs
cl
(U) = C∗(L(U)).

We have seen that Õbs
cl
(U) is homotopy equivalent to Obscl(U) and that Õbs

cl
(U) has a

P0 structure.

6.3.0.1 Lemma. Obscl(U) has the structure of a P0 factorization algebra.

PROOF. It remains to verify that if U1, . . . , Un are disjoint open subsets of M, each
contained in an open subset W, then the map

Õbs
cl
(U1)× · · · × Õbs

cl
(Un)→ Õbs

cl
(W)

is compatible with the P0 structures. This map automatically respects the commutative

structure, so it suffices to verify that for α ∈ Õbs
cl
(Ui) and β ∈ Õbs

cl
(Uj), where i 6= j,

then

{α, β} = 0 ∈ Õbs
cl
(W).

That this bracket vanishes follows from the fact that if two “linear observables” φ, ψ ∈
Lc(W) have disjoint support, then

〈φ, ψ〉 = 0.

Every Poisson bracket reduces to a sum of brackets between linear terms by applying the
Leibniz rule repeatedly. �
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6.4. The Poisson structure for a general classical field theory

In this section we will prove the following.

6.4.0.1 Theorem. For any classical field theory (section 5.4) on M, there is a P0 factorization

algebra Õbs
cl

, together with a quasi-isomorphism of commutative factorization algebras

Õbs
cl ∼= Obscl .

6.4.1. Functionals with smooth first derivative. For a free field theory, we defined a

subcomplex Õbs
cl

of observables which are built from smooth sections of a vector bundle
on Un, instead of distributional sections as in the definition of Obscl . It turns out that,
for an interacting field theory, this subcomplex of Obscl is not preserved by the differ-
ential. Instead, we have to find a subcomplex built from distributions on Un which are
not smooth but which satisfy a mild regularity condition. We will call also this complex

Õbs
cl

(thus introducing a conflict with the terminology introduced in the case of free field
theories).

Let L be an elliptic L∞ algebra on M that defines a classical field theory. Recall that
the cochain complex of observables is

Obscl(U) = C∗(L(U)),

where L(U) is the L∞ algebra of sections of L on U.

Recall that as a graded vector space, C∗(L(U)) is the algebra of functionals O(L(U)[1])
on the graded vector space L(U)[1]. In the appendix (section B.1), given any graded vec-
tor bundle E on M, we define a subspace

O sm(E (U)) ⊂ O(E (U))

of functionals that have “smooth first derivative”. A function Φ ∈ O(E (U)) is in O sm(E (U))
precisely if

dΦ ∈ O(E (U))⊗ E !
c (U).

(The exterior derivative of a general function in O(E (U)) will lie a priori in the larger space
O(E (U))⊗ E

!
c(U).) The space O sm(E (U)) is a differentiable pro-vector space.

Recall that if g is an L∞ algebra, the exterior derivative maps C∗(g) to C∗(g, g∨[−1]).
The complex C∗sm(L(U)) of cochains with smooth first derivative is thus defined to be
the subcomplex of C∗(L(U)) consisting of those cochains whose first derivative lies in
C∗(L(U),L!

c(U)[−1]), which is a subcomplex of C∗(L(U),L(U)∨[−1]).
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In other words, C∗sm(L(U)) is defined by the fiber diagram

C∗sm(L(U))
d−→ C∗(L(U),L!

c(U)[−1])
↓ ↓

C∗(L(U))
d−→ C∗(L(U),Lc

!
(U)[−1]).

(Note that differentiable pro-cochain complexes are closed under taking limits, so that this
fiber product is again a differentiable pro-cochain complex; more details are provided in
the appendix B.1).

Note that
C∗sm(L(U)) ⊂ C∗(L(U))

is a sub-commutative dg algebra for every open U. Furthermore, as U varies, C∗sm(L(U))
defines a sub-commutative prefactorization algebra of the prefactorization algebra de-
fined by C∗(L(U)).

We define

Õbs
cl
(U) = C∗sm(L(U)) ⊂ C∗(L(U)) = Obscl(U).

The next step is to construct the Poisson bracket.

6.4.2. The Poisson bracket. Because the elliptic L∞ algebra L defines a classical field
theory, it is equipped with an isomorphism L ∼= L![−3]. Thus, we have an isomorphism

Φ : C∗(L(U),L!
c(U)[−1]) ∼= C∗(L(U),Lc(U)[2]).

In the appendix (section B.2), we show that C∗(L(U),L(U)[1]) — which we think of as
vector fields on the formal manifold BL(U) — has a natural structure of a dg Lie algebra
in the multicategory of differentiable pro-cochain complexes. The bracket is, of course, a
version of the bracket of vector fields. Further, C∗(L(U),L(U)[1]) acts on C∗(L(U)) by
derivations. This action is in the multicategory of differentiable pro-cochain complexes:
the map

C∗(L(U),L(U)[1])× C∗(L(U))→ C∗(L(U))

is a smooth bilinear cochain map. We will write Der(C∗(L(U))) for this dg Lie algebra
C∗(L(U),L(U)[1]).

Thus, composing the map Φ above with the exterior derivative d and with the inclu-
sion Lc(U) ↪→ L(U), we find a cochain map

C∗sm(L(U))→ C∗(L(U),Lc(U)[2])→ Der(C∗(L(U)))[1].

If f ∈ C∗sm(L(U)), we will let X f ∈ Der(C∗(L(U))) denote the corresponding derivation.
If f has cohomological degree k, then X f has cohomological degree k + 1.
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If f , g ∈ C∗sm(L(U)) = Õbs
cl
(U), we define

{ f , g} = X f g ∈ Õbs
cl
(U).

This bracket defines a bilinear map

Õbs
cl
(U)× Õbs

cl
(U)→ Õbs

cl
(U).

Note that we are simply adopting the usual formulas to our setting.

6.4.2.1 Lemma. This map is smooth, i.e., a bilinear map in the multicategory of differentiable
pro-cochain complexes.

PROOF. This follows from the fact that the map

d : Õbs
cl
(U)→ Der(C∗(L(U)))[1]

is smooth, which is immediate from the definitions, and from the fact that the map

Der(C∗(L(U))× C∗(L(U))→ C∗(L(U))

is smooth (which is proved in the appendix B.2). �

6.4.2.2 Lemma. This bracket satisfies the Jacobi rule and the Leibniz rule. Further, for U, V

disjoint subsets of M, both contained in W, and for any f ∈ Õbs
cl
(U), g ∈ Õbs

cl
(V), we have

{ f , g} = 0 ∈ Õbs
cl
(W).

PROOF. The proof is straightforward. �

Following the argument for lemma 6.3.0.1, we obtain a P0 factorization algebra.

6.4.2.3 Corollary. Õbs
cl

defines a P0 factorization algebra in the valued in the multicategory of
differentiable pro-cochain complexes.

The final thing we need to verify is the following.

6.4.2.4 Proposition. For all open subset U ⊂ M, the map

Õbs
cl
(U)→ Obscl(U)

is a weak equivalence.
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PROOF. It suffices to show that it is a weak equivalence on the associated graded for

the natural filtration on both sides. Now, Grn Õbs
cl
(U) fits into a fiber diagram

Grn Õbs
cl
(U) //

��

Symn(L!
c(U)[−1])⊗L!

c(U)

��

Grn Obscl(U) // Symn(L!
c(U)[−1])⊗L!

c(U).

Note also that
Grn Obscl(U) = Symn L!

c(U).
The Atiyah-Bott lemma ?? shows that the inclusion

L!
c(U) ↪→ L!

c(U)

is a continuous cochain homotopy equivalence. We can thus choose a homotopy inverse

P : L!
c(U)→ L!

c(U)

and a homotopy

H : L!
c(U)→ L!

c(U)

such that [d, H] = P− Id and such that H preserves the subspace L!
c(U).

Now,

Symn L!
c(U) ⊂ Grn Õbs

cl
(U) ⊂ Symn L!

c(U).
Using the projector P and the homotopy H, one can construct a projector

Pn = P⊗n : L!
c(U)⊗n → L!

c(U)⊗n.

We can also construct a homotopy

Hn : L!
c(U)⊗n → L!

c(U)⊗n.

The homotopy Hn is defined inductively by the formula

Hn = H ⊗ Pn−1 + 1⊗ Hn−1.

This formula defines a homotopy because

[d, Hn] = P⊗ Pn−1 − 1⊗ Pn−1 + 1⊗ Pn−1 − 1⊗ 1.

Notice that the homotopy Hn preserves all the subspaces of the form

L!
c(U)⊗k ⊗L!

c(U)⊗L!
c(U)⊗n−k−1.

This will be important momentarily.

Next, let
π : L!

c(U)⊗n[−n]→ Symn(L!
c(U)[−1])
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be the projection, and let

Γn = π−1 Grn Õbs
cl
(U).

Then Γn is acted on by the symmetric group Sn, and the Sn invariants are Õbscl(U).

Thus, it suffices to show that the inclusion

Γn ↪→ Lc(U)⊗n

is a weak equivalence of differentiable spaces. We will show that it is continuous homo-
topy equivalence.

The definition of Õbs
cl
(U) allows one to identify

Γn = ∩n−1
k=0L

!
c(U)⊗k ⊗L!

c(U)⊗L!
c(U)⊗n−k−1.

The homotopy Hn preserves Γn, and the projector Pn maps

L!
c(U)⊗n → Lc(U)⊗n ⊂ Γn.

Thus, Pn and Hn provide a continuous homotopy equivalence between L!
c(U)⊗n and Γn,

as desired. �



Part 2

Quantum field theory





CHAPTER 7

Introduction to quantum field theory

As explained in the introduction, this book develops a version of deformation quan-
tization for field theories, rather than mechanics. In the chapters on classical field theory,
we showed that the observables of a classical BV theory naturally form a commutative
factorization algebra, with a homotopical P0 structure. In the following chapters, we will
show that every quantization of a classical BV theory produces a factorization algebra (in
Beilinson-Drinfeld algebras) that we call the quantum observables of the quantum field
theory. To be precise, the main theorem of this part is the following.

7.0.0.1 Theorem. Any quantum field theory on a manifold M, in the sense of [Cos11b], gives
rise to a factorization algebra Obsq on M of quantum observables. This is a factorization algebra
over C[[h̄]], valued in differentiable pro-cochain complexes, and it quantizes (in the weak sense of
1.3) the P0 factorization algebra of classical observables of the corresponding classical field theory.

For free field theories, this factorization algebra of quantum observables is essentially
the same as the one discussed in Chapter ??. (The only difference is that, when discussing
free field theories, we normally set h̄ = 1 and took our observables to be polynomial
functions of the fields. When we discuss interacting theories, we take our observables to
be power series on the space of fields, and we take h̄ to be a formal parameter).

Chapter 8 is thus devoted to reviewing the formalism of [Cos11b], stated in a form
most suitable to our purposes here. It’s important to note that, in contrast to the de-
formation quantization of Poisson manifolds, a classical BV theory may not possess any
quantizations (i.e., quantization may be obstructed) or it may have many quantizations.
A central result of [Cos11b], stated in section 8.5, is that there is a space of BV quantiza-
tions. Moreover, this space can be constructed as a tower of fibrations, where the fiber
between any pair of successive layers is described by certain cohomology groups of local
functionals. These cohomology groups can be computed just from the classical theory.

The machinery of [Cos11b] allows one to construct many examples of quantum field
theories, by calculating the appropriate cohomology groups. For example, in [Cos11b],
the quantum Yang-Mills gauge theory is constructed. Theorem 7.0.0.1, together with the
results of [Cos11b], thus produces many interesting examples of factorization algebras.
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Remark: We forewarn the reader that our definitions and constructions involve a heavy
use of functional analysis and (perhaps more surprisingly) simplicial sets, which is our
preferred way of describing a space of field theories. Making a quantum field theory
typically requires many choices, and as mathematicians, we wish to pin down precisely
how the quantum field theory depends on these choices. The machinery we use gives us
very precise statements, but statements that can be forbidding at first sight. We encourage
the reader, on a first pass through this material, to simply make all necessary choices (such
as a parametrix) and focus on the output of our machine, namely the factorization algebra
of quantum observables. Keeping track of the dependence on choices requires careful
bookkeeping (aided by the machinery of simplicial sets) but is straightforward once the
primary construction is understood. ♦

The remainder of this chapter consists of an introduction to the quantum BV formal-
ism, building on our motivation for the classical BV formalism in section 5.1.

7.1. The quantum BV formalism in finite dimensions

In section 5.1, we motivated the classical BV formalism with a finite-dimensional toy
model. To summarize, we described the derived critical locus of a function S on a smooth
manifold M of dimension n. The functions on this derived space O(Crith(S)) form a
commutative dg algebra,

Γ(M,∧nTM)
∨dS−−→ . . . ∨dS−−→ Γ(M,∧2TM)

∨dS−−→ Γ(M, TM)
∨dS−−→ C∞(M),

the polyvector fields PV(M) on M with the differential given by contraction with dS. This
complex remembers how dS vanishes and not just where it vanishes.

The quantum BV formalism uses a deformation of this classical BV complex to encode,
in a homological way, oscillating integrals.

In finite dimensions, there already exists a homological approach to integration: the
de Rham complex. For instance, on a compact, oriented n-manifold without boundary,
M, we have the commuting diagram

Ωn(M)

∫
M //

[−] %%

R

Hn(M)
〈[M],−〉

<<

where [µ] denotes the cohomology class of the top form µ and 〈[M],−〉 denotes pairing
the class with the fundamental class of M. Thus, integration factors through the de Rham
cohomology.
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Suppose µ is a smooth probability measure, so that
∫

M µ = 1 and µ is everywhere
nonnegative (which depends on the choice of orientation). Then we can interpret the
expected value of a function f on M — an “observable on the space of fields M” — as the
cohomology class [ f µ] ∈ Hn(M).

The BV formalism in finite dimensions secretly exploits this use of the de Rham com-
plex, as we explain momentarily. For an infinite-dimensional manifold, though, the de
Rham complex ceases to encode integration over the whole manifold because there are no
top forms. In contrast, the BV version scales to the infinite-dimensional setting. Infinite
dimensions, of course, introduces extra difficulties to do with the fact that integration in
infinite dimensions is not well-defined. These difficulties manifest themselves as ultra-
violte divergences of quantum field theory, and we deal with them using the techniques
developed in [Cos11b].

In the classical BV formalism, we work with the polyvector fields rather than de Rham
forms. A choice of probability measure µ, however, produces a map between these graded
vector spaces

Γ(M,∧nTM)

∨µ

��

. . . Γ(M,∧2TM)

∨µ

��

Γ(M, TM)

∨µ

��

C∞(M)

∨µ

��
C∞(M) . . . Ωn−2(M) Ωn−1(M) Ωn(M)

where ∨µ simply contracts a k-polyvector field with µ to get a n − k-form. When µ is
nowhere-vanishing (i.e., when µ is a volume form), this map is an isomorphism and so we
can “pull back” the exterior derivative to equip the polyvector fields with a differential.
This differential is usually called the divergence operator for µ, so we denote it divµ.

By the divergence complex for µ, we mean the polyvector fields (concentrated in non-
positive degrees) with differential divµ. Its cohomology is isomorphic, by construction, to
H∗dR(M)[n]. In particular, given a function f on M, viewed as living in degree zero and
providing an “observable,” we see that its cohomology class [ f ] in the divergence com-
plex corresponds to the expected value of f against µ. More precisely, we can define the
ratio [ f ]/[1] as the expected value of f . Under the map ∨µ, it goes to the usual expected
value.

What we’ve done above is provide an alternative homological approach to integration.
More accurately, we’ve shown how “integration against a volume form” can be encoded
by an appropriate choice of differential on the polyvector fields. Cohomology classes in
this divergence complex encode the expected values of functions against this measure.
Of course, this is what we want from the path integral! The divergence complex is the
motivating example for the quantum BV formalism, and so it is also called a quantum BV
complex.
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We can now explain why this approach to homological integration is more suitable
to extension to infinite dimensions than the usual de Rham picture. Even for an infinite-
dimensional manifold M, the polyvector fields are well-defined (although one must make
choices in how to define them, depending on one’s preferences with functional analysis).
One can still try to construct a “divergence-type operator” and view it as the effective
replacement for the probability measure. By taking cohomology classes, we compute
the expected values of observables. The difficult part is making sense of the divergence
operator; this is achieved through renormalization.

This vein of thought leads to a question: how to characterize, in an abstract fashion,
the nature of a divergence operator? An answer leads, as we’ve shown, to a process for
defining a homological path integral. Below, we’ll describe one approach, but first we
examine a simple case.

Remark: The cohomology of the complex (both in the finite and infinite dimensional set-
tings) always makes sense, but H0 is not always one-dimensional. For example, on a
manifold X that is not closed, the de Rham cohomology often vanishes at the top. If the
manifold is disconnected but closed, the top de Rham cohomology has dimension equal
to the number of components of the manifold. In general, one must choose what class
of functions to integrate against the volume form, and the cohomology depends on this
choice (e.g., consider compactly supported de Rham cohomology).

Instead of computing expected values, the cohomology provides relations between
expected values of observables. We will see how the cohomology encodes relations in the
example below. In the setting of conformal field theory, for instance, one often uses such
relations to obtain formulas for the operator product expansion. ♦

7.2. The “free scalar field” in finite dimensions

A concrete example is in order. We will work with a simple manifold, the real line,
equipped with the Gaussian measure and recover the baby case of Wick’s lemma. The
generalization to a finite-dimensional vector space will be clear.

Remark: This example is especially pertinent to us because in this book we are working
with perturbative quantum field theories. Hence, for us, there is always a free field theory
— whose space of fields is a vector space equipped with some kind of Gaussian measure
— that we’ve modified by adding an interaction to the action functional. The underlying
vector space is equipped with a linear pairing that yields the BV Laplacian, as we work
with it. As we will see in this example, the usual BV formalism relies upon the underlying
“manifold” being linear in nature. To extend to a global nonlinear situation, on e needs to
develop new techniques (see, for instance, [Cos11a]). ♦
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Before we undertake the Gaussian measure, let’s begin with the Lebesgue measure dx
on R. This is not a probability measure, but it is nowhere-vanishing, which is the only
property necessary to construct a divergence operator. In this case, we compute

divLeb : f
∂

∂x
7→ ∂ f

∂x
.

In one popular notion, we use ξ to denote the vector field ∂/∂x, and the polyvector fields
are then C∞(R)[ξ], where ξ has cohomological degree −1. The divergence operator be-
comes

divLeb =
∂

∂x
∂

∂ξ
,

which is also the standard example of the BV Laplacian4. (In short, the usual BV Lapla-
cian on Rn is simply the divergence operator for the Lebesgue measure.) We will use 4
for it, as this notation will continue throughout the book.

It is easy to see, by direct computation or the Poincaré lemma, that the cohomology of
the divergence complex for the Lebesgue measure is simply H−1 ∼= R and H0 ∼= R.

Let µb be the usual Gaussian probability measure on R with variance b:

µb =

√
1

2πb
e−x2/2bdx.

As µ is a nowhere-vanishing probability measure, we obtain a divergence operator

divb : f
∂

∂x
7→ ∂ f

∂x
− x

b
f .

We have
divb = 4+ ∨dS

where S = −x2/2b. Note that this complex is a deformation of the classical BV complex
for S by adding the BV Laplacian4.

This divergence operator preserves the subcomplex of polynomial polyvector fields.
That is, a vector field with polynomial coefficient goes to a polynomial function.

Explicitly, we see

divb

(
xn ∂

∂x

)
= nxn−1 − 1

b
xn+1.

Hence, at the level of cohomology, we see [xn+1] = bn[xn−1]. We have just obtained the
following, by a purely cohomological process.

7.2.0.1 Lemma (Baby case of Wick’s lemma). The expected value of xn with respect to the
Gaussian measure is zero if n odd and bk(2k− 1)(2k− 3) · · · 5 · 3 if n = 2k.
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Since Wick’s lemma appears by this method, it should be clear that one can recover the
usual Feynman diagrammatic expansion. Indeed, the usual arguments with integration
by parts are encoded here by the relations between cohomology classes.

Note that for any function S : R→ R, the volume form eSdx has divergence operator

divS = 4+
∂S
∂x

∂

∂x
,

and using the Schouten bracket {−,−} on polyvector fields, we can write it as

divS = 4+ {S,−}.

The quantum master equation (QME) is the equation div2
S = 0. The classical master equation

(CME) is the equation {S, S} = 0, which just encodes the fact that the differential of the
classical BV complex is square-zero. (In the examples we’ve discussed so far, this property
is immediate, but in many contexts, such as gauge theories, finding such a function S can
be a nontrivial process.)

7.3. An operadic description

Before we provide abstract properties that characterize a divergence operator, we
should recall properties that characterize the classical BV complex. Of course, functions
on the derived critical locus are a commutative dg algebra. Polyvector fields, however,
also have the Schouten bracket — the natural extension of the Lie bracket of vector fields
and functions — which is a Poisson bracket of cohomological degree 1 and which is com-
patible with the differential ∨S = {S,−}. Thus, we introduced the notion of a P0 algebra,
where P0 stands for “Poisson-zero,” in section 2.3. In chapter 6, we showed that the fac-
torization algebra of observables for a classical BV theory have a lax P0 structure.

Examining the divergence complex for a measure of the form eSdx in the preceding
section, we saw that the divergence operator was a deformation of {S,−}, the differential
for the classical BV complex. Moreover, a simple computation shows that a divergence
operator satisfies

div(ab) = (div a)b + (−1)|a|a(div b) + (−1)|a|{a, b}

for any polyvector fields a and b. (This relation follows, under the polyvector-de Rham
isomorphism given by the measure, from the fact that the exterior derivative is a deriva-
tion for the wedge product.) Axiomatizing these two properties, we obtain the notion
of a Beilinson-Drinfeld algebra, discussed in section 2.4. The differential of a BD algebra
possesses many of the essential properties of a divergence operator, and so we view a BD
algebra as a homological way to encode integration on (a certain class of) derived spaces.
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In short, the quantum BV formalism aims to find, for a P0 algebra Acl , a BD algebra Aq

such that Acl = Aq ⊗R[[h̄]] R[[h̄]]/(h̄). We view it as moving from studying functions on
the derived critical locus of some action functional S to the divergence complex for eSDφ.

This motivation for the definition of a BD algebra is complementary to our earlier
motivation, which emphasizes the idea that we simply want to deform from a commu-
tative factorization algebra to a “plain,” or E0, factorization algebra. It grows out of the
path integral approach to quantum field theory, rather than extending to field theory the
deformation quantization approach to mechanics.

For us, the basic situation is a formal moduli spaceMwith−1-symplectic pairing. Its
algebra of functions is a P0 algebra. By a version of the Darboux lemma for formal moduli
spaces, we can identifyM with an L∞ algebra g equipped with an invariant symmetric
pairing. Geometrically, this means the symplectic pairing is translation-invariant and all
the nonlinearity is pushed into the brackets. As the differential d on O(M) respects the
Poisson bracket, we view it as a symplectic vector field of cohomological degree 1, and in
this formal situation, we can find a Hamiltonian function S such that d = {S,−}.

Comparing to our finite-dimensional example above, we are seeing the analog of the
fact that any nowhere-vanishing volume form on Rn can be written as eSdx1 · · ·dxn. The
associated divergence operator looks like 4 + {S,−}, where the BV Laplacian 4 is the
divergence operator for Lebesgue measure.

The translation-invariant Poisson bracket on O(M) also produces a translation-invariant
BV Laplacian4. Quantizing then amounts to finding a function I ∈ h̄O(M)[[h̄]] such that

{S,−}+ {I,−}+ h̄4
is square-zero. In the BV formalism, we call I a “solution to the quantum master equation
for the action S.” As shown in chapter 6 of [Cos11b], we have the following relationship.

7.3.0.1 Proposition. LetM be a formal moduli space with −1-symplectic structure. There is an
equivalence of spaces

{solutions of the QME} ' {BD quantizations}.

7.4. Equivariant BD quantization and volume forms

We now return to our discussion of volume forms and formulate a precise relationship
with BD quantization. This relationship, first noted by Koszul [Kos85], generalizes natu-
rally to the setting of cotangent field theories. In section 10.4, we explain how cotangent
quantizations provide volume forms on elliptic moduli problems.

For a smooth manifold M, there is a special feature of a divergence complex that we
have not yet discussed. Polyvector fields have a natural action of the multiplicative group
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Gm, where functions have weight zero, vector fields have weight −1, and k-vector fields
have weight −k. This action arises because polyvector fields are functions on the shifted
cotangent bundle T∗[−1]M, and there is always a scaling action on the cotangent fibers.

We can make the classical BV complex into a Gm-equivariant P0 algebra, as follows.
Simply equip the Schouten bracket with weight 1 and the commutative product with
weight zero. We now ask for a Gm-equivariant BD quantization.

To make this question precise, we rephrase our observations operadically. Equip the
operad P0 with the Gm action where the commutative product is weight zero and the
Poisson bracket is weight 1. An equivariant P0 algebra is then a P0 algebra with a Gm
action such that the bracket has weight 1 and the product has weight zero. Similarly,
equip the operad BD with the Gm action where h̄ has weight −1, the product has weight
zero, and the bracket has weight 1. A filtered BD algebra is a BD algebra with a Gm action
with the same weights.

Given a volume form µ on M, the h̄-weighted divergence complex

(PV(M)[[h̄]], h̄ divµ)

is a filtered BD algebra.

On an smooth manifold, we saw that each volume form µ produced a divergence
operator divµ, via “conjugating” the exterior derivative d by the isomorphism ∨µ. In fact,
any rescaling cµ, with c ∈ R×, produces the same divergence operator. Since we want
to work with probability measures, this fact meshes well with our objectives: we would
always divide by the integral

∫
X µ anyway. In fact, one can show that every filtered BD

quantization of the P0 algebra PV(M) arises in this way.

7.4.0.1 Proposition. There is a bijection between projective volume forms on M, and filtered BV
quantizations of PV(M).

See [Cos11a] for more details on this.

7.5. How renormalization group flow interlocks with the BV formalism

So far, we have introduced the quantum BV formalism in the finite dimensional set-
ting and extracted the essential algebraic structures. Applying these ideas in the setting
of field theories requires nontrivial work. Much of this work is similar in flavor to our
construction of a lax P0 structure on Obscl : issues with functional analysis block the most
naive approach, but there are alternative approaches, often well-known in physics, that
accomplish our goal, once suitably reinterpreted.
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Here, we build on the approach of [Cos11b]. The book uses exact renormalization
group flow to define the notion of effective field theory and develops an effective version
of the BV formalism. In chapter 8, we review these ideas in detail. We will sketch how
to apply the BV formalism to formal elliptic moduli problems M with −1-symplectic
pairing.

The main problem here is the same as in defining a shifted Poisson structure on the
classical observables: the putative Poisson bracket {−,−}, arising from the symplectic
structure, is well-defined only on a subspace of all observables. As a result, the associated
BV Laplacian4 is also only partially-defined.

To work around this problem, we use the fact that every parametrix Φ for the elliptic
complex underlying M yields a mollified version 4Φ of the BV Laplacian, and hence
a mollified bracket {−,−}Φ. An effective field theory consists of a BD algebra ObsΦ for
every parametrix and a homotopy equivalence for any two parametrices, ObsΦ ' ObsΨ
, satisfying coherence relations. In other words, we get a family of BD algebras over
the space of parametrices. The renormalization group (RG) flow provides the homotopy
equivalences for any pair of parametrices. Modulo h̄, we also get a family Obscl

Φ of P0
algebras over the space of parametrices. The tree-level RG flow produces the homotopy
equivalences modulo h̄.

An effective field theory is a quantization ofM if, in the limit as4Φ goes to4, the P0
algebra goes to the functions O(M) on the formal moduli problem.

The space of parametrices is contractible, so an effective field theory describes just one
BD algebra, up to homotopy equivalence. From the perspective developed thus far, we
interpret this BD algebra as encoding integration overM.

There is another way to interpret this definition, though, that may be attractive. The
RG flow amounts to a Feynman diagram expansion, and hence we can see it as a definition
of functional integration (in particular, flowing from energy scale Λ to Λ′ integrates over
the space of functions with energies between those scales). In [Cos11b], the RG flow is
extended to the setting where the underlying free theory is an elliptic complex, not just
given by an elliptic operator.

7.6. Overview of the rest of this Part

Here is a detailed summary of the chapters on quantum field theory.

(1) In section 9.1 we recall the definition of a free theory in the BV formalism and
construct the factorization algebra of quantum observables of a general free the-
ory, using the factorization envelope construction of section ?? of Chapter ??. This
generalizes the discussion in chapter ??.
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(2) In sections ?? to 8.5 we give an overview of the definition of QFT developed in
[Cos11b].

(3) In section 9.2 we show how the definition of a QFT leads immediately to a con-
struction of a BD algebra of “global observables” on the manifold M, which we
denote Obsq

P(M).
(4) In section 9.3 we start the construction of the factorization algebra associated to

a QFT. We construct a cochain complex Obsq(M) of global observables, which is
quasi-isomorphic to (but much smaller than) the BD algebra Obsq

P(M).
(5) In section 9.5 we construct, for every open subset U ⊂ M, the subspace Obsq(U) ⊂

Obsq(M) of observables supported on U.
(6) Section 9.6 accomplishes the primary aim of the chapter. In it, we prove that the

cochain complexes Obsq(U) form a factorization algebra. The proof of this result
is the most technical part of the chapter.

(7) In section 10.1 we show that translation-invariant theories have translation-invariant
factorization algebras of observables, and we treat the holomorphic situation as
well.

(8) In section 10.4 we explain how to interpret our definition of a QFT in the special
case of a cotangent theory: roughly speaking, a quantization of the cotangent
theory to an elliptic moduli problem yields a locally-defined volume form on the
moduli problem we start with.



CHAPTER 8

Effective field theories and Batalin-Vilkovisky quantization

In this chapter, we will give a summary of the definition of a QFT as developed in
[Cos11b]. We will emphasize the aspects used in our construction of the factorization
algebra associated to a QFT. This means that important aspects of the story there — such
as the concept of renormalizability — will not be mentioned. The introductory chapter of
[Cos11b] is a leisurely exposition of the main physical and mathematical ideas, and we
encourage the reader to examine it before delving into what follows. The approach there
is perturbative and hence has the flavor of formal geometry (that is, geometry with formal
manifolds).

A perturbative field theory is defined to be a family of effective field theories parametrized
by some notion of “scale.” The notion of scale can be quite flexible; the simplest version
is where the scale is a positive real number, the length. In this case, the effective theory
at a length scale L is obtained from the effective theory at scale ε by integrating out over
fields with length scale between ε and L. In order to construct factorization algebras, we
need a more refined notion of “scale,” where there is a scale for every parametrix Φ of
a certain elliptic operator. We denote such a family of effective field theories by {I[Φ]},
where I[Φ] is the “interaction term” in the action functional S[Φ] at “scale” Φ. We always
study families with respect to a fixed free theory.

A local action functional (see section 8.1) S is a real-valued function on the space of
fields such that S(φ) is given by integrating some function of the field and its derivatives
over the base manifold (the “spacetime”). The main result of [Cos11b] states that the
space of perturbative QFTs is the “same size” as the space of local action functionals.
More precisely, the space of perturbative QFTs defined modulo h̄n+1 is a torsor over the
space of QFTs defined modulo h̄n for the abelian group of local action functionals. In
consequence, the space of perturbative QFTs is non-canonically isomorphic to local action
functionals with values in R[[h̄]] (where the choice of isomorphism amounts to choosing
a way to construct counterterms).

The starting point for many physical constructions — such as the path integral —
is a local action functional. However, a naive application of these constructions to such
an action functional yields a nonsensical answer. Many of these constructions do work if,
instead of applying them to a local action functional, they are applied to a family {I[Φ]} of
effective action functionals. Thus, one can view the family of effective action functionals

85
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{I[Φ]} as a quantum version of the local action functional defining classical field theory.
The results of [Cos11b] allow one to construct such families of action functionals. Many
formal manipulations with path integrals in the physics literature apply rigorously to
families {I[Φ]} of effective actions. Our strategy for constructing the factorization algebra
of observables is to mimic path-integral definitions of observables one can find in the
physics literature, but replacing local functionals by families of effective actions.

8.1. Local action functionals

In studying field theory, there is a special class of functions on the fields, known as
local action functionals, that parametrize the possible classical physical systems. Let M
be a smooth manifold. Let E = C∞(M, E) denote the smooth sections of a Z-graded
super vector bundle E on M, which has finite rank when all the graded components are
included. We call E the fields.

Various spaces of functions on the space of fields are defined in the appendix B.1.

8.1.0.1 Definition. A functional F is an element of

O(E ) =
∞

∏
n=0

HomDVS(E
×n, R)Sn .

This is also the completed symmetric algebra of E ∨, where the tensor product is the completed
projective one.

Let Ored(E ) = O(E )/C be the space of functionals on E modulo constants.

Note that every element of O(E ) has a Taylor expansion whose terms are smooth
multilinear maps

E ×n → C.
Such smooth mulitilinear maps are the same as compactly-supported distributional sec-
tions of the bundle (E!)�n on Mn. Concretely, a functional is then an infinite sequence of
vector-valued distributions on powers of M.

The local functionals depend only on the local behavior of a field, so that at each point
of M, a local functional should only depend on the jet of the field at that point. In the
Lagrangian formalism for field theory, their role is to describe the permitted actions, so
we call them local action functionals. A local action functional is the essential datum of a
classical field theory.

8.1.0.2 Definition. A functional F is local if each homogeneous component Fn is a finite sum of
terms of the form

Fn(φ) =
∫

M
(D1φ) · · · (Dnφ) dµ,
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where each Di is a differential operator from E to C∞(M) and dµ is a density on M.

We let
Oloc(E ) ⊂ Ored(E )

denote denote the space of local action functionals modulo constants.

As explained in section 5.4, a classical BV theory is a choice of local action functional S
of cohomological degree 0 such that {S, S} = 0. That is, S must satisfy the classical master
equation.

8.2. The definition of a quantum field theory

In this section, we will give the formal definition of a quantum field theory. The defi-
nition is a little long and somewhat technical. The reader should consult the first chapter
of [Cos11b] for physical motivations for this definition. We will provide some justification
for the definition from the point of view of homological algebra shortly (section 9.2).

8.2.1.

8.2.1.1 Definition. A free BV theory on a manifold M consists of the following data:

(1) a Z-graded super vector bundle π : E→ M that is of finite rank;
(2) a graded antisymmetric map of vector bundles 〈−,−〉loc : E⊗ E → Dens(M) of coho-

mological degree −1 that is fiberwise nondegenerate. It induces a graded antisymmetric
pairing of degree −1 on compactly supported smooth sections Ec of E:

〈φ, ψ〉 =
∫

x∈M
〈φ(x), ψ(x)〉loc;

(3) a square-zero differential operator Q : E → E of cohomological degree 1 that is skew self
adjoint for the symplectic pairing.

In our constructions, we require the existence of a gauge-fixing operator QGF : E → E
with the following properties:

(1) it is a square-zero differential operator of cohomological degree −1 ;
(2) it is self adjoint for the symplectic pairing;
(3) D = [Q, QGF] is a generalized Laplacian on M, in the sense of [BGV92]. This

means that D is an order 2 differential operator whose symbol σ(D), which is an
endomorphism of the pullback bundle p∗E on the cotangent bundle p : T∗M →
M, is

σ(D) = g Idp∗E
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where g is some Riemannian metric on M, viewed as a function on T∗M.

All our constructions vary homotopically with the choice of gauge fixing operator.
In practice, there is a natural contractible space of gauge fixing operators, so that our
constructions are independent (up to contractible choice) of the choice of gauge fixing op-
erator. (As an example of contractibility, if the complex E is simply the de Rham complex,
each metric gives a gauge fixing operator d∗. The space of metrics is contractible.)

8.2.2. Operators and kernels. Let us recall the relationship between kernels and op-
erators on E . Any continuous linear map F : Ec → E can be represented by a kernel

KF ∈ D(M2, E� E!).

Here D(M,−) denotes distributional sections. We can also identify this space as

D(M2, E� E!) = HomDVS(E
!

c × Ec, C)

= HomDVS(Ec, E )

= E ⊗̂πE
!
.

Here ⊗̂π denotes the completed projective tensor product.

The symplectic pairing on E gives an isomorphism between E and E
!
[−1]. This allows

us to view the kernel for any continuous linear map F as an element

KF ∈ E ⊗̂πE = HomDVS(E
!

c × E !
c , C)

. If F is of cohomological degree k, then the kernel KF is of cohomological degree k + 1.

If the map F : Ec → E has image in E c and extends to a continuous linear map E → E c,
then the kernel KF has compact support. If F has image in E and extends to a continuous
linear map E c → E , then the kernel KF is smooth.

Our conventions are such that the following hold.

(1) K[Q,F] = QKF, where Q is the total differential on E ⊗̂πE .
(2) Suppose that F : Ec → Ec is skew-symmetric with respect to the degree −1 pair-

ing on Ec. Then KF is symmetric. Similarly, if F is symmetric, then KF is anti-
symmetric.

8.2.3. The heat kernel. In this section we will discuss heat kernels associated to the
generalized Laplacian D = [Q, QGF]. These generalized heat kernels will not be essen-
tial to our story; most of our constructions will work with a general parametrix for the
operator D, and the heat kernel simply provides a convenient example.
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Suppose that we have a free BV theory with a gauge fixing operator QGF. As above,
let D = [Q, QGF]. If our manifold M is compact, then this leads to a heat operator e−tD

acting on sections E . The heat kernel Kt is the corresponding kernel, which is an element
of E ⊗̂πE ⊗̂πC∞(R≥0). Further, if t > 0, the operator e−tD is a smoothing operator, so that
the kernel Kt is in E ⊗̂πE . Since the operator e−tD is skew symmetric for the symplectic
pairing on E , the kernel Kt is symmetric.

The kernel Kt is uniquely characterized by the following properties:

(1) The heat equation:
d
dt

Kt + (D⊗ 1)Kt = 0.

(2) The initial condition that K0 ∈ E ⊗̂πE is the kernel for the identity operator.

On a non-compact manifold M, there is more than one heat kernel satisfying these prop-
erties.

8.2.4. Parametrices. In [Cos11b], two equivalent definitions of a field theory are given:
one based on the heat kernel, and one based on a general parametrix. We will use exclu-
sively the parametrix version in this book.

Before we define the notion of parametrix, we need a technical definition.

8.2.4.1 Definition. If M is a manifold, a subset V ⊂ Mn is proper if all of the projection maps
π1, . . . , πn : V → M are proper. We say that a function, distribution, etc. on Mn has proper
support if its support is a proper subset of Mn.

8.2.4.2 Definition. A parametrix Φ is a distributional section

Φ ∈ E (M)⊗̂πE (M)

of the bundle E� E on M×M with the following properties.

(1) Φ is symmetric under the natural Z/2 action on E (M)⊗̂πE (M).
(2) Φ is of cohomological degree 1.
(3) Φ has proper support.
(4) Let QGF : E → E be the gauge fixing operator. We require that

([Q, QGF]⊗ 1)Φ− KId

is a smooth section of E� E on M×M. Thus,

([Q, QGF]⊗ 1)Φ− KId ∈ E (M)⊗̂πE (M).

(Here KId is the kernel corresponding to the identity operator).
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Remark: For clarity’s sake, note that our definition depends on a choice of QGF. Thus, we
are defining here parametrices for the generalized Laplacian [Q, QGF], not general para-
metrices for the elliptic complex E . ♦

Note that the parametrix Φ can be viewed (using the correspondence between ker-
nels and operators described above) as a linear map AΦ : E → E . This operator is of
cohomological degree 0, and has the property that

AΦ[Q, QGF] = Id+ a smoothing operator

[Q, QGF]AΦ = Id+ a smoothing operator.

This property – being both a left and right inverse to the operator [Q, QGF], up to a smooth-
ing operator – is the standard definition of a parametrix.

An example of a parametrix is the following. For M compact, let Kt ∈ E ⊗̂πE be the
heat kernel. Then, the kernel

∫ L
0 Ktdt is a parametrix, for any L > 0.

It is a standard result in the theory of pseudodifferential operators (see e.g. [Tar87])
that every elliptic operator admits a parametrix. Normally a parametrix is not assumed
to have proper support; however, if Φ is a parametrix satisfying all conditions except that
of proper support, and if f ∈ C∞(M×M) is a smooth function with proper support that
is 1 in a neighborhood of the diagonal, then f Φ is a parametrix with proper support. This
shows that parametrices with proper support always exist.

Let us now list some key properties of parametrices, all of which are consequences of
elliptic regularity.

8.2.4.3 Lemma. (1) If Φ, Ψ are parametrices, then the section Φ− Ψ of the bundle E� E
on M×M is smooth.

(2) Any parametrix Φ is smooth away from the diagonal in M×M.
(3) Any parametrix Φ is such that (Q⊗ 1 + 1⊗ Q)Φ is smooth on all of M × M. (Note

that Q⊗ 1 + 1⊗Q is the natural differential on the space E ⊗̂βE ).

PROOF. We will let Q denote Q⊗ 1 + 1⊗Q, and similarly QGF = QGF ⊗ 1 + 1⊗QGF,
acting on the space E ⊗̂βE . Note that

[Q, QGF] = [Q, QGF]⊗ 1 + 1⊗ [Q, QGF].

(1) Since [Q, QGF](Φ−Ψ) is smooth, and the operator [Q, QGF] is elliptic, this follows
from elliptic regularity.

(2) Away from the diagonal, Φ is annihilated by the elliptic operator [Q, QGF], and
so is smooth.

(3) Note that
[Q, QGF]QΦ = Q[Q, QGF]Φ
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and that [Q, QGF]Φ − 2KId is smooth, where KId is the kernel for the identity
operator. Since QKId = 0, the statement follows.

�

If Φ, Ψ are parametrices, we say that Φ < Ψ if the support of Φ is contained in the
support of Ψ. In this way, parametrices acquire a partial order.

8.2.5. The propagator for a parametrix. In what follows, we will use the notation
Q, QGF, [Q, QGF] for the operators Q⊗ 1 + 1⊗Q, etc.

If Φ is a parametrix, we let

P(Φ) = 1
2 QGFΦ ∈ E ⊗̂πE .

This is the propagator associated to Φ. We let

KΦ = KId −QP(Φ)..

Note that

QP(Φ)) = 1
2 [Q, QGF]Φ−QΦ

= Kid + smooth kernels .

Thus, KΦ is smooth.

An important identity we will often use is that

KΦ − KΨ = QP(Ψ)−QP(Φ).

To relate to section 8.2.3 and [Cos11b], we note that if M is a compact manifold and if

Φ =
∫ L

0
Ktdt

is the parametrix associated to the heat kernel, then

P(Φ) = P(0, L) =
∫ L

0
(QGF ⊗ 1)Ktdt

and

KΦ = KL.
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8.2.6. Classes of functionals. In the appendix B.1 we define various classes of func-
tions on the space Ec of compactly-supported fields. Here we give an overview of those
classes. Many of the conditions seem somewhat technical at first, but they arise naturally
as one attempts both to discuss the support of an observable and to extend the algebraic
ideas of the BV formalism in this infinite-dimensional setting.

We are interested, firstly, in functions modulo constants, which we call Ored(Ec). Every
functional F ∈ Ored(Ec) has a Taylor expansion in terms of symmetric smooth linear maps

Fk : E ×k
c → C

(for k > 0). Such linear maps are the same as distributional sections of the bundle (E!)�k

on Mk. We say that F has proper support if the support of each Fk (as defined above) is
a proper subset of Mk. The space of functionals with proper support is denoted OP(Ec)
(as always in this section, we work with functionals modulo constants). This condition
equivalently means that, when we think of Fk as an operator

E ×k−1
c → E

!
,

it extends to a smooth multilinear map

Fk : E ×k−1 → E
!
.

At various points in this book, we will need to consider functionals with smooth first
derivative, which are functionals satisfying a certain technical regularity constraint. Func-
tionals with smooth first derivative are needed in two places in the text: when we define
the Poisson bracket on classical observables, and when we give the definition of a quan-
tum field theory. In terms of the Taylor components Fk, viewed as multilinear operators
E ×k−1

c → E
!
, this condition means that the Fk has image in E !. (For more detail, see

Appendix ??, section B.1.)

We are interested in the functionals with smooth first derivative and with proper sup-
port. We denote this space by OP,sm(E ). These are the functionals with the property that
the Taylor components Fk, when viewed as operators, give continuous linear maps

E ×k−1 → E !.

8.2.7. The renormalization group flow. Let Φ and Ψ be parametrices. Then P(Φ)−
P(Ψ) is a smooth kernel with proper support.

Given any element
α ∈ E ⊗̂πE = C∞(M×M, E� E)

of cohomological degree 0, we define an operator

∂α : O(E )→ O(E ).
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This map is an order 2 differential operator, which, on components, is the map given by
contraction with α:

α ∨− : Symn E ∨ → Symn−2 E ∨.

The operator ∂α is the unique order 2 differential operator that is given by pairing with α

on Sym2 E ∨ and that is zero on Sym≤1 E ∨.

We define a map

W (α,−) : O+(E )[[h̄]]→ O+(E )[[h̄]]

F 7→ h̄ log
(

eh̄∂α eF/h̄
)

,

known as the renormalization group flow with respect to α. (When α = P(Φ)− P(Ψ), we
call it the RG flow from Ψ to Φ.) This formula is a succinct way of summarizing a Feyn-
man diagram expansion. In particular, W (α, F) can be written as a sum over Feynman
diagrams with the Taylor components Fk of F labelling vertices of valence k, and with α
as propagator. (All of this, and indeed everything else in this section, is explained in far
greater detail in chapter 2 of [Cos11b].) For this map to be well-defined, the functional F
must have only cubic and higher terms modulo h̄. The notation O+(E )[[h̄]] denotes this
restricted class of functionals.

If α ∈ E ⊗̂πE has proper support, then the operator W (α,−) extends (uniquely, of
course) to a continuous (or equivalently, smooth) operator

W (α,−) : O+
P,sm(Ec)[[h̄]]→ O+

P,sm(Ec)[[h̄]].

Our philosophy is that a parametrix Φ is like a choice of “scale” for our field the-
ory. The renormalization group flow relating the scale given by Φ and that given by Ψ is
W (P(Φ)− P(Ψ),−).

Because P(Φ) is not a smooth kernel, the operator W (P(Φ),−) is not well-defined.
This is just because the definition of W (P(Φ),−) involves multiplying distributions. In
physics terms, the singularities that appear when one tries to define W (P(Φ),−) are
called ultraviolet divergences.

However, if I ∈ O+
P,sm(E ), the tree level part

W0 (P(Φ), I) = W ((P(Φ), I) mod h̄

is a well-defined element of O+
P,sm(E ). The h̄ → 0 limit of W (P(Φ), I) is called the tree-

level part because, whereas the whole object W (P(Φ), I) is defined as a sum over graphs,
the h̄ → 0 limit W0 (P(Φ), I) is defined as a sum over trees. It is straightforward to see
that W0 (P(Φ), I) only involves multiplication of distributions with transverse singular
support, and so is well defined.
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8.2.8. The BD algebra structure associated to a parametrix. A parametrix also leads
to a BV operator

4Φ = ∂KΦ : O(E )→ O(E ).
Again, this operator preserves the subspace OP,sm(E ) of functions with proper support
and smooth first derivative. The operator4Φ commutes with Q, and it satisfies (4Φ)

2 =
0. In a standard way, we can use the BV operator 4Φ to define a bracket on the space
O(E ), by

{I, J}Φ = 4Φ(I J)− (4Φ I)J − (−1)|I| I4Φ J.

This bracket is a Poisson bracket of cohomological degree 1. If we give the graded-
commutative algebra O(E )[[h̄]] the standard product, the Poisson bracket {−,−}Φ, and
the differential Q + h̄4Φ, then it becomes a BD algebra.

The bracket {−,−}Φ extends uniquely to a continuous linear map

OP(E )×O(E )→ O(E ).

Further, the space OP,sm(E ) is closed under this bracket. (Note, however, that OP,sm(E )
is not a commutative algebra if M is not compact: the product of two functionals with
proper support no longer has proper support.)

A functional F ∈ O(E )[[h̄]] is said to satisfy the Φ-quantum master equation if

QF + h̄4ΦF + 1
2{F, F}Φ = 0.

It is shown in [Cos11b] that if F satisfies the Φ-QME, and if Ψ is another parametrix, then
W (P(Ψ)− P(Φ), F) satisfies the Ψ-QME. This follows from the identity

[Q, ∂P(Φ) − ∂P(Ψ)] = 4Ψ −4Φ

of order 2 differential operators on O(E ). This relationship between the renormalization
group flow and the quantum master equation is a key part of the approach to QFT of
[Cos11b].

8.2.9. The definition of a field theory. Our definition of a field theory is as follows.

8.2.9.1 Definition. Let (E , Q, 〈−,−〉) be a free BV theory. Fix a gauge fixing condition QGF.
Then a quantum field theory (with this space of fields) consists of the following data.

(1) For all parametrices Φ, a functional

I[Φ] ∈ O+
P,sm(Ec)[[h̄]]

that we call the scale Φ effective interaction. As we explained above, the subscripts
indicate that I[Φ] must have smooth first derivative and proper support. The superscript
+ indicates that, modulo h̄, I[Φ] must be at least cubic. Note that we work with functions
modulo constants.
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(2) For two parametrices Φ, Ψ, I[Φ] must be related by the renormalization group flow:

I[Φ] = W (P(Φ)− P(Ψ), I[Ψ]) .

(3) Each I[Φ] must satisfy the Φ-quantum master equation

(Q + h̄4Φ)eI[Φ]/h̄ = 0.

Equivalently,

QI[Φ] + h̄4Φ I[Φ] + 1
2{I[Φ], I[Φ]}Φ.

(4) Finally, we require that I[Φ] satisfies a locality axiom. Let

Ii,k[Φ] : E ×k
c → C

be the kth Taylor component of the coefficient of h̄i in I[Φ]. We can view this as a distri-
butional section of the bundle (E!)�k on Mk. Our locality axiom says that, as Φ tends to
zero, the support of

Ii,k[Φ]

becomes closer and closer to the small diagonal in Mk.
For the constructions in this book, it turns out to be useful to have precise bounds on

the support of Ii,k[Φ]. To give these bounds, we need some notation. Let Supp(Φ) ⊂ M2

be the support of the parametrix Φ, and let Supp(Φ)n ⊂ M2 be the subset obtained by
convolving Supp(Φ) with itself n times. (Thus, (x, y) ∈ Supp(Φ)n if there exists a
sequence x = x0, x1, . . . , xn = y such that (xi, xi+1) ∈ Supp(Φ).)

Our support condition is that, if ej ∈ Ec, then

Ii,k(e1, . . . , ek) = 0

unless, for all 1 ≤ r < s ≤ k,

Supp(er)× Supp(es) ⊂ Supp(Φ)3i+k.

Remark: (1) The locality axiom condition as presented here is a little unappealing.
An equivalent axiom is that for all open subsets U ⊂ Mk containing the small
diagonal M ⊂ Mk, there exists a parametrix ΦU such that

Supp Ii,k[Φ] ⊂ U for all Φ < ΦU .

In other words, by choosing a small parametrix Φ, we can make the support of
Ii,k[Φ] as close as we like to the small diagonal on Mk.

We present the definition with a precise bound on the size of the support of
Ii,k[Φ] because this bound will be important later in the construction of the factor-
ization algebra. Note, however, that the precise exponent 3i + k which appears
in the definition (in Supp(Φ)3i+k) is not important. What is important is that we
have some bound of this form.
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(2) It is important to emphasize that the notion of quantum field theory is only de-
fined once we have chosen a gauge fixing operator. Later, we will explain in
detail how to understand the dependence on this choice. More precisely, we will
construct a simplicial set of QFTs and show how this simplicial set only depends
on the homotopy class of gauge fixing operator (in most examples, the space of
natural gauge fixing operators is contractible).

♦

Let I0 ∈ Oloc(E ) be a local functional (defined modulo constants) that satisfies the
classical master equation

QI0 +
1
2{I0, I0} = 0.

Suppose that I0 is at least cubic.

Then, as we have seen above, we can define a family of functionals

I0[Φ] = W0 (P(Φ), I0) ∈ OP,sm(E )

as the tree-level part of the renormalization group flow operator from scale 0 to the scale
given by the parametrix Φ. The compatibility between this classical renormalization
group flow and the classical master equation tells us that I0[Φ] satisfies the Φ-classical
master equation

QI0[Φ] + 1
2{I0[Φ], I0[Φ]}Φ = 0.

8.2.9.2 Definition. Let I[Φ] ∈ O+
P,sm(E )[[h̄]] be the collection of effective interactions defining

a quantum field theory. Let I0 ∈ Oloc(E ) be a local functional satisfying the classical master
equation, and so defining a classical field theory. We say that the quantum field theory {I[Φ]} is a
quantization of the classical field theory defined by I0 if

I[Φ] = I0[Φ] mod h̄,

or, equivalently, if
lim
Φ→0

I[Φ]− I0 mod h̄ = 0.

8.3. Families of theories over nilpotent dg manifolds

Before discussing the interpretation of these axioms and also explaining the results of
[Cos11b] that allow one to construct such quantum field theories, we will explain how
to define families of quantum field theories over some base dg algebra. The fact that we
can work in families in this way means that the moduli space of quantum field theories
is something like a derived stack. For instance, by considering families over the base dg
algebra of forms on the n-simplex, we see that the set of quantizations of a given classical
field theory is a simplicial set.
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One particularly important use of the families version of the theory is that it allows
us to show that our constructions and results are independent, up to homotopy, of the
choice of gauge fixing condition (provided one has a contractible — or at least connected
— space of gauge fixing conditions, which happens in most examples).

In later sections, we will work implicitly over some base dg ring in the sense described
here, although we will normally not mention this base ring explicitly.

8.3.0.1 Definition. A nilpotent dg manifold is a manifold X (possibly with corners), equipped
with a sheaf A of commutative differential graded algebras over the sheaf Ω∗X, with the following
properties.

(1) A is concentrated in finitely many degrees.
(2) Each A i is a locally free sheaf of Ω0

X-modules of finite rank. This means that A i is the
sheaf of sections of some finite rank vector bundle Ai on X.

(3) We are given a map of dg Ω∗X-algebras A → C∞
X .

We will let I ⊂ A be the ideal which is the kernel of the map A → C∞
X : we require

that I , its powers I k, and each A /I k are locally free sheaves of C∞
X -modules. Also,

we require that I k = 0 for k sufficiently large.

Note that the differential d on A is necessary a differential operator.

We will use the notation A ] to refer to the bundle of graded algebras on X whose smooth
sections are A ], the graded algebra underlying the dg algebra A .

If (X, A ) and (Y, B) are nilpotent dg manifolds, a map (Y, B) → (X, A ) is a smooth map
f : Y → X together with a map of dg Ω∗(X)-algebras A → B.

Here are some basic examples.

(1) A = C∞(X) and I = 0. This describes the smooth manifold X.
(2) A = Ω∗(X) and I = Ω>0(X). This equips X with its de Rham complex as

a structure sheaf. (Informally, we can say that “constant functions are the only
functions on a small open” so that this dg manifold is sensitive to topological
rather than smooth structure.)

(3) If R is a dg Artinian C-algebra with maximal ideal m, then R can be viewed as
giving the structure of nilpotent graded manifold on a point.

(4) If again R is a dg Artinian algebra, then for any manifold (X, R ⊗ Ω∗(X)) is a
nilpotent dg manifold.

(5) If X is a complex manifold, then A = (Ω0,∗(X), ∂) is a nilpotent dg manifold.

Remark: We study field theories in families over nilpotent dg manifolds for both practical
and structural reasons. First, we certainly wish to discuss familes of field theories over
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smooth manifolds. However, we would also like to access a “derived moduli space” of
field theories.

In derived algebraic geometry, one says that a derived stack is a functor from the cate-
gory of non-positively graded dg rings to that of simplicial sets. Thus, such non-positively
graded dg rings are the “test objects” one uses to define derived algebraic geometry. Our
use of nilpotent dg manifolds mimics this story: we could say that a C∞ derived stack
is a functor from nilpotent dg manifolds to simplicial sets. The nilpotence hypothesis is
not a great restriction, as the test objects used in derived algebraic geometry are naturally
pro-nilpotent, where the pro-nilpotent ideal consists of the elements in degrees < 0.

Second, from a practical point of view, our arguments are tractable when working
over nilpotent dg manifolds. This is related to the fact that we choose to encode the
analytic structure on the vector spaces we consider using the language of differentiable
vector spaces. Differentiable vector spaces are, by definition, objects where one can talk
about smooth families of maps depending on a smooth manifold. In fact, the definition
of differentiable vector space is strong enough that one can talk about smooth families of
maps depending on nilpotent dg manifolds. ♦

We can now give a precise notion of “family of field theories.” We will start with the
case of a family of field theories parameterized by the nilpotent dg manifold X = (X, C∞

X ),
i.e. the sheaf of dg rings on X is just the sheaf of smooth functions.

8.3.0.2 Definition. Let M be a manifold and let (X, A ) be a nilpotent dg manifold. A family over
(X, A ) of free BV theories is the following data.

(1) A graded bundle E on M× X of locally free A]-modules. We will refer to global sections
of E as E . The space of those sections s ∈ Γ(M× X, E) with the property that the map
Supp s→ X is proper will be denoted Ec. Similarly, we let E denote the space of sections
which are distributional on M and smooth on X, that is,

E = E ⊗C∞(M×X)

(
D(M)⊗̂πC∞(X)

)
.

(This is just the algebraic tensor product, which is reasonable as E is a finitely generated
projective C∞(M× X)-module).

As above, we let

E! = HomA](E, A])⊗DensM

denote the “dual” bundle. There is a natural A ]-valued pairing between E and E !
c .

(2) A differential operator Q : E → E , of cohomological degree 1 and square-zero, making E
into a dg module over the dg algebra A .

(3) A map

E⊗A] E→ DensM⊗A]
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which is of degree −1, anti-symmetric, and leads to an isomorphism

HomA](E, A])⊗DensM → E

of sheaves of A]-modules on M× X.
This pairing leads to a degree −1 anti-symmetric A -linear pairing

〈−,−〉 : Ec⊗̂πEc → A .

We require it to be a cochain map. In other words, if e, e′ ∈ Ec,

dA

〈
e, e′
〉
=
〈

Qe, e′
〉
+ (−1)|e|

〈
e, Qe′

〉
.

8.3.0.3 Definition. Let (E, Q, 〈−,−〉) be a family of free BV theories on M parameterized by A .
A gauge fixing condition on E is an A -linear differential operator

QGF : E → E

such that
D = [Q, QGF] : E → E

is a generalized Laplacian, in the following sense.

Note that D is an A -linear cochain map. Thus, we can form

D0 : E ⊗A C∞(X)→ E ⊗A C∞(X)

by reducing modulo the maximal ideal I of A .

Let E0 = E/I be the bundle on M× X obtained by reducing modulo the ideal I in the bundle
of algebras A. Let

σ(D0) : π∗E0 → π∗E0

be the symbol of the C∞(X)-linear operator D0. Thus, σ(D0) is an endomorphism of the bundle of
π∗E0 on (T∗M)× X.

We require that σ(D0) is the product of the identity on E0 with a smooth family of metrics on
M parameterized by X.

Throughout this section, we will fix a family of free theories on M, parameterized by
A . We will take A to be our base ring throughout, so that everything will be A -linear.
We would also like to take tensor products over A . Since A is a topological dg ring and
we are dealing with topological modules, the issue of tensor products is a little fraught.
Instead of trying to define such things, we will use the following shorthand notations:

(1) E ⊗A E is defined to be sections of the bundle

E�A] E = π∗1 E⊗A] π∗2 E

on M × M × X, with its natural differential which is a differential operator in-
duced from the differentials on each copy of E .
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(2) E is the space of sections of the bundle E on M × X which are smooth in the
X-direction and distributional in the M-direction. Similarly for E c, E

!
, etc.

(3) E ⊗A E is defined to be sections of the bundle E�A] E on M×M× X, which are
distributions in the M-directions and smooth as functions of X.

(4) If x ∈ X, let Ex denote the sections on M of the restriction of the bundle E on
M× X to M× x. Note that Ex is an A]

x-module. Then, we define O(E ) to be the
space of smooth sections of the bundle of topological (or differentiable) vector
spaces on X whose fibre at x is

O(E )x = ∏
n

HomDVS/A]
x
(E ×n

x , A ]
x )Sn .

That is an element of O(Ex) is something whose Taylor expansion is given by
smooth A]

x-multilinear maps to A]
x.

If F ∈ O(E ) is a smooth section of this bundle, then the Taylor terms of F
are sections of the bundle (E!)�A]n on Mn×X which are distributional in the Mn-
directions, smooth in the X-directions, and whose support maps properly to X.

In other words: when we want to discuss spaces of functionals on E , or tensor powers
of E or its distributional completions, we just to everything we did before fibrewise on X
and linear over the bundle of algebras A]. Then, we take sections of this bundle on X.

8.3.1. Now that we have defined free theories over a base ring A , the definition of
an interacting theory over A is very similar to the definition given when A = C. First,
one defines a parametrix to be an element

Φ ∈ E ⊗A E

with the same properties as before, but where now we take all tensor products (and so on)
over A . More precisely,

(1) Φ is symmetric under the natural Z/2 action on E ⊗ E .
(2) Φ is of cohomological degree 1.
(3) Φ is closed under the differential on E ⊗ E .
(4) Φ has proper support: this means that the map Supp Φ→ M× X is proper.
(5) Let QGF : E → E be the gauge fixing operator. We require that

([Q, QGF]⊗ 1)Φ− KId

is an element of E ⊗ E (where, as before, KId ∈ E ⊗ E is the kernel for the identity
map).

An interacting field theory is then defined to be a family of A -linear functionals

I[Φ] ∈ Ored(E )[[h̄]] = ∏
n≥1

HomA (E ⊗A n, A )Sn [[h̄]]



8.3. FAMILIES OF THEORIES OVER NILPOTENT DG MANIFOLDS 101

satisfying the renormalization group flow equation, quantum master equation, and lo-
cality condition, just as before. In order for the RG flow to make sense, we require that
each I[Φ] has proper support and smooth first derivative. In this context, this means the
following. Let Ii,k[Φ] : E ⊗k → A be the kth Taylor component of the coefficient of h̄i in
Ii,k[Φ]. Proper support means that any projection map

Supp Ii,k[Φ] ⊂ Mk × X → M× X

is proper. Smooth first derivative means, as usual, that when we think of Ii,k[Φ] as an
operator E ⊗k−1 → E , the image lies in E .

If we have a family of theories over (X, A ), and a map

f : (Y, B)→ (X, A )

of dg manifolds, then we can base change to get a family over (Y, B). The bundle on Y of
B]

x-modules of fields is defined, fibre by fibre, by

( f ∗E )y = E f (y) ⊗A]
f (y)

B]
y.

The gauge fixing operator
QGF : f ∗E → f ∗E

is the B-linear extension of the gauge fixing condition for the family of theories over A .

If
Φ ∈ E ⊗A E ⊂ f ∗E ⊗B f ∗E

is a parametrix for the family of free theories E over A , then it defines a parametrix f ∗Φ
for the family of free theories f ∗E over B. For parametrices of this form, the effective
action functionals

f ∗ I[ f ∗Φ] ∈ O+
sm,P( f ∗E )[[h̄]] = O+

sm,P(E )[[h̄]]⊗A B

is simply the image of the original effective action functional

I[Φ] ∈ O+
sm,P(E )[[h̄]] ⊂ O+

sm,P( f ∗E )[[h̄]].

For a general parametrix Ψ for f ∗E , the effective action functional is defined by the renor-
malization group equation

f ∗ I[Ψ] = W (P(Ψ)− P( f ∗Φ), f ∗ I[ f ∗Φ]) .

This is well-defined because

P(Ψ)− P( f ∗Φ) ∈ f ∗E ⊗B f ∗E

has no singularities.

The compatibility between the renormalization group equation and the quantum mas-
ter equation guarantees that the effective action functionals f ∗ I[Ψ] satisfy the QME for ev-
ery parametrix Ψ. The locality axiom for the original family of effective action functionals
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I[Φ] guarantees that the pulled-back family f ∗ I[Ψ] satisfy the locality axiom necessary to
define a family of theories over B.

8.4. The simplicial set of theories

One of the main reasons for introducing theories over a nilpotent dg manifold (X, A )
is that this allows us to talk about the simplicial set of theories. This is essential, because
the main result we will use from [Cos11b] is homotopical in nature: it relates the simplicial
set of theories to the simplicial set of local functionals.

We introduce some useful notation. Let us fix a family of classical field theories on a
manifold M over a nilpotent dg manifold (X, A ). As above, the fields of such a theory
are a dg A -module E equipped with an A -linear local functional I ∈ Oloc(E ) satisfying
the classical master equation QI + 1

2{I, I} = 0.

By pulling back along the projection map

(X×4n, A ⊗ C∞(4n))→ (X, A ),

we get a new family of classical theories over the dg base ring A ⊗ C∞(4n), whose fields
are E ⊗ C∞(4n). We can then ask for a gauge fixing operator

QGF : E ⊗ C∞(4n)→ E ⊗ C∞(4n).

for this family of theories. This is the same thing as a smooth family of gauge fixing
operators for the original theory depending on a point in the n-simplex.

8.4.0.1 Definition. Let (E , I) denote the classical theory we start with over A . Let G F (E , I)
denote the simplicial set whose n-simplices are such families of gauge fixing operators over A ⊗
C∞(4n). If there is no ambiguity as to what classical theory we are considering, we will denote
this simplicial set by G F .

Any such gauge fixing operator extends, by Ω∗(4n)-linearity, to a linear map E ⊗
Ω∗(4n) → E ⊗ Ω∗(4n), which thus defines a gauge fixing operator for the family of
theories over A ⊗Ω∗(4n) pulled back via the projection

(X×4n, A ⊗Ω∗(4n))→ (X, A ).

(Note that Ω∗(4n) is equipped with the de Rham differential.)

Example: Suppose that A = C, and the classical theory we are considering is Chern-
Simons theory on a 3-manifold M, where we perturb around the trivial bundle. Then,
the space of fields is E = Ω∗(M)⊗ g[1] and Q = ddR. For every Riemannian metric on M,
we find a gauge fixing operator QGF = d∗. More generally, if we have a smooth family

{gσ | σ ∈ 4n}
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of Riemannian metrics on M, depending on the point σ in the n-simplex, we get an n-
simplex of the simplicial set G F of gauge fixing operators.

Thus, if Met(M) denotes the simplicial set whose n-simplices are the set of Riemann-
ian metrics on the fibers of the submersion M×4n → 4n, then we have a map of sim-
plicial sets

Met(M)→ G F .

Note that the simplicial set Met(M) is (weakly) contractible (which follows from the fa-
miliar fact that, as a topological space, the space of metrics on M is contractible).

A similar remark holds for almost all theories we consider. For example, suppose we
have a theory where the space of fields

E = Ω0,∗(M, V)

is the Dolbeault complex on some complex manifold M with coefficients in some holo-
morphic vector bundle V. Suppose that the linear operator Q : E → E is the ∂-operator.
The natural gauge fixing operators are of the form ∂

∗
. Thus, we get a gauge fixing oper-

ator for each choice of Hermitian metric on M together with a Hermitian metric on the
fibers of V. This simplicial set is again contractible.

It is in this sense that we mean that, in most examples, there is a natural contractible
space of gauge fixing operators. ♦

8.4.1. We will use the shorthand notation (E , I) to denote the classical field theory
over A that we start with; and we will use the notation (E4n , I4n) to refer to the family
of classical field theories over A ⊗Ω∗(4n) obtained by base-change along the projection
(X×4n, A ⊗Ω∗(4n))→ (X, A ).

8.4.1.1 Definition. We let T (n) denote the simplicial set whose k-simplices consist of the follow-
ing data.

(1) A k-simplex QGF
4k ∈ G F [k], defining a gauge-fixing operator for the family of theories

(E4k , I4k) over A ⊗Ω∗(4k).
(2) A quantization of the family of classical theories with gauge fixing operator (E4k , I4k , QGF

4k ),

defined modulo h̄n+1.

We let T (∞) denote the corresponding simplicial set where the quantizations are defined to all
orders in h̄.

Note that there are natural maps of simplicial sets T (n) → T (m), and that T (∞) = lim←−T (n).
Further, there are natural maps T (n) → G F .
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Note further that T (0) = G F .

This definition describes the most sophisticated version of the set of theories we will
consider. Let us briefly explain how to interpret this simplicial set of theories.

Suppose for simplicity that our base ring A is just C. Then, a 0-simplex of T (0) is
simply a gauge-fixing operator for our theory. A 0-simplex of T (n) is a gauge fixing
operator, together with a quantization (defined with respect to that gauge-fixing operator)
to order n in h̄.

A 1-simplex of T (0) is a homotopy between two gauge fixing operators. Suppose
that we fix a 0-simplex of T (0), and consider a 1-simplex of T (∞) in the fiber over this
0-simplex. Such a 1-simplex is given by a collection of effective action functionals

I[Φ] ∈ O+
P,sm(E )⊗Ω∗([0, 1])[[h̄]]

one for each parametrix Φ, which satisfy a version of the QME and the RG flow, as ex-
plained above.

We explain in some more detail how one should interpret such a 1-simplex in the space
of theories. Let us fix a parametrix Φ on E and extend it to a parametrix for the family of
theories over Ω∗([0, 1]). We can then expand our effective interaction I[Φ] as

I[Φ] = J[Φ](t) + J′[Φ](t)dt

where J[Φ](t), J′[Φ](t) are elements

J[Φ](t), J′[Φ](t) ∈ O+
P,sm(E )⊗ C∞([0, 1])[[h̄]].

Here t is the coordinate on the interval [0, 1].

The quantum master equation implies that the following two equations hold, for each
value of t ∈ [0, 1],

QJ[Φ](t) + 1
2{J[Φ](t), J[Φ](t)}Φ + h̄4Φ J[Φ](t) = 0,

∂

∂t
J[Φ](t) + QJ′[Φ](t) + {J[Φ](t), J′[Φ](t)}Φ + h̄4Φ J′[Φ](t) = 0.

The first equation tells us that for each value of t, J[Φ](t) is a solution of the quantum mas-
ter equation. The second equation tells us that the t-derivative of J[Φ](t) is homotopically
trivial as a deformation of the solution to the QME J[Φ](t).

In general, if I is a solution to some quantum master equation, a transformation of the
form

I 7→ I + εJ = I + εQI′ + {I, I′}+ h̄4I′

is often called a “BV canonical transformation” in the physics literature. In the physics
literature, solutions of the QME related by a canonical transformation are regarded as
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equivalent: the canonical transformation can be viewed as a change of coordinates on the
space of fields.

For us, this interpretation is not so important. If we have a family of theories over
Ω∗([0, 1]), given by a 1-simplex in T (∞), then the factorization algebra we will construct
from this family of theories will be defined over the dg base ring Ω∗([0, 1]). This implies
that the factorization algebras obtained by restricting to 0 and 1 are quasi-isomorphic.

8.4.2. Generalizations. We will shortly state the theorem which allows us to construct
such quantum field theories. Let us first, however, briefly introduce a slightly more gen-
eral notion of “theory.”

We work over a nilpotent dg manifold (X, A ). Recall that part of the data of such a
manifold is a differential ideal I ⊂ A whose quotient is C∞(X). In the above discussion,
we assumed that our classical action functional S was at least quadratic; we then split S
as

S = 〈e, Qe〉+ I(e)
into kinetic and interacting terms.

We can generalize this to the situation where S contains linear terms, as long as they
are accompanied by elements of the ideal I ⊂ A . In this situation, we also have some
freedom in the splitting of S into kinetic and interacting terms; we require only that linear
and quadratic terms in the interaction I are weighted by elements of the nilpotent ideal
I .

In this more general situation, the classical master equation {S, S} = 0 does not imply
that Q2 = 0, only that Q2 = 0 modulo the ideal I . However, this does not lead to any
problems; the definition of quantum theory given above can be easily modified to deal
with this more general situation.

In the L∞ language used in Chapter 4, this more general situation describes a family of
curved L∞ algebras over the base dg ring A with the property that the curving vanishes
modulo the nilpotent ideal I .

Recall that ordinary (not curved) L∞ algebras correspond to formal pointed moduli
problems. These curved L∞ algebras correspond to families of formal moduli problems
over A which are pointed modulo I .

8.5. The theorem on quantization

Let M be a manifold, and suppose we have a family of classical BV theories on M over
a nilpotent dg manifold (X, A ). Suppose that the space of fields on M is the A -module
E . Let Oloc(E ) be the dg A -module of local functionals with differential Q + {I,−}.
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Given a cochain complex C, we denote the Dold-Kan simplicial set associated to C by
DK(C). Its n-simplices are the closed, degree 0 elements of C⊗Ω∗(4n).

8.5.0.1 Theorem. All of the simplicial sets T (n)(E , I) are Kan complexes and T (∞)(E , I). The
maps p : T (n+1)(E , I)→ T (n)(E , I) are Kan fibrations.

Further, there is a homotopy fiber diagram of simplicial sets

T (n+1)(E , I)

p
��

// 0

��
T (n)(E , I) O // DK(Oloc(E )[1], Q + {I,−})

where O is the “obstruction map.”

In more prosaic terms, the second part of the theorem says the following. If α ∈
T (n)(E , I)[0] is a zero-simplex of T (n)(E , I), then there is an obstruction O(α) ∈ Oloc(E ).
This obstruction is a closed degree 1 element. The simplicial set p−1(α) ∈ T (n+1)(E , I) of
extensions of α to the next order in h̄ is homotopy equivalent to the simplicial set of ways
of making O(α) exact. In particular, if the cohomology class [O(α)] ∈ H1(Oloc(E), Q +
{I,−}) is non-zero, then α does not admit a lift to the next order in h̄. If this cohomology
class is zero, then the simplicial set of possible lifts is a torsor for the simplicial Abelian
group DK(Oloc(E ))[1].

Note also that a first order deformation of the classical field theory (E , Q, I) is given
by a closed degree 0 element of Oloc(E ). Further, two such first order deformations are
equivalent if they are cohomologous. Thus, this theorem tells us that the moduli space of
QFTs is “the same size” as the moduli space of classical field theories: at each order in h̄,
the data needed to describe a QFT is a local action functional.

The first part of the theorem says can be interpreted as follows. A Kan simplicial set
can be thought of as an “infinity-groupoid.” Since we can consider families of theories
over arbitrary nilpotent dg manifolds, we can consider T ∞(E , I) as a functor from the
category of nilpotent dg manifolds to that of Kan complexes, or infinity-groupoids. Thus,
the space of theories forms something like a “derived stack” [Toë06, Lur11].

This theorem also tells us in what sense the notion of “theory” is independent of the
choice of gauge fixing operator. The simplicial set T (0)(E , I) is the simplicial set G F of
gauge fixing operators. Since the map

T (∞)(E , I)→ T (0)(E , I) = G F

is a fibration, a path between two gauge fixing conditions QGF
0 and QGF

1 leads to a ho-
motopy between the corresponding fibers, and thus to an equivalence between the ∞-
groupoids of theories defined using QGF

0 and QGF
1 .
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As we mentioned several times, there is often a natural contractible simplicial set map-
ping to the simplicial set G F of gauge fixing operators. Thus, G F often has a canonical
“homotopy point”. From the homotopical point of view, having a homotopy point is just
as good as having an actual point: if S→ G F is a map out of a contractible simplicial set,
then the fibers in T (∞) above any point in S are canonically homotopy equivalent.





CHAPTER 9

The observables of a quantum field theory

9.1. Free fields

Before we give our general construction of the factorization algebra associated to a
quantum field theory, we will give the much easier construction of the factorization alge-
bra for a free field theory.

Let us recall the definition of a free BV theory.

9.1.0.1 Definition. A free BV theory on a manifold M consists of the following data:

(1) a Z-graded super vector bundle π : E→ M that has finite rank;
(2) an antisymmetric map of vector bundles 〈−,−〉loc : E⊗ E → Dens(M) of degree −1

that is fiberwise nondegenerate. It induces a symplectic pairing on compactly supported
smooth sections Ec of E:

〈φ, ψ〉 =
∫

x∈M
〈φ(x), ψ(x)〉loc;

(3) a square-zero differential operator Q : E → E of cohomological degree 1 that is skew self
adjoint for the symplectic pairing.

Remark: When we consider deforming free theories into interacting theories, we will need
to assume the existence of a “gauge fixing operator”: this is a degree −1 operator QGF :
E → E such that [Q, QGF] is a generalized Laplacian in the sense of [BGV92]. ♦

On any open set U ⊂ M, the commutative dg algebra of classical observables sup-
ported in U is

Obscl(U) = (Ŝym(E ∨(U)), Q),

where

E ∨(U) = E
!
c(U)

denotes the distributions dual to E with compact support in U and Q is the derivation
given by extending the natural action of Q on the distributions.

109
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In section 6.3 we constructed a sub-factorization algebra

Õbs
cl
(U) = (Ŝym(E !

c (U)), Q)

defined as the symmetric algebra on the compactly-supported smooth (rather than distri-

butional) sections of the bundle E!. We showed that the inclusion Õbs
cl
(U) → Obscl(U)

is a weak equivalence of factorization algebras. Further, Õbs
cl
(U) has a Poisson bracket

of cohomological degree 1, defined on the generators by the natural pairing

E !
c (U)⊗̂πE !

c (U)→ R,

which arises from the dual pairing on Ec(U). In this section we will show how to construct

a quantization of the P0 factorization algebra Õbs
cl

.

9.1.1. The Heisenberg algebra construction. Our quantum observables on an open
set U will be built from a certain Heisenberg Lie algebra.

Recall the usual construction of a Heisenberg algebra. If V is a symplectic vector
space, viewed as an abelian Lie algebra, then the Heisenberg algebra Heis(V) is the central
extension

0→ C · h̄→ Heis(V)→ V

whose bracket is [x, y] = h̄〈x, y〉.

Since the element h̄ ∈ Heis(V) is central, the algebra Û(Heis(V)) is an algebra over
C[[h̄]], the completed universal enveloping algebra of the Abelian Lie algebra C · h̄.

In quantum mechanics, this Heisenberg construction typically appears in the study of
systems with quadratic Hamiltonians. In this context, the space V can be viewed in two
ways. Either it is the space of solutions to the equations of motion, which is a linear space
because we are dealing with a free field theory; or it is the space of linear observables dual
to the space of solutions to the equations of motion. The natural symplectic pairing on
V gives an isomorphism between these descriptions. The algebra Û(Heis(V)) is then the
algebra of non-linear observables.

Our construction of the quantum observables of a free field theory will be formally
very similar. We will start with a space of linear observables, which (after a shift) is a
cochain complex with a symplectic pairing of cohomological degree 1. Then, instead of
applying the usual universal enveloping algebra construction, we will take Chevalley-
Eilenberg chain complex, whose cohomology is the Lie algebra homology.1 This fits with
our operadic philosophy: Chevalley-Eilenberg chains are the E0 analog of the universal
enveloping algebra.

1As usual, we always use gradings such that the differential has degree +1.
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9.1.2. The basic homological construction. Let us start with a 0-dimensional free
field theory. Thus, let V be a cochain complex equipped with a symplectic pairing of
cohomological degree −1. We will think of V as the space of fields of our theory. The
space of linear observables of our theory is V∨; the Poisson bracket on O(V) induces a
symmetric pairing of degree 1 on V∨. We will construct the space of all observables from
a Heisenberg Lie algebra built on V∨[−1], which has a symplectic pairing 〈−,−〉 of de-
gree −1. Note that there is an isomorphism V ∼= V∨[−1] compatible with the pairings on
both sides.

9.1.2.1 Definition. The Heisenberg algebra Heis(V) is the Lie algebra central extension

0→ C · h̄[−1]→ Heis(V)→ V∨[−1]→ 0

whose bracket is
[v + h̄a, w + h̄b] = h̄ 〈v, w〉

The element h̄ labels the basis element of the center C[−1].

Putting the center in degree 1 may look strange, but it is necessary to do this in order
to get a Lie bracket of cohomological degree 0.

Let Ĉ∗(Heis(V)) denote the completion2 of the Lie algebra chain complex of Heis(V),
defined by the product of the spaces Symn Heis(V), instead of their sum.

In this zero-dimensional toy model, the classical observables are

Obscl = O(V) = ∏
n

Symn(V∨).

This is a commutative dg algebra equipped with the Poisson bracket of degree 1 arising
from the pairing on V. Thus, O(V) is a P0 algebra.

9.1.2.2 Lemma. The completed Chevalley-Eilenberg chain complex Ĉ∗(Heis(V)) is a BD algebra
(section 2.4) which is a quantization of the P0 algebra O(V).

PROOF. The completed Chevalley-Eilenberg complex for Heis(V) has the completed
symmetric algebra Ŝym(Heis(V)[1]) as its underlying graded vector space. Note that

Ŝym(Heis(V)[1]) = Sym(V∨ ⊕C · h̄) = Ŝym(V∨)[[h̄]],

so that Ĉ∗(Heis(V)) is a flat C[[h̄]] module which reduces to Ŝym(V∨) modulo h̄. The
Chevalley-Eilenberg chain complex Ĉ∗(Heis(V)) inherits a product, corresponding to the
natural product on the symmetric algebra Ŝym(Heis(V)[1]). Further, it has a natural Pois-
son bracket of cohomological degree 1 arising from the Lie bracket on Heis(V), extended

2One doesn’t need to take the completed Lie algebra chain complex. We do this to be consistent with our
discussion of the observables of interacting field theories, where it is essential to complete.
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to be a derivation of Ĉ∗(Heis(V)). Note that, since C · h̄[−1] is central in Heis(V), this
Poisson bracket reduces to the given Poisson bracket on Ŝym(V∨) modulo h̄.

In order to prove that we have a BD quantization, it remains to verify that, although
the commutative product on Ĉ∗(Heis(V)) is not compatible with the product, it satisfies
the BD axiom:

d(a · b) = (da) · b + (−1)|a|a · (db) + h̄{a, b}.
This follows by definition. �

9.1.3. Cosheaves of Heisenberg algebras. Next, let us give the analog of this con-
struction for a general free BV theory E on a manifold M. As above, our classical observ-
ables are defined by

Õbs
cl
(U) = Ŝym E !

c (U)

which has a Poisson bracket arising from the pairing on E !
c (U). Recall that this is a factor-

ization algebra.

To construct the quantum theory, we define, as above, a Heisenberg algebra Heis(U)
as a central extension

0→ C[−1] · h̄→ Heis(U)→ E !
c (U)[−1]→ 0.

Note that Heis(U) is a pre-cosheaf of Lie algebras. The bracket in this Heisenberg algebra
arises from the pairing on E !

c (U).

We then define the quantum observables by

Obsq(U) = Ĉ∗(Heis(U)).

The underlying cochain complex is, as before,

Ŝym(Heis(U)[1])

where the completed symmetric algebra is defined (as always) using the completed tensor
product.

9.1.3.1 Proposition. Sending U to Obsq(U) defines a BD factorization algebra in the category of
differentiable pro-cochain complexes over R[[h̄]], which quantizes Obscl(U).

PROOF. First, we need to define the filtration on Obsq(U) making it into a differen-
tiable pro-cochain complex. The filtration is defined, in the identification

Obsq(U) = Ŝym E !
c (U)[[h̄]]

by saying
Fn Obsq(U) = ∏

k
h̄k Sym≥n−2k E !

c (U).

This filtration is engineered so that the Fn Obsq(U) is a subcomplex of Obsq(U).
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It is immediate that Obsq is a BD pre-factorization algebra quantizing Obscl(U). The
fact that it is a factorization algebra follows from the fact that Obscl(U) is a factorization
algebra, and then a simple spectral sequence argument. (A more sophisticated version of
this spectral sequence argument, for interacting theories, is given in section 9.6.) �

9.2. The BD algebra of global observables

In this section, we will try to motivate our definition of a quantum field theory from
the point of view of homological algebra. All of the constructions we will explain will
work over an arbitrary nilpotent dg manifold (X, A ), but to keep the notation simple we
will not normally mention the base ring A .

Thus, suppose that (E , I, Q, 〈−,−〉) is a classical field theory on a manifold M. We
have seen (Chapter 6, section 6.2) how such a classical field theory gives immediately a
commutative factorization algebra whose value on an open subset is

Obscl(U) = (O(E (U)), Q + {I,−}) .

Further, we saw that there is a P0 sub-factorization algebra

Õbs
cl
(U) = (Osm(E (U)), Q + {I,−}) .

In particular, we have a P0 algebra Õbs
cl
(M) of global sections of this P0 algebra. We

can think of Õbs
cl
(M) as the algebra of functions on the derived space of solutions to the

Euler-Lagrange equations.

In this section we will explain how a quantization of this classical field theory will

give a quantization (in a homotopical sense) of the P0 algebra Õbs
cl
(M) into a BD algebra

Obsq(M) of global observables. This BD algebra has some locality properties, which we
will exploit later to show that Obsq(M) is indeed the global sections of a factorization
algebra of quantum observables.

In the case when the classical theory is the cotangent theory to some formal elliptic
moduli problem BL on M (encoded in an elliptic L∞ algebra L on M), there is a par-
ticularly nice class of quantizations, which we call cotangent quantizations. Cotangent
quantizations have a very clear geometric interpretation: they are locally-defined volume
forms on the sheaf of formal moduli problems defined by L.

9.2.1. The BD algebra associated to a parametrix. Suppose we have a quantization of
our classical field theory (defined with respect to some gauge fixing condition, or family
of gauge fixing conditions). Then, for every parametrix Φ, we have seen how to construct
a cohomological degree 1 operator

4Φ : O(E )→ O(E )
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and a Poisson bracket

{−,−}Φ : O(E )×O(E )→ O(E )

such that O(E )[[h̄]], with the usual product, with bracket {−,−}Φ and with differential
Q + h̄4Φ, forms a BD algebra.

Further, since the effective interaction I[Φ] satisfies the quantum master equation, we
can form a new BD algebra by adding {I[Φ],−}Φ to the differential of O(E )[[h̄]].

9.2.1.1 Definition. Let Obsq
Φ(M) denote the BD algebra

Obsq
Φ(M) = (O(E )[[h̄]], Q + h̄4Φ + {I[Φ],−}Φ) ,

with bracket {−,−}Φ and the usual product.

Remark: Note that I[Φ] is not in O(E )[[h̄]], but rather in O+
P,sm(E )[[h̄]]. However, as we

remarked earlier in 8.2.8, the bracket

{I[Φ],−}Φ : O(E )[[h̄]]→ O(E )[[h̄]]

is well-defined. ♦

Remark: Note that we consider Obsq
Φ(M) as a BD algebra valued in the multicategory of

differentiable pro-cochain complexes (see Appendix ??). This structure includes a filtra-
tion on Obsq

Φ(M) = O(E )[[h̄]]. The filtration is defined by saying that

FnO(E )[[h̄]] = ∏
i

h̄i Sym≥(n−2i)(E ∨);

it is easily seen that the differential Q + h̄4Φ + {I[Φ],−}Φ preserves this filtration. ♦

We will show that for varying Φ, the BD algebras Obsq
Φ(M) are canonically weakly

equivalent. Moreover, we will show that there is a canonical weak equivalence of P0
algebras

Obsq
Φ(M)⊗C[[h̄]] C ' Õbs

cl
(M).

To show this, we will construct a family of BD algebras over the dg base ring of forms on a
certain contractible simplicial set of parametrices that restricts to Obsq

Φ(M) at each vertex.

Before we get into the details of the construction, however, let us say something about
how this result allows us to interpret the definition of a quantum field theory.

A quantum field theory gives a BD algebra for each parametrix. These BD algebras
are all canonically equivalent. Thus, at first glance, one might think that the data of a QFT
is entirely encoded in the BD algebra for a single parametrix. However, this does not take
account of a key part of our definition of a field theory, that of locality.
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The BD algebra associated to a parametrix Φ has underlying commutative algebra
O(E )[[h̄]], equipped with a differential which we temporarily denote

dΦ = Q + h̄4Φ + {I[Φ],−}Φ.

If K ⊂ M is a closed subset, we have a restriction map

E = E (M)→ E (K),

where E (K) denotes germs of smooth sections of the bundle E on K. There is a dual map
on functionals O(E (K))→ O(E ). We say a functional f ∈ O(E )[[h̄]] is supported on K if it
is in the image of this map.

As Φ → 0, the effective interaction I[Φ] and the BV Laplacian 4Φ become more and
more local (i.e., their support gets closer to the small diagonal). This tells us that, for very
small Φ, the operator dΦ only increases the support of a functional in O(E )[[h̄]] by a small
amount. Further, by choosing Φ to be small enough, we can increase the support by an
arbitrarily small amount.

Thus, a quantum field theory is

(1) A family of BD algebra structures on O(E )[[h̄]], one for each parametrix, which
are all homotopic (and which all have the same underlying graded commutative
algebra).

(2) The differential dΦ defining the BD structure for a parametrix Φ increases support
by a small amount if Φ is small.

This property of dΦ for small Φ is what will allow us to construct a factorization al-
gebra of quantum observables. If dΦ did not increase the support of a functional f ∈
O(E )[[h̄]] at all, the factorization algebra would be easy to define: we would just set
Obsq(U) = O(E (U))[[h̄]], with differential dΦ. However, because dΦ does increase sup-
port by some amount (which we can take to be arbitrarily small), it takes a little work to
push this idea through.

Remark: The precise meaning of the statement that dΦ increases support by an arbitrarily
small amount is a little delicate. Let us explain what we mean. A functional f ∈ O(E )[[h̄]]
has an infinite Taylor expansion of the form f = ∑ h̄i fi,k, where fi,k : E ⊗̂πk → C is a
symmetric linear map. We let Supp≤(i,k) f be the unions of the supports of fr,s where
(r, s) ≤ (i, k) in the lexicographical ordering. If K ⊂ M is a subset, let Φn(K) denote
the subset obtained by convolving n times with Supp Φ ⊂ M2. The differential dΦ has
the following property: there are constants ci,k ∈ Z>0 of a purely combinatorial nature
(independent of the theory we are considering) such that, for all f ∈ O(E )[[h̄]],

Supp≤(i,k) dΦ f ⊂ Φci,k(Supp≤(i,k) f ).

Thus, we could say that dΦ increase support by an amount linear in Supp Φ. We will use
this concept in the main theorem of this chapter. ♦
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9.2.2. Let us now turn to the construction of the equivalences between Obsq
Φ(M) for

varying parametrices Φ. The first step is to construct the simplicial set P of parametrices;
we will then construct a BD algebra Obsq

P(M) over the base dg ring Ω∗(P), which we
define below.

Let
V ⊂ C∞(M×M, E� E) = E ⊗̂πE

denote the subspace of those elements which are cohomologically closed and of degree 1,
symmetric, and have proper support.

Note that the set of parametrices has the structure of an affine space for V: if Φ, Ψ are
parametrices, then

Φ−Ψ ∈ V

and, conversely, if Φ is a parametrix and A ∈ V, then Φ + A is a new parametrix.

Let P denote the simplicial set whose n-simplices are affine-linear maps from 4n to
the affine space of parametrices. It is clear that P is contractible.

For any vector space V, let V4 denote the simplicial set whose k-simplices are affine
linear maps4k → V. For any convex subset U ⊂ V, there is a sub-simplicial set U4 ⊂ V4
whose k-simplices are affine linear maps 4k → U. Note that P is a sub-simplicial set of

E
⊗̂π2
4 , corresponding to the convex subset of parametrices inside E

⊗̂π2
.

Let C P [0] ⊂ E
⊗̂π2

denote the cone on the affine subspace of parametrices, with vertex

the origin 0. An element of C P [0] is an element of E
⊗̂π2

of the form tΦ, where Φ is a
parametrix and t ∈ [0, 1]. Let C P denote the simplicial set whose k-simplices are affine
linear maps to C P [0].

Recall that the simplicial de Rham algebra Ω∗4(S) of a simplicial set S is defined as
follows. Any element ω ∈ Ωi

4(S) consists of an i-form

ω(φ) ∈ Ωi(4k)

for each k-simplex φ : 4k → S. If f : 4k → 4l is a face or degeneracy map, then we
require that

f ∗ω(φ) = ω(φ ◦ f ).

The main results of this section are as follows.

9.2.2.1 Theorem. There is a BD algebra Obsq
P(M) over Ω∗(P) which, at each 0-simplex Φ, is

the BD algebra Obsq
Φ(M) discussed above.

The underlying graded commutative algebra of Obsq
P(M) is O(E )⊗Ω∗(P)[[h̄]].
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For every open subset U ⊂ M × M, let PU denote the parametrices whose support is in
U. Let Obsq

PU
(M) denote the restriction of Obsq

P(M) to U. The differential on Obsq
PU

(M)
increases support by an amount linear in U (in the sense explained precisely in the remark above).

The bracket {−,−}PU on Obsq
PU

(M) is also approximately local, in the following sense. If
O1, O2 ∈ Obsq

PU
(M) have the property that

Supp O1 × Supp O2 ∩U = ∅ ∈ M×M,

then {O1, O2}PU = 0.

Further, there is a P0 algebra Õbs
cl
C P(M) over Ω∗(C P) equipped with a quasi-isomorphism

of P0 algebras over Ω∗(P),

Õbs
cl
C P(M)

∣∣∣
P
' Obsq

P(M) modulo h̄,

and with an isomorphism of P0 algebras,

Õbs
cl
C P(M)

∣∣∣
0
∼= Õbs

cl
(M),

where Õbs
cl
(M) is the P0 algebra constructed in Chapter 6.

The underlying commutative algebra of Õbs
cl
C P(M) is Õbs

cl
(M)⊗Ω∗(C P), the differen-

tial on Õbs
cl
C P(M) increases support by an arbitrarily small amount, and the Poisson bracket on

Õbs
cl
C P(M) is approximately local in the same sense as above.

PROOF. We need to construct, for each k-simplex φ : 4k →P , a BD algebra Obsq
φ(M)

over Ω∗(4k). We view the k-simplex as a subset of Rk+1 by

4k :=

{
(λ0, . . . , λk) ⊂ [0, 1]k+1 : ∑

i
λi = 1

}
.

Since simplices in P are affine linear maps to the space of parametrices, the simplex φ is
determined by k + 1 parametrices Φ0, . . . , Φk, with

φ(λ0, . . . , λk) = ∑
i

λiΦi

for λi ∈ [0, 1] and ∑ λi = 1.

The graded vector space underlying our BD algebra is

Obsq
φ(M) = O(E )[[h̄]]⊗Ω∗(4k).
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The structure as a BD algebra will be encoded by an order two, Ω∗(4k)-linear differential
operator

4φ : Obsq
φ(M)→ Obsq

φ(M).

We need to recall some notation in order to define this operator. Each parametrix Φ
provides an order two differential operator4Φ on O(E ), the BV Laplacian corresponding
to Φ. Further, if Φ, Ψ are two parametrices, then the difference between the propagators
P(Φ) − P(Ψ) is an element of E ⊗ E , so that contracting with P(Φ) − P(Ψ) defines an
order two differential operator ∂P(Φ) − ∂P(Ψ) on O(E ). (This operator defines the infini-
tesimal version of the renormalization group flow from Ψ to Φ.) We have the equation

[Q, ∂P(Φ) − ∂P(Ψ)] = −4Φ +4Ψ.

Note that although the operator ∂P(Φ) is only defined on the smaller subspace O(E ), be-
cause P(Φ) ∈ E ⊗ E , the difference ∂P(Φ) and ∂P(Ψ) is nonetheless well-defined on O(E )
because P(Φ)− P(Ψ) ∈ E ⊗ E .

The BV Laplacian 4φ associated to the k-simplex φ : 4k → P is defined by the
formula

4φ =
k

∑
i=0

λi4Φi −
k

∑
i=0

dλi∂P(Φi),

where the λi ∈ [0, 1] are the coordinates on the simplex 4k and, as above, the Φi are the
parametrices associated to the vertices of the simplex φ.

It is not entirely obvious that this operator makes sense as a linear map O(E ) →
O(E ) ⊗ Ω∗(4k), because the operators ∂P(Φ) are only defined on the smaller subspace
O(E ). However, since ∑ dλi = 0, we have

∑ dλi∂P(Φi) = ∑ dλi(∂P(Φi) − ∂P(Φ0)),

and the right hand side is well defined.

It is immediate that42
φ = 0. If we denote the differential on the classical observables

O(E )⊗Ω∗(4n) by Q + ddR, we have

[Q + ddR,4φ] = 0.

To see this, note that

[Q + ddR,4φ] = ∑ dλi4Φi + ∑ dλi[Q, ∂Φi − ∂Φ0 ]

= ∑ dλi4Φi −∑ dλi(4Φi −4Φ0)

= ∑ dλi4Φ0

= 0,

where we use various identities from earlier.
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The operator4φ defines, in the usual way, an Ω∗(4k)-linear Poisson bracket {−,−}φ

on O(E )⊗Ω∗(4k).

We have effective action functionals I[Ψ] ∈ O+
sm,P(E )[[h̄]] for each parametrix Ψ. Let

I[φ] = I[∑ λiΦi] ∈ O+
sm,P(E )[[h̄]]⊗ C∞(4k).

The renormalization group equation tells us that I[∑ λiΦi] is smooth (actually polyno-
mial) in the λi.

We define the structure of BD algebra on the graded vector space

Obsq
φ(M) = O(E )[[h̄]]⊗Ω∗(4k)

as follows. The product is the usual one; the bracket is {−,−}φ, as above; and the differ-
ential is

Q + ddR + h̄4φ + {I[φ],−}φ.
We need to check that this differential squares to zero. This is equivalent to the quantum
master equation

(Q + ddR + h̄4φ)eI[φ]/h̄ = 0.
This holds as a consequence of the quantum master equation and renormalization group
equation satisfied by I[φ]. Indeed, the renormalization group equation tells us that

eI[φ]/h̄ = exp
(

h̄ ∑ λi

(
∂PΦi) − ∂P(Φ0)

))
eI[Φ0]/h̄.

Thus,
ddReI[φ]/h̄ = h̄ ∑ dλi∂P(Φi)e

I[φ]/h̄

The QME for each I[∑ λiΦi] tells us that

(Q + h̄ ∑ λi4Φi)e
I[φ]/h̄ = 0.

Putting these equations together with the definition of 4φ shows that I[φ] satisfies the
QME.

Thus, we have constructed a BD algebra Obsq
φ(M) over Ω∗(4k) for every simplex

φ : 4k →P . It is evident that these BD algebras are compatible with face and degeneracy
maps, and so glue together to define a BD algebra over the simplicial de Rham complex
Ω∗4(P) of P .

Let φ be a k-simplex of P , and let

Supp(φ) = ∪λ∈4k Supp(∑ λiΦi).

We need to check that the bracket {O1, O2}φ vanishes for observables O1, O2 such that
(Supp O1 × Supp)O2 ∩ Supp φ = ∅. This is immediate, because the bracket is defined by
contracting with tensors in E ⊗ E whose supports sit inside Supp φ.
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Next, we need to verify that, on a k-simplex φ of P , the differential Q + {I[φ],−}φ in-
creases support by an amount linear in Supp(φ). This follows from the support properties
satisfied by I[Φ] (which are detailed in the definition of a quantum field theory, definition
8.2.9.1).

It remains to construct the P0 algebra over Ω∗(C P). The construction is almost iden-
tical, so we will not give all details. A zero-simplex of C P is an element of E ⊗ E of the
form Ψ = tΦ, where Φ is a parametrix. We can use the same formulae we used for para-
metrices to construct a propagator P(Ψ) and Poisson bracket {−,−}Ψ for each Ψ ∈ C P .
The kernel defining the Poisson bracket {−,−}Ψ need not be smooth. This means that
the bracket {−,−}Ψ is only defined on the subspace Osm(E ) of functionals with smooth
first derivative. In particular, if Ψ = 0 is the vertex of the cone C P , then {−,−}0 is the

Poisson bracket defined in Chapter 6 on Õbs
cl
(M) = Osm(E ).

For each Ψ ∈ C P , we can form a tree-level effective interaction

I0[Ψ] = W0 (P(Ψ), I) ∈ Osm,P(E ),

where I ∈ Oloc(E ) is the classical action functional we start with. There are no difficulties
defining this expression because we are working at tree-level and using functionals with
smooth first derivative. If Ψ = 0, then I0[0] = I.

The P0 algebra over Ω∗(C P) is defined in almost exactly the same way as we defined
the BD algebra over Ω∗P . The underlying commutative algebra is Osm(E )⊗Ω∗(C P). On
a k-simplex ψ with vertices Ψ0, . . . , Ψk, the Poisson bracket is

{−,−}ψ = ∑ λi{−,−}Ψi + ∑ dλi{−,−}P(Ψi),

where {−,−}P(Ψi) is the Poisson bracket of cohomological degree 0 defined using the
propagator P(Ψi) ∈ E ⊗̂πE as a kernel. If we let I0[ψ] = I0[∑ λiΨi], then the differential is

dψ = Q + {I0[ψ],−}ψ.

The renormalization group equation and classical master equation satisfied by the I0[Ψ]

imply that d2
ψ = 0. If Ψ = 0, this P0 algebra is clearly the P0 algebra Õbs

cl
(M) con-

structed in Chapter 6. When restricted to P ⊂ C P , this P0 algebra is the sub P0 algebra
of Obsq

P(M)/h̄ obtained by restricting to functionals with smooth first derivative; the
inclusion

Õbs
cl
C P(M) |P ↪→ Obsq

P(M)/h̄
is thus a quasi-isomorphism, using proposition 6.4.2.4 of Chapter 6. �

9.3. Global observables

In the next few sections, we will prove the first version (section 1.3) of our quantiza-
tion theorem. Our proof is by construction, associating a factorization algebra on M to a



9.3. GLOBAL OBSERVABLES 121

quantum field theory on M, in the sense of [Cos11b]. This is a quantization (in the weak
sense) of the P0 factorization algebra associated to the corresponding classical field theory.

More precisely, we will show the following.

9.3.0.1 Theorem. For any quantum field theory on a manifold M over a nilpotent dg manifold
(X, A ), there is a factorization algebra Obsq on M, valued in the multicategory of differentiable
pro-cochain complexes flat over A [[h̄]].

There is an isomorphism of factorization algebras

Obsq⊗A [[h̄]]A
∼= Obscl

between Obsq modulo h̄ and the commutative factorization algebra Obscl .

Further, Obsq is a weak quantization (in the sense of Chapter ??, section 1.3) of the P0 factor-
ization algebra Obscl of classical observables.

9.3.1. So far we have constructed a BD algebra Obsq
Φ(M) for each parametrix Φ; these

BD algebras are all weakly equivalent to each other. In this section we will define a cochain
complex Obsq(M) of global observables which is independent of the choice of parametrix.
For every open subset U ⊂ M, we will construct a subcomplex Obsq(U) ⊂ Obsq(M) of
observables supported on U. The complexes Obsq(U) will form our factorization algebra.

Thus, suppose we have a quantum field theory on M, with space of fields E and
effective action functionals {I[Φ]}, one for each parametrix (as explained in section 8.2).

An observable for a quantum field theory (that is, an element of the cochain complex
Obsq(M)) is simply a first-order deformation {I[Φ] + δO[Φ]} of the family of effective
action functionals I[Φ], which satisfies a renormalization group equation but does not
necessarily satisfy the locality axiom in the definition of a quantum field theory. Definition
9.3.1.3 makes this idea precise.

Remark: This definition is motivated by a formal argument with the path integral. Let
S(φ) be the action functional for a field φ, and let O(φ) be another function of the field,
describing a measurement that one could make. Heuristically, the expectation value of
the observable is

〈O〉 = 1
ZS

∫
O(φ)e−S(φ)/h̄ Dφ,

where ZS denotes the partition function, simply the integral without O. A formal manip-
ulation shows that

〈O〉 = d
dδ

1
ZS

∫
e(−S(φ)+h̄δO(φ))/h̄ Dφ.

In other words, we can view O as a first-order deformation of the action functional S
and compute the expectation value as the change in the partition function. Because the
book [Cos11b] gives an approach to the path integral that incorporates the BV formalism,
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we can define and compute expectation values of observables by exploiting the second
description of 〈O〉 given above. ♦

Earlier we defined cochain complexes Obsq
Φ(M) for each parametrix. The underlying

graded vector space of Obsq
Φ(M) is O(E )[[h̄]]; the differential on Obsq

Φ(M) is

Q̂Φ = Q + {I[Φ],−}Φ + h̄4Φ.

9.3.1.1 Definition. Define a linear map

WΦ
Ψ : O(E )[[h̄]]→ O(E )[[h̄]]

by requiring that, for an element f ∈ O(E )[[h̄]] of cohomological degree i,

I[Φ] + δWΦ
Ψ ( f ) = W (P(Φ)− P(Ψ), I[Ψ] + δ f )

where δ is a square-zero parameter of cohomological degree −i.

9.3.1.2 Lemma. The linear map

WΦ
Ψ : Obsq

Ψ(M)→ Obsq
Φ(M)

is an isomorphism of differentiable pro-cochain complexes.

PROOF. The fact that WΦ
Ψ intertwines the differentials Q̂Φ and Q̂Ψ follows from the

compatibility between the quantum master equation and the renormalization group equa-
tion described in [Cos11b], Chapter 5 and summarized in section 8.2. It is not hard to
verify that WΦ

Ψ is a map of differentiable pro-cochain complexes. The inverse to WΦ
Ψ is

WΨ
Φ . �

9.3.1.3 Definition. A global observable O of cohomological degree i is an assignment to every
parametrix Φ of an element

O[Φ] ∈ Obsq
Φ(M) = O(E)[[h̄]]

of cohomological degree i such that

WΦ
Ψ O[Ψ] = O[Φ].

If O is an observable of cohomological degree i, we let Q̂O be defined by

Q̂(O)[Φ] = Q̂Φ(O[Φ]) = QO[Φ] + {I[Φ], O[Φ]}Φ + h̄4ΦO[Φ].

This makes the space of observables into a differentiable pro-cochain complex, which we call Obsq(M).

Thus, if O ∈ Obsq(M) is an observable of cohomological degree i, and if δ is a square-
zero parameter of cohomological degree −i, then the collection of effective interactions
{I[Φ] + δO[Φ]} satisfy most of the axioms needed to define a family of quantum field
theories over the base ring C[δ]/δ2. The only axiom which is not satisfied is the locality
axiom: we have not imposed any constraints on the behavior of the O[Φ] as Φ→ 0.
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9.4. Local observables

So far, we have defined a cochain complex Obsq(M) of global observables on the
whole manifold M. If U ⊂ M is an open subset of M, we would like to isolate those
observables which are “supported on U”.

The idea is to say that an observable O ∈ Obsq(M) is supported on U if, for sufficiently
small parametrices, O[Φ] is supported on U. The precise definition is as follows.

9.4.0.1 Definition. An observable O ∈ Obsq(M) is supported on U if, for each (i, k) ∈ Z≥0 ×
Z≥0, there exists a compact subset K ⊂ Uk and a parametrix Φ, such that for all parametrices
Ψ ≤ Φ

Supp Oi,k[Ψ] ⊂ K.

Remark: Recall that Oi,k[Φ] : E ⊗k → C is the kth term in the Taylor expansion of the
coefficient of h̄i of the functional O[Φ] ∈ O(E )[[h̄]]. ♦

Remark: As always, the definition works over an arbitrary nilpotent dg manifold (X, A ),
even though we suppress this from the notation. In this generality, instead of a compact
subset K ⊂ Uk we require K ⊂ Uk × X to be a set such that the map K → X is proper. ♦

We let Obsq(U) ⊂ Obsq(M) be the sub-graded vector space of observables supported
on U.

9.4.0.2 Lemma. Obsq(U) is a sub-cochain complex of Obsq(M). In other words, if O ∈ Obsq(U),
then so is Q̂O.

PROOF. The only thing that needs to be checked is the support condition. We need to
check that, for each (i, k), there exists a compact subset K of Uk such that, for all sufficiently
small Φ, Q̂Oi,k[Φ] is supported on K.

Note that we can write

Q̂Oi,k[Φ] = QOi,k[Φ] + ∑
a+b=i

r+s=k+2

{Ia,r[Φ], Ob,s[Φ]}Φ + ∆ΦOi−1,k+2[Φ].

We now find a compact subset K for Q̂Oi,k[Φ]. We know that, for each (i, k) and for all
sufficiently small Φ, Oi,k[Φ] is supported on K̃, where K̃ is some compact subset of Uk. It
follows that QOi,k[Φ] is supported on K̃.

By making K̃ bigger, we can assume that for sufficiently small Φ, Oi−1,k+2[Φ] is sup-
ported on L, where L is a compact subset of Uk+2 whose image in Uk, under every projec-
tion map, is in K̃. This implies that ∆ΦOi−1,k+2[Φ] is supported on K̃.
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The locality condition for the effective actions I[Φ] implies that, by choosing Φ to
be sufficiently small, we can make Ii,k[Φ] supported as close as we like to the small di-
agonal in Mk. It follows that, by choosing Φ to be sufficiently small, the support of
{Ia,r[Φ], Ob,s[Φ]}Φ can be taken to be a compact subset of Uk. Since there are only a finite
number of terms like {Ia,r[Φ], Ob,s[Φ]}Φ in the expression for (Q̂O)i,k[Φ], we see that for
Φ sufficiently small, (Q̂O)i,k[Φ] is supported on a compact subset K of Uk, as desired. �

9.4.0.3 Lemma. Obsq(U) has a natural structure of differentiable pro-cochain complex space.

PROOF. Our general strategy for showing that something is a differentiable vector
space is to ensure that everything works in families over an arbitrary nilpotent dg mani-
fold (X, A ). Thus, suppose that the theory we are working with is defined over (X, A ).
If Y is a smooth manifold, we say a smooth map Y → Obsq(U) is an observable for
the family of theories over (X × Y, A ⊗̂πC∞(Y)) obtained by base-change along the map
X×Y → X (so this family of theories is constant over Y).

The filtration on Obsq(U) (giving it the structure of pro-differentiable vector space) is
inherited from that on Obsq(M). Precisely, an observable O ∈ Obsq(U) is in Fk Obsq(U)
if, for all parametrices Φ,

O[Φ] ∈∏ h̄i Sym≥(2k−i) E ∨.

The renormalization group flow WΨ
Φ preserves this filtration.

So far we have verified that Obsq(U) is a pro-object in the category of pre-differentiable
cochain complexes. The remaining structure we need is a flat connection

∇ : C∞(Y, Obsq(U))→ Ω1(Y, Obsq(U))

for each manifold Y, where C∞(Y, Obsq(U)) is the space of smooth maps Y → Obsq(U).

This flat connection is equivalent to giving a differential on

Ω∗(Y, Obsq(U)) = C∞(Y, Obsq(U))⊗C∞(Y) Ω∗(Y)

making it into a dg module for the dg algebra Ω∗(Y). Such a differential is provided by
considering observables for the family of theories over the nilpotent dg manifold (X ×
Y, A ⊗̂πΩ∗(Y)), pulled back via the projection map X×Y → Y. �

9.5. Local observables form a prefactorization algebra

At this point, we have constructed the cochain complex Obsq(M) of global observ-
ables of our factorization algebra. We have also constructed, for every open subset U ⊂
M, a sub-cochain complex Obsq(U) of observables supported on U.
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In this section we will see that the local quantum observables Obsq(U) of a quantum
field on a manifold M form a prefactorization algebra.

The definition of local observables makes it clear that they form a pre-cosheaf: there
are natural injective maps of cochain complexes

Obsq(U)→ Obsq(U′)

if U ⊂ U′ is an open subset.

Let U, V be disjoint open subsets of M. The structure of prefactorization algebra on
the local observables is specified by the pre-cosheaf structure mentioned above, and a
bilinear cochain map

Obsq(U)×Obsq(V)→ Obsq(U qV).

These product maps need to be maps of cochain complexes which are compatible with
the pre-cosheaf structure and with reordering of the disjoint opens. Further, they need to
satisfy a certain associativity condition which we will verify.

9.5.1. Defining the product map. Suppose that O ∈ Obsq(U) and O′ ∈ Obsq(V)
are observables on U and V respectively. Note that O[Φ] and O′[Φ] are elements of the
cochain complex

Obsq
Φ(M) =

(
O(E )[[h̄]], Q̂Φ

)
which is a BD algebra and so a commutative algebra (ignoring the differential, of course).
(The commutative product is simply the usual product of functions on E .) In the defini-
tion of the prefactorization product, we will use the product of O[Φ] and O′[Φ] taken in
the commutative algebra O(E). This product will be denoted O[Φ] ∗O′[Φ] ∈ O(E).

Recall (see definition 9.3.1.1) that we defined a linear renormalization group flow
operator WΨ

Φ , which is an isomorphism between the cochain complexes Obsq
Φ(M) and

Obsq
Ψ(M).

The main result of this section is the following.

9.5.1.1 Theorem. For all observables O ∈ Obsq(U), O′ ∈ Obsq(V), where U and V are disjoint,
the limit

lim
Ψ→0

WΦ
Ψ
(
O[Ψ] ∗O′[Ψ]

)
∈ O(E )[[h̄]]

exists. Further, this limit satisfies the renormalization group equation, so that we can define an
observable m(O, O′) by

m(O, O′)[Φ] = lim
Ψ→0

WΦ
Ψ
(
O[Ψ] ∗O′[Ψ]

)
.
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The map

Obsq(U)×Obsq(V) 7→ Obsq(U qV)

O×O′ 7→ m(O, O′)

is a smooth bilinear cochain map, and it makes Obsq into a prefactorization algebra in the multi-
category of differentiable pro-cochain complexes.

PROOF. We will show that, for each i, k, the Taylor term

WΨ
Φ (O[Φ] ∗O′[Φ])i,k : E ⊗k → C

is independent of Φ for Φ sufficiently small. This will show that the limit exists.

Note that
WΨ

Γ

(
WΓ

Φ
(
O[Φ] ∗O′[Φ]

))
= WΨ

Φ
(
O[Φ] ∗O′[Φ]

)
.

Thus, to show that the limit limΦ→0 WΨ
Φ (O[Φ] ∗O′[Φ]) is eventually constant, it suffices

to show that, for all sufficiently small Φ, Γ satisfying Φ < Γ,

WΓ
Φ(O[Φ] ∗O′[Φ])i,k = (O[Γ] ∗O′[Γ])i,k.

This turns out to be an exercise in the manipulation of Feynman diagrams. In order to
prove this, we need to recall a little about the Feynman diagram expansion of WΓ

Φ(O[Φ]).
(Feynman diagram expansions of the renormalization group flow are discussed exten-
sively in [Cos11b].)

We have a sum of the form

WΓ
Φ(O[Φ])i,k = ∑

G

1
|Aut(G)|wG (O[Φ]; I[Φ]; P(Γ)− P(Φ)) .

The sum is over all connected graphs G with the following decorations and properties.

(1) The vertices v of G are labelled by an integer g(v) ∈ Z≥0, which we call the genus
of the vertex.

(2) The first Betti number of G, plus the sum of over all vertices of the genus g(v),
must be i (the “total genus”).

(3) G has one special vertex.
(4) G has k tails (or external edges).

The weight wG (O[Φ]; I[Φ]; P(Γ)− P(Φ)) is computed by the contraction of a collection of
symmetric tensors. One places O[Φ]r,s at the special vertex, when that vertex has genus r
and valency s; places I[Φ]g,v at every other vertex of genus g and valency v; and puts the
propagator P(Γ)− P(Φ) on each edge.

Let us now consider WΓ
Φ(O[Φ] ∗O′[Φ]). Here, we a sum over graphs with one special

vertex, labelled by O[Φ] ∗ O′[Φ]. This is the same as having two special vertices, one
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of which is labelled by O[Φ] and the other by O′[Φ]. Diagrammatically, it looks like we
have split the special vertex into two pieces. When we make this maneuver, we introduce
possibly disconnected graphs; however, each connected component must contain at least
one of the two special vertices.

Let us now compare this to the graphical expansion of

O[Γ] ∗O′[Γ] = WΓ
Φ(O[Φ]) ∗WΓ

Φ(O
′[Φ]).

The Feynman diagram expansion of the right hand side of this expression consists of
graphs with two special vertices, labelled by O[Φ] and O′[Φ] respectively (and, of course,
any number of other vertices, labelled by I[Φ], and the propagator P(Γ)− P(Φ) labelling
each edge). Further, the relevant graphs have precisely two connected components, each
of which contains one of the special vertices.

Thus, we see that

WΓ
Φ(O[Φ] ∗O′[Φ])−WΓ

Φ(O[Φ]) ∗WΓ
Φ(O

′[Φ]).

is a sum over connected graphs, with two special vertices, one labelled by O[Φ] and the
other by O′[Φ]. We need to show that the weight of such graphs vanish for Φ, Γ sufficiently
small, with Φ < Γ.

Graphs with one connected component must have a chain of edges connecting the
two special vertices. (A chain is a path in the graph with no repeated vertices or edges.)
For a graph G with “total genus” i and k tails, the length of any such chain is bounded by
2i + k.

It is important to note here that we require a non-special vertex of genus zero to have
valence at least three and a vertex of genus one to have valence at least one. See [Cos11b]
for more discussion. If we are considering a family of theories over some dg ring, we
do allow bivalent vertices to be accompanied by nilpotent parameters in the base ring;
nilpotence of the parameter forces there to be a global upper bound on the number of
bivalent vertices that can appear. The argument we are presenting works with minor
modifications in this case too.

Each step along a chain of edges involves a tensor with some support that depends
on the choice of parametrices Phi and Γ. As we move from the special vertex O toward
the other O′, we extend the support, and our aim is to show that we can choose Φ and Γ
to be small enough so that the support of the chain, excluding O′[Φ], is disjoint from the
support of O′[Φ]. The contraction of a distribution and function with disjoint supports is
zero, so that the weight will vanish. We now make this idea precise.

Let us choose arbitrarily a metric on M. By taking Φ and Γ to be sufficiently small, we
can assume that the support of the propagator on each edge is within ε of the diagonal in
this metric, and ε can be taken to be as small as we like. Similarly, the support of the Ir,s[Γ]
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labelling a vertex of genus r and valency s can be taken to be within cr,sε of the diagonal,
where cr,s is a combinatorial constant depending only on r and s. In addition, by choosing
Φ to be small enough we can ensure that the supports of O[Φ] and O′[Φ] are disjoint.

Now let G′ denote the graph G with the special vertex for O′ removed. This graph cor-
responds to a symmetric tensor whose support is within some distance CGε of the small
diagonal, where CG is a combinatorial constant depending on the graph G′. As the sup-
ports K and K′ (of O and O′, respectively) have a finite distance d between them, we can
choose ε small enough that CGε < d. It follows that, by choosing Φ and Γ to be sufficiently
small, the weight of any connected graph is obtained by contracting a distribution and a
function which have disjoint support. The graph hence has weight zero.

As there are finitely many such graphs with total genus i and k tails, we see that we
can choose Γ small enough that for any Φ < Γ, the weight of all such graphs vanishes.

Thus we have proved the first part of the theorem and have produced a bilinear map

Obsq(U)×Obsq(V)→ Obsq(U qV).

It is a straightforward to show that this is a cochain map and satisfies the associativity
and commutativity properties necessary to define a prefactorization algebra. The fact
that this is a smooth map of differentiable pro-vector spaces follows from the fact that
this construction works for families of theories over an arbitrary nilpotent dg manifold
(X, A ). �

9.6. Local observables form a factorization algebra

We have seen how to define a prefactorization algebra Obsq of observables for our
quantum field theory. In this section we will show that this prefactorization algebra is
in fact a factorization algebra. In the course of the proof, we show that modulo h̄, this
factorization algebra is isomorphic to Obscl .

9.6.0.1 Theorem. (1) The prefactorization algebra Obsq of quantum observables is, in fact,
a factorization algebra.

(2) Further, there is an isomorphism

Obsq⊗C[[h̄]]C
∼= Obscl

between the reduction of the factorization algebra of quantum observables modulo h̄, and
the factorization algebra of classical observables.

9.6.1. Proof of the theorem. This theorem will be a corollary of a more technical
proposition.
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9.6.1.1 Proposition. For any open subset U ⊂ M, filter Obsq(U) by saying that the k-th filtered
piece Gk Obsq(U) is the sub C[[h̄]]-module consisting of those observables which are zero modulo
h̄k. Note that this is a filtration by sub prefactorization algebras over the ring C[[h̄]].

Then, there is an isomorphism of prefactorization algebras (in differentiable pro-cochain com-
plexes)

Gr Obsq ' Obscl ⊗CC[[h̄]].
This isomorphism makes Gr Obsq into a factorization algebra.

Remark: We can give Gk Obsq(U) the structure of a pro-differentiable cochain complex,
as follows. The filtration on Gk Obsq(U) that defines the pro-structure is obtained by
intersecting Gk Obsq(U) with the filtration on Obsq(U) defining the pro-structure. Then
the inclusion Gk Obsq(U) ↪→ Obsq(U) is a cofibration of differentiable pro-vector spaces
(see definition ??). ♦

PROOF OF THE THEOREM, ASSUMING THE PROPOSITION. We need to show that for
every open U and for every Weiss cover U, the natural map

(†) Č(U, Obsq)→ Obsq(U)

is a quasi-isomorphism of differentiable pro-cochain complexes.

The basic idea is that the filtration induces a spectral sequence for both Č(U, Obsq) and
Obsq(U), and we will show that the induced map of spectral sequences is an isomorphism
on the first page. Because we are working with differentiable pro-cochain complexes,
this is a little subtle. The relevant statements about spectral sequences in this context are
developed in this context in Appendix ??.

Note that Č(U, Obsq) is filtered by Č(U, Gk Obsq). The map (†) preserves the filtrations.
Thus, we have a maps of inverse systems

Č(U, Obsq /Gk Obsq)→ Obsq(U)/Gk Obsq(U).

These inverse systems satisfy the properties of Appedix ??, lemma ??. Further, it is clear
that

Obsq(U) = lim←−Obsq(U)/Gk Obsq(U).

We also have
Č(U, Obsq) = lim←− Č(U, Obsq /Gk Obsq).

This equality is less obvious, and uses the fact that the Čech complex is defined using the
completed direct sum as described in Appendix ??, section ??.

Using lemma ??, we need to verify that the map

Č(U, Gr Obsq)→ Gr Obsq(U)
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is an equivalence. This follows from the proposition because Gr Obsq is a factorization
algebra. �

PROOF OF THE PROPOSITION. The first step in the proof of the proposition is the fol-
lowing lemma.

9.6.1.2 Lemma. Let Obsq
(0) denote the prefactorization algebra of observables which are only de-

fined modulo h̄. Then there is an isomorphism

Obsq
(0) ' Obscl

of differential graded prefactorization algebras.

PROOF OF LEMMA. Let O ∈ Obscl(U) be a classical observable. Thus, O is an element
of the cochain complex O(E (U)) of functionals on the space of fields on U. We need to
produce an element of Obsq

(0) from O. An element of Obsq
(0) is a collection of functionals

O[Φ] ∈ O(E ), one for every parametrix Φ, satisfying a classical version of the renormal-
ization group equation and an axiom saying that O[Φ] is supported on U for sufficiently
small Φ.

Given an element
O ∈ Obscl(U) = O(E (U)),

we define an element
{O[Φ]} ∈ Obsq

(0)

by the formula
O[Φ] = lim

Γ→0
WΦ

Γ (O) modulo h̄.

The Feynman diagram expansion of the right hand side only involves trees, since we are
working modulo h̄. As we are only using trees, the limit exists. The limit is defined by
a sum over trees with one special vertex, where each edge is labelled by the propagator
P(Φ), the special vertex is labelled by O, and every other vertex is labelled by the classical
interaction I0 ∈ Oloc(E ) of our theory.

The map

Obscl(U)→ Obsq
(0)(U)

we have constructed is easily seen to be a map of cochain complexes, compatible with the
structure of prefactorization algebra present on both sides. (The proof is a variation on
the argument in section 11, chapter 5 of [Cos11b], about the scale 0 limit of a deformation
of the effective interaction I modulo h̄.)

A simple inductive argument on the degree shows this map is an isomorphism.
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Because the construction works over an arbitrary nilpotent dg manifold, it is clear that
these maps are maps of differentiable cochain complexes. �

The next (and most difficult) step in the proof of the proposition is the following
lemma. We use it to work inductively with the filtration of quantum observables.

Let Obsq
(k) denote the prefactorization algebra of observables defined modulo h̄k+1.

9.6.1.3 Lemma. For all open subsets U ⊂ M, the natural quotient map of differentiable pro-
cochain complexes

Obsq
(k+1)(U)→ Obsq

(k)(U)

is a fibration of differentiable pro-cochain complexes (see Appendix ??, Definition ?? for the defini-
tion of a fibration). The fiber is isomorphic to Obscl(U).

PROOF OF LEMMA. We give the set (i, k) ∈ Z≥0 ×Z≥0 the lexicographical ordering,
so that (i, k) > (r, s) if i > r or if i = r and k > s.

We will let Obsq
≤(i,k)(U) be the quotient of Obsq

(i) consisting of functionals

O[Φ] = ∑
(r,s)≤(i,k)

h̄rO(r,s)[Φ]

satisfying the renormalization group equation and locality axiom as before, but where
O(r,s)[Φ] is only defined for (r, s) ≤ (i, k). Similarly, we will let Obsq

<(i,k)(U) be the quotient
where the O(r,s)[Φ] are only defined for (r, s) < (i, k).

We will show that the quotient map

q : Obsq
≤(i,k)(U)→ Obsq

<(i,k)(U)

is a fibration. The result will follow.

Recall what it means for a map f : V → W of differentiable cochain complexes to be
a fibration. For X a manifold, let C∞

X (V) denote the sheaf of cochain complexes on X of
smooth maps to V. We say f is a fibration if for every manifold X, the induced map of
sheaves C∞

X (V) → C∞
X (W) is surjective in each degree. Equivalently, we require that for

all smooth manifolds X, every smooth map X →W lifts locally on X to a map to V.

Now, by definition, a smooth map from X to Obsq(U) is an observable for the constant
family of theories over the nilpotent dg manifold (X, C∞(X)). Thus, in order to show q is
a fibration, it suffices to show the following. For any family of theories over a nilpotent
dg manifold (X, A ), any open subset U ⊂ M, and any observable α in the A -module
Obsq

<(i,k)(U), we can lift α to an element of Obsq
≤(i,k)(U) locally on X.
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To prove this, we will first define, for every parametrix Φ, a map

LΦ : Obsq
<(i,k)(U)→ Obsq

≤(i,k)(M)

with the property that the composed map

Obsq
<(i,k)(U)

LΦ−→ Obsq
≤(i,k)(M)→ Obsq

<(i,k)(M)

is the natural inclusion map. Then, for every observable O ∈ Obsq
<(i,k)(U), we will show

that LΦ(O) is supported on U, for sufficiently small parametrices Φ, so that LΦ(O) pro-
vides the desired lift.

For
O ∈ Obsq

<(i,k)(U),

we define
LΦ(O) ∈ Obsq

≤(i,k)(M)

by

LΦ(O)r,s[Φ] =

{
Or,s[Φ] if (r, s) < (i, k)
0 if (r, s) = (i, k)

.

For Ψ 6= Φ, we obtain LΦ(O)r,s[Ψ] by the renormalization group flow from LΦ(O)r,s[Φ].
The RG flow equation tells us that if (r, s) < (i, k), then

LΦ(O)r,s[Ψ] = Or,s[Ψ].

However, the RG equation for LΦ(O)r,s is non-trivial and tells us that

Ii,k[Ψ] + δ (LΦ(O)i,k[Ψ]) = Wi,k (P(Ψ)− P(Φ), I[Φ] + δO[Φ])

for δ a square-zero parameter of cohomological degree opposite to that of O.

To complete the proof of this lemma, we prove the required local lifting property in
the sublemma below. �

9.6.1.4 Sub-lemma. For each O ∈ Obsq
<(i,k)(U), we can find a parametrix Φ — locally over the

parametrizing manifold X — so that LΦO lies in Obsq
≤(i,k)(U) ⊂ Obsq

≤(i,k)(M).

PROOF. Although the observables Obsq form a factorization algebra on the manifold
M, they also form a sheaf on the parametrizing base manifold X. That is, for every open
subset V ⊂ X, let Obsq(U) |V denote the observables for our family of theories restricted
to V. In other words, Obsq(U) |V denotes the sections of this sheaf Obsq(U) on V.

The map LΦ constructed above is then a map of sheaves on X.
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For every observable O ∈ Obsq
<(i,k)(U), we need to find an open cover

X =
⋃
α

Yα

of X, and on each Yα a parametrix Φα (for the restriction of the family of theories to Yα)
such that

LΦα(O |Yα
) ∈ Obsq

≤(i,k)(U) |Yα
.

More informally, we need to show that locally in X, we can find a parametrix Φ such that
for all sufficiently small Ψ, the support of LΦ(O)(i,k)[Ψ] is in a subset of Uk × X which
maps properly to X.

This argument resembles previous support arguments (e.g., the product lemma from
section 9.5). The proof involves an analysis of the Feynman diagrams appearing in the
expression

(?) LΦ(O)i,k[Ψ] = ∑
γ

1
|Aut(γ)|wγ (O[Φ]; I[Φ]; P(Ψ)− P(Φ)) .

The sum is over all connected Feynman diagrams of genus i with k tails. The edges are
labelled by P(Ψ)− P(Φ). Each graph has one special vertex, where O[Φ] appears. More
explicitly, if this vertex is of genus r and valency s, it is labelled by Or,s[Φ]. Each non-
special vertex is labelled by Ia,b[Φ], where a is the genus and b the valency of the vertex.
Note that only a finite number of graphs appear in this sum.

By assumption, O is supported on U. This means that there exists some parametrix
Φ0 and a subset K ⊂ U × X mapping properly to X such that for all Φ < Φ0, Or,s[Φ] is
supported on Ks. (Here by Ks ⊂ Us × X we mean the fibre product over X.)

Further, each Ia,b[Φ] is supported as close as we like to the small diagonal M × X in
Mk × X. We can find precise bounds on the support of Ia,b[Φ], as explained in section
8.2. To describe these bounds, let us choose metrics for X and M. For a parametrix Φ
supported within ε of the diagonal M× X in M×M× X, the effective interaction Ia,b[Φ]
is supported within (2a + b)ε of the diagonal.

(In general, if A ⊂ Mn × X, the ball of radius ε around A is defined to be the union of
the balls of radius ε around each fibre Ax of A → X. It is in this sense that we mean that
Ia,b[Φ] is supported within (2a + b)ε of the diagonal.)

Similarly, for every parametrix Ψ with Ψ < Φ, the propagator P(Ψ) − P(Φ) is sup-
ported within ε of the diagonal.

In sum, there exists a set K ⊂ U × X, mapping properly to X, such that for all ε > 0,
there exists a parametrix Φε, such that

(1) O[Φε]r,s is supported on Ks for all (r, s) < (i, k).
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(2) Ia,b[Φε] is supported within (2a + b)ε of the small diagonal.
(3) For all Ψ < Φε, P(Ψ)− P(Φε) is supported within ε of the small diagonal.

The weight wγ of a graph in the graphical expansion of the expression (?) above (using
the parametrices Φε and any Ψ < Φε) is thus supported in the ball of radius cε around
Kk (where c is some combinatorial constant, depending on the number of edges and ver-
tices in γ). There are a finite number of such graphs in the sum, so we can choose the
combinatorial constant c uniformly over the graphs.

Since K ⊂ U × X maps properly to X, locally on X, we can find an ε so that the closed
ball of radius cε is still inside Uk × X. This completes the proof. �

�

9.7. The map from theories to factorization algebras is a map of presheaves

In [Cos11b], it is shown how to restrict a quantum field theory on a manifold M to
any open subset U of M. Factorization algebras also form a presheaf in an obvious way.
In this section, we will prove the following result.

9.7.0.1 Theorem. The map from the simplicial set of theories on a manifold M to the ∞-groupoid
of factorization algebras on M extends to a map of simplicial presheaves.

The proof of this will rely on the results we have already proved, and in particular on
thefact that observables form a factorization algebra.

As a corollary, we have the following very useful result.

9.7.0.2 Corollary. For every open subset U ⊂ M, there is an isomorphism of graded differentiable
vector spaces

Obsq(U) ∼= Obscl(U)[[h̄]].

Note that what we have proved already is that there is a filtration on Obsq(U) whose
associated graded is Obscl(U)[[h̄]]. This result shows that this filtration is split as a filtra-
tion of differentiable vector spaces.

PROOF. By the theorem, Obsq(U) can be viewed as global observables for the field
theory obtained by restricting our field theory on M to one on U. Choosing a parametrix
on U allows one to identify global observables with Obscl(U)[[h̄]], with differential d +
{I[Φ],−}Φ + h̄4Φ. This is an isomorphism of differentiable vector spaces. �



9.7. THE MAP FROM THEORIES TO FACTORIZATION ALGEBRAS IS A MAP OF PRESHEAVES 135

The proof of this theorem is a little technical, and uses the same techniques we have
discussed so far. Before we explain the proof of the theorem, we need to explain how to
restrict theories to open subsets.

Let E (M) denote the space of fields for a field theory on M. In order to relate field
theories on U and on M, we need to relate parametrices on U and on M. If

Φ ∈ E (M)⊗̂βE (M)

is a parametrix on M (with proper support as always), then the restriction

Φ |U∈ E (U)⊗̂βE (U)

of Φ to U may no longer be a parametrix. It will satisfy all the conditions required to be a
parametrix except that it will typically not have proper support.

We can modify Φ |U so that it has proper support, as follows. Let K ⊂ U be a compact
set, and let f be a smooth function on U ×U with the following properties:

(1) f is 1 on K× K.
(2) f is 1 on a neighbourhood of the diagonal.
(3) f has proper support.

Then, f Φ |U does have proper support, and further, f Φ |U is equal to Φ on K× K.

Conversely, given any parametrix Φ on U, there exists a parametrix Φ̃ on M such
that Φ and Φ̃ agree on K. One can construct Φ̃ by taking any parametrix Ψ on M, and
observing that, when restricted to U, Ψ and Φ differ by a smooth section of the bundle
E� E on U ×U.

We can then choose a smooth section σ of this bundle on U ×U such that f has com-
pact support and σ = Ψ−Φ on K× K. Then, we let Φ̃ = Ψ− f .

Let us now explain what it means to restrict a theory on M to one on U. Then we will
state the theorem that there exists a unique such restriction.

Fix a parametrix Φ on U. Let K ⊂ U be a compact set, and consider the compact set

Ln = (Supp Φ∗)nK ⊂ U.

Here we are using the convolution construction discussed earlier, whereby the collection
of proper subsets of U ×U acts on that of compact sets in U by convolution. Thus, Ln is
the set of those x ∈ U such that there exists a sequence (y0, . . . , yn) where (yi, yi+1) is in
Supp Φ, yn ∈ K and y0 = x.

9.7.0.3 Definition. Fix a theory on M, specified by a collection {I[Ψ]} of effective interactions.
Then a restriction of {I[Ψ]} to U consists of a collection of effective interactions {IU [Φ]} with the
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following propery. For every parametrix Φ on U, and for all compact sets K ⊂ U, let Ln ⊂ U be
as above.

Let Φ̃n be a parametrix on M with the property that

Φ̃n = Φ on Ln × Ln.

Then we require that

IU
i,k[Φ](e1, . . . , ek) = Ii,k[Φ̃n](e1, . . . , ek)

where ei ∈ Ec(U) have support on K, and where n ≥ 2i + k.

This definition makes sense in families with obvious modifications.

9.7.0.4 Theorem. Any theory {I[Ψ]} on M has a unique restriction on U.

This restriction map works in families, and so defines a map of simplicial sets from the simpli-
cial set of theories on M to that on U.

In this way, we have a simplicial presheaf T on M whose value on U is the simplicial set of
theories on U (quantizing a given classical theory). This simplicial presheaf is a homotopy sheaf,
meaning that it satisfies Čech descent.

PROOF. It is obvious that the restriction, it if exists, is unique. Indeed, we have speci-
fied each IU

i,k[Φ] for every Φ and for every compact subset K ⊂ U. Since each IU
i,k[Φ] must

have compact support on Uk, it is determined by its behaviour on compact sets of the
form Kk.

In [Cos11b], a different definition of restriction was given, defined not in terms of
general parametrices but in terms of those defined by the heat kernel. One therefore
needs to check that the notion of restriction defined in [Cos11b] coincides with the one
discussed in this theorem. This is easy to see by a Feynman diagram argument similar
to the ones we discussed earlier. The statement that the simplicial presheaf of theories
satisfies Čech descent is proved in [Cos11b]. �

Now here is the main theorem in this section.

9.7.0.5 Theorem. The map which assigns to a field theory the corresponding factorization algebra
is a map of presheaves. Further, the map which assigns to an n-simplex in the simplicial set of
theories, a factorization algebra over Ω∗(4n), is also a map of presheaves.

Let us explain what this means concretely. Consider a theory on M and let Obsq
M

denote the corresponding factorization algebra. Let Obsq
U denote the factorization algebra
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for the theory restricted to U, and let Obsq
M |U denote the factorization algebra Obsq

M
restricted to U (that is, we only consider open subsets contained in M). Then there is a
canonical isomorphism of factorization algebras on U,

Obsq
U
∼= Obsq

M |U .

In addition, this construction works in families, and in particular in families over Ω∗(4n).

PROOF. Let V ⊂ U be an open set whose closure in U is compact. We will first con-
struct an isomorphism of differentiable cochain complexes

Obsq
M(V) ∼= Obsq

U(V).

Later we will check that this isomorphism is compatible with the product structures. Fi-
nally, we will use the codescent properties for factorization algebras to extend to an iso-
morphism of factorization algebras defined on all open subsets V ⊂ U, and not just those
whose closure is compact.

Thus, let V ⊂ U have compact closure, and let O ∈ Obsq
M(V). Thus, O is something

which assigns to every parametrix Φ on M a collection of functionals Oi,k[Φ] satisfying
the renormalization group equation and a locality axiom stating that for each i, k, there
exists a parametrix Φ0 such that Oi,k[Φ] is supported on V for Φ ≤ Φ0.

We want to construct from such an observable a collection of functionals ρ(O)i,k[Ψ],
one for each parametrix Ψ on U, satisfying the RG flow on U and the same locality axiom.
It suffices to do this for a collection of parametrices which include parametrices which are
arbitrarily small (that is, with support contained in an arbitrarily small neighbourhood of
the diagonal in U ×U).

Let L ⊂ U be a compact subset with the property that V ⊂ Int L. Choose a function
f on U ×U which is 1 on a neighbourhood of the diagonal, 1 on L× L, and has proper
support. If Ψ is a parametrix on M, we let Ψ f be the parametrix on U obtained by multi-
plying the restriction of Ψ to U×U by f . Note that the support of Ψ f is a subset of that of
Ψ.

The construction is as follows. Choose (i, k). We define

ρ(O)r,s[Ψ f ] = Or,s[Ψ]

for all (r, s) ≤ (i, k) and all Ψ sufficiently small. We will not spell out what we mean
by sufficiently small, except that it in particular means it is small enough so that Or,s[Ψ]
is supported on V for all (r, s) ≤ (i, k). The value of ρ(O)r,s for other parametrices is
determined by the RG flow.

To check that this construction is well-defined, we need to check that if we take some
parametrix Ψ̃ on M which is also sufficiently small, then the ρ(O)r,s[Ψ f ] and ρ(O)r,s[Ψ̃ f ]
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are related by the RG flow for observables for the theory on U. This RG flow equa-
tion relating these two quantities is a sum over connected graphs, with one vertex la-
belled by ρ(O)[Ψ f ], all other vertices labelled by IU [Ψ f ], and all internal edges labelled
by P(Ψ̃ f )− P(Ψ f ). Since we are only considering (r, s) ≤ (i, k) only finitely many graphs
can appear, and the number of internal edges of these graphs is bounded by 2i + k. We
are assuming that both Ψ and Ψ̃ are sufficiently small so that Or,s[Ψ] and Or,s[Ψ̃] have
compact support on V. Also, by taking Ψ sufficiently small, we can assume that IU [Ψ]

has support arbitrarily close to the diagonal. It follows that, if we choose both Ψ and Ψ̃ to
be sufficiently small, there is a compact set L′ ⊂ U containing V such that the weight of
each graph appearing in the RG flow is zero if one of the inputs (attached to the tails) has
support on the complement of L′. Further, by taking Ψ and Ψ̃ sufficiently small, we can
arrange so that L′ is as small as we like, and in particular, we can assume that L′ ⊂ Int L
(where L is the compact set chosen above).

Recall that the weight of a Feynman diagram involves pairing quantities attached to
edges with multilinear functionals attached to vertices. A similar combinatorial analy-
sis tells us that, for each vertex in each graph appearing in this sum, the inputs to the
multilinear functional attached to the vertex are all supported in L′.

Now, for Ψ sufficiently small, we have

IU
r,s[Ψ

f ](e1, . . . , es) = Ir,s[Ψ](e1, . . . , es)

if all of the ei are supported in L′. (This follows from the definition of the restriction of a
theory. Recall that IU indicates the theory on U and I indicates the theory on M).

It follows that, in the sum over diagrams computing the RG flow, we get the same
answer if we label the vertices by I[Ψ] instead of IU [Ψ f ]. The RG flow equation now
follows from that for the original observable O[Ψ] on M.

The same kind of argument tells us that if we change the choice of compact set L ⊂ U
with V ⊂ Int L, and if we change the bumb function f we chose, the map

ρ : Obsq
M(V)→ Obsq

U(V)

does not change.

A very similar argument also tells us that this map is a cochain map. It is immediate
that ρ is an isomorphism, and that it commutes with the maps arising from inclusions
V ⊂ V ′.

We next need to verify that this map respects the product structure. Recall that the
product of two observables O, O′ in V, V ′ is defined by saying that ([Ψ]O′[Ψ])r,s is simply
the naive product in the symmetric algebra Sym∗ E !

c (V qV ′) for (r, s) ≤ (i, k) (some fixed
(i, k)) and for Ψ sufficiently small.
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Since, for (r, s) ≤ (i, k) and for Ψ sufficiently small, we defined

ρ(O)r,s[Ψ f ] = Or,s[Ψ],

we see immediately that ρ respects products.

Thus, we have constructed an isomorphism

Obsq
M |U∼= Obsq

U

of prefactorization algebras on U, where we consider open subsets in U with compact
closure. We need to extend this to an isomorphism of factorization algebras. To do this,
we use the following property: for any open subset W ⊂ U,

Obsq
U(W) = colim

V⊂W
Obsq

U(V)

where the colimit is over all open subsets with compact closure. (The colimit is taken,
of course, in the category of filtered differentiable cochain complexes, and is simply the
naive and not homotopy colimit). The same holds if we replace Obsq

U by Obsq
M. Thus we

have constructed an isomorphism

Obsq
U(W) ∼= Obsq

M(W)

for all open subsets W. The associativity axioms of prefactorization algebras, combined
with the fact that Obsq(W) is a colimit of Obsq(V) for V with compact closure and the fact
that the isomorphisms we have constructed respect the product structure for such open
subsets V, implies that we have constructed an isomorphism of factorization algebras on
U. �





CHAPTER 10

Further aspects of quantum observables

10.1. Translation-invariant factorization algebras from translation-invariant quantum
field theories

In this section, we will show that a translation-invariant quantum field theory on Rn

gives rise to a smoothly translation-invariant factorization algebra on Rn (see section ??).
We will also show that a holomorphically translation-invariant field theory on Cn gives
rise to a holomorphically translation-invariant factorization algebra.

10.1.1. First, we need to define what it means for a field theory to be translation-
invariant. Let us consider a classical field theory on Rn. Recall that this is given by

(1) A graded vector bundle E whose sections are E ;
(2) An antisymmetric pairing E⊗ E→ DensRn ;
(3) A differential operator Q : E → E making E into an elliptic complex, which is

skew-self adjoint;
(4) A local action functional I ∈ Oloc(E ) satisfying the classical master equation.

A classical field theory is translation-invariant if

(1) The graded bundle E is translation-invariant, so that we are given an isomor-
phism between E and the trivial bundle with fibre E0.

(2) The pairing, differential Q, and local functional I are all translation-invariant.

It takes a little more work to say what it means for a quantum field theory to be
translation-invariant. Suppose we have a translation-invariant classical field theory, equipped
with a translation-invariant gauge fixing operator QGF. As before, a quantization of such
a field theory is given by a family of interactions I[Φ] ∈ Osm,P(E ), one for each parametrix
Φ.

10.1.1.1 Definition. A translation-invariant quantization of a translation-invariant classical field
theory is a quantization with the property that, for all translation-invariant parametrices Φ, I[Φ]
is translation-invariant.

141
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Remark: In general, in order to give a quantum field theory on a manifold M, we do not
need to give an effective interaction I[Φ] for all parametrices. We only need to specify
I[Φ] for a collection of parametrices such that the intersection of the supports of Φ is the
small diagonal M ⊂ M2. The functional I[Ψ] for all other parametrices Ψ is defined by
the renormalization group flow. It is easy to construct a collection of translation-invariant
parametrices satisfying this condition. ♦

10.1.1.2 Proposition. The factorization algebra associated to a translation-invariant quantum
field theory is smoothly translation-invariant (see section ?? in Chapter ?? for the definition).

PROOF. Let Obsq denote the factorization algebra of quantum observables for our
translation-invariant theory. An observable supported on U ⊂ Rn is defined by a family
O[Φ] ∈ O(E )[[h̄]], one for each translation-invariant parametrix, which satisfiese the RG
flow and (in the sense we explained in section 9.4) is supported on U for sufficiently small
parametrices. The renormalization group flow

WΦ
Ψ : O(E )[[h̄]]→ O(E )[[h̄]]

for translation-invariant parametrices Ψ, Φ commutes with the action of Rn on O(E ) by
translation, and therefore acts on Obsq(Rn). For x ∈ Rn and U ⊂ Rn, let TxU denote the
x-translate of U. It is immediate that the action of x ∈ Rn on Obsq(Rn) takes Obsq(U) ⊂
Obsq(Rn) to Obsq(TxU). It is not difficult to verify that the resulting map

Obsq(U)→ Obsq(TxU)

is an isomorphism of differentiable pro-cochain complexes and that it is compatible with
the structure of a factorization algebra.

We need to verify the smoothness hypothesis of a smoothly translation-invariant fac-
torization algebra. This is the following. Suppose that U1, . . . , Uk are disjoint open subsets
of Rn, all contained in an open subset V. Let A′ ⊂ Rnk be the subset consisting of those
x1, . . . , xk such that the closures of Txi Ui remain disjoint and in V. Let A be the connected
component of 0 in A′. We need only examine the case where A is non-empty.

We need to show that the composed map

mx1,...,xk : Obsq(U1)× · · · ×Obsq(Uk)→
Obsq(Tx1U1)× · · · ×Obsq(Txk Uk)→ Obsq(V)

varies smoothly with (x1, . . . , xk) ∈ A. In this diagram, the first map is the product of the
translation isomorphisms Obsq(Ui) → Obsq(Txi Ui), and the second map is the product
map of the factorization algebra.

The smoothness property we need to check says that the map mx1,...,xk lifts to a multi-
linear map of differentiable pro-cochain complexes

Obsq(U1)× · · · ×Obsq(Uk)→ C∞(A, Obsq(V)),
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where on the right hand side the notation C∞(A, Obsq(V)) refers to the smooth maps from
A to Obsq(V).

This property is local on A, so we can replace A by a smaller open subset if necessary.

Let us assume (replacing A by a smaller subset if necessary) that there exist open sub-
sets U′i containing Ui, which are disjoint and contained in V and which have the property
that for each (x1, . . . , xk) ∈ A, Txi Ui ⊂ U′i .

Then, we can factor the map mx1,...,xk as a composition

(†) Obsq(U1) × · · · × Obsq(Uk)
ix1×···×ixk−−−−−−→ Obsq(U′1) × · · · × Obsq(U′k) → Obsq(V).

Here, the map ixi : Obsq(Ui)→ Obsq(U′i ) is the composition

Obsq(Ui)→ Obsq(Txi Ui)→ Obsq(U′i )

of the translation isomorphism with the natural inclusion map Obsq(Txi Ui) → Obsq(U′i ).
The second map in equation (†) is the product map associated to the disjoint subsets
U′1, . . . , U′k ⊂ V.

By possibly replacing A by a smaller open subset, let us assume that A = A1 × · · · ×
Ak, where the Ai are open subsets of Rn containing the origin. It remains to show that the
map

ixi : Obsq(Ui)→ Obsq(U′i )

is smooth in xi, that is, extends to a smooth map

Obsq(Ui)→ C∞(Ai, Obsq(U′i )).

Indeed, the fact that the product map

m : Obsq(U′1)× · · · ×Obsq(U′k)→ Obsq(V)

is a smooth multilinear map implies that, for every collection of smooth maps αi : Yi →
Obsq(U′i ) from smooth manifolds Yi, the resulting map

Y1 × · · · ×Yk → Obsq(V)

(y1, . . . yk) 7→ m(α1(y), . . . , αk(y))

is smooth.

Thus, we have reduced the result to the following statement: for all open subsets A ⊂
Rn and for all U ⊂ U′ such that TxU ⊂ U′ for all x ∈ A, the map ix : Obsq(U)→ Obsq(U′)
is smooth in x ∈ A.

But this statement is tractable. Let

O ∈ Obsq(U) ⊂ Obsq(U′) ⊂ Obsq(Rn)
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be an observable. It is obvious that the family of observables TxO, when viewed as ele-
ments of Obsq(Rn), depends smoothly on x. We need to verify that it depends smoothly
on x when viewed as an element of Obsq(U′).

This amounts to showing that the support conditions which ensure an observable is
in Obsq(U′) hold uniformly for x in compact sets in A.

The fact that O is in Obsq(U) means the following. For each (i, k), there exists a com-
pact subset K ⊂ U and ε > 0 such that for all translation-invariant parametrices Φ sup-
ported within ε of the diagonal and for all (r, s) ≤ (i, k) in the lexicographical ordering,
the Taylor coefficient Or,s[Φ] is supported on Ks.

We need to enlarge K to a subset L ⊂ U′ × A, mapping properly to A, such that TxO
is supported on L in this sense (again, for (r, s) ≤ (i, k)). Taking L = K× A, embedded in
U′ × A by

(k, x) 7→ (Txk, x)
suffices. �

Remark: Essentially the same proof will give us the somewhat stronger result that for any
manifold M with a smooth action of a Lie group G, the factorization algebra correspond-
ing to a G-equivariant field theory on M is smoothly G-equivariant. ♦

10.2. Holomorphically translation-invariant theories and their factorization algebras

Similarly, we can talk about holomorphically translation-invariant classical and quan-
tum field theories on Cn. In this context, we will take our space of fields to be Ω0,∗(Cn, V),
where V is some translation-invariant holomorphic vector bundle on Cn. The pairing
must arise from a translation-invariant map of holomorphic vector bundles

V ⊗V → KCn

of cohomological degree n− 1, where KCn denotes the canonical bundle. This means that
the composed map

Ω0,∗
c (Cn, V)⊗2 → Ω0,∗

c (Cn, KCn)

∫
−→ C

is of cohomological degree −1.

Let

ηi =
∂

∂zi
∨− : Ω0,k(Cn, V)→ Ω0,k−1(Cn, V)

be the contraction operator. The cohomological differential operator Q on Ω0,∗(V) must
be of the form

Q = ∂ + Q0

where Q0 is translation-invariant and satisfies the following conditions:
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(1)
(2) Q0 (and hence Q) must be skew self-adjoint with respect to the pairing on Ω0,∗

c (Cn, V).
(3) We assume that Q0 is a purely holomorphic differential operator, so that we can

write Q0 as a finite sum

Q0 = ∑
∂

∂zI µI

where µI : V → V are linear maps of cohomological degree 1. (Here we are using
multi-index notation). Note that this implies that

[Q0, ηi] = 0,

for i = 1, . . . , n. In terms of the µI , the adjointness condition says that µI is skew-
symmetric if |I| is even and symmetric if |I| is odd.

The other piece of data of a classical field theory is the local action functional I ∈ Oloc(Ω0,∗(Cn, V)).
We assume that I is translation-invariant, of course, but also that

ηi I = 0

for i = 1 . . . n, where the linear map ηi on Ω0,∗(Cn, V) is extended in the natural way to a
derivation of the algebra O(Ω0,∗

c (Cn, V)) preserving the subspace of local functionals.

Any local functional I on Ω0,∗(Cn, V) can be written as a sum of functionals of the
form

φ 7→
∫

Cn
dz1 . . . dzn A(D1φ . . . Dkφ)

where A : V⊗k → C is a linear map, and each Di is in the space

C

[
dzi, ηi,

∂

∂zi
,

∂

∂zi

]
.

(Recall that ηi indicates ∂
∂dzi

). The condition that ηi I = 0 for each i means that we only
consider those Di which are in the subspace

C

[
ηi,

∂

∂zi
,

∂

∂zi

]
.

In other words, as a differential operator on the graded algebra Ω0,∗(Cn), each Di has
constant coefficients.

It turns out that, under some mild hypothesis, any such action functional I is equiva-
lent (in the sense of the BV formalism) to one which has only zi derivatives, and no zi or
dzi derivatives.

10.2.0.1 Lemma. Suppose that Q = ∂, so that Q0 = 0. Then, any interaction I satisfying the
classical master equation and the condition that ηi I = 0 for i = 1, . . . , n is equivalent to one only
involving derivatives in the zi.
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PROOF. Let E = Ω0,∗(Cn, V) denote the space of fields of our theory, and let Oloc(E )
denote the space of local functionals on E . Let Oloc(E )hol denote those functions which are
translation-invariant and are in the kernel of the operators ηi, and let Oloc(E )hol′ denote
those which in addition have only zi derivatives. We will show that the inclusion map

Oloc(E )hol′ → Oloc(E )hol

is a quasi-isomorphism, where both are equipped with just the ∂ differential. Both sides
are graded by polynomial degree of the local functional, so it suffices to show this for local
functionals of a fixed degree.

Note that the space V is filtered, by saying that Fi consists of those elements of degrees
≥ i. This induces a filtration on E by the subspaces Ω0,∗(Cn, FiV). After passing to the
associated graded, the operator Q becomes ∂. By considering a spectral sequence with
respect to this filtration, we see that it suffices to show we have a quasi-isomorphism in
the case Q = ∂.

But this follows immediately from the fact that the inclusion

C

[
∂

∂zi

]
↪→ C

[
∂

∂zi
,

∂

∂zi
, ηi

]

is a quasi-isomorphism, where the right hand side is equipped with the differential [∂,−].
To see that this map is a quasi-isomorphism, note that the ∂ operator sends ηi to ∂

∂zi
. �

Recall that the action functional I induces the structure of L∞ algebra on Ω0,∗(Cn, V)[−1]
whose differential is Q, and whose L∞ structure maps are encoded by the Taylor compo-
nents of I. Under the hypothesis of the previous lemma, this L∞ algebra is L∞ equivalent
to one which is the Dolbeault complex with coefficients in a translation-invariant local L∞
algebra whose structure maps only involve zi derivatives.

There are many natural examples of holomorphically translation-invariant classical
field theories. Geometrically, they arise from holomorphic moduli problems. For instance,
one could take the cotangent theory to the derived moduli of holomorphic G bundles on
Cn, or the cotangent theory to the derived moduli space of such bundles equipped with
holomorphic sections of some associated bundles, or the cotangent theory to the moduli
of holomorphic maps from Cn to some complex manifold.

As is explained in great detail in [], holomorphically translation-invariant field theo-
ries arise very naturally in physics as holomorphic (or minimal) twists of supersymmetric
field theories in even dimensions.
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10.2.1. A holomorphically translation invariant classical theory on Cn has a natural
gauge fixing operator, namely

∂
∗
= −∑ ηi

∂

∂zi
.

Since [ηi, Q0] = 0, we see that [Q, ∂
∗
] = [∂, ∂

∗
] is the Laplacian. (More generally, we can

consider a family of gauge fixing operators coming from the ∂
∗

operator for a family of
flat Hermitian metrics on Cn. Since the space of such metrics is GL(n, C)/U(n) and thus
contractible, we see that everything is independent up to homotopy of the choice of gauge
fixing operator.)

We say a translation-invariant parametrix

Φ ∈ Ω
0,∗
(Cn, V)⊗2

is holomorphically translation-invariant if

(ηi ⊗ 1 + 1⊗ ηi)Φ = 0

for i = 1, . . . , n. For example, if Φ0 is a parametrix for the scalar Laplacian

4 = −∑
∂

∂zi

∂

∂zi

then

Φ0

n

∏
i=1

d(zi − wi)c

defines such a parametrix. Here zi and wi indicate the coordinates on the two copies of
Cn, and c ∈ V ⊗V is the inverse of the pairing on v. Clearly, we can find holomorphically
translation-invariant parametrices which are supported arbitrarily close to the diagonal.
This means that we can define a field theory by only considering I[Φ] for holomorphically
translation-invariant parametrices Φ.

10.2.1.1 Definition. A holomorphically translation-invariant quantization of a holomorphically
translation-invariant classical field theory as above is a translation-invariant quantization such
that for each holomorphically translation-invariant parametrix Φ, the effective interaction I[Φ]
satisfies

ηi I[Φ] = 0

for i = 1, . . . , n. Here ηi abusively denotes the natural extension of the contraction ηi to a deriva-
tion on O(Ω0,∗

c (Cn, V)).

The usual obstruction theory arguments hold for constructing holomorphically-translation
invariant quantizations. At each order in h̄, the obstruction-deformation complex is the
subcomplex of the complex Oloc(E )Cn

of translation-invariant local functionals which are
also in the kernel of the operators ηi.
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10.2.1.2 Proposition. A holomorphically translation-invariant quantum field theory on Cn leads
to a holomorphically translation-invariant factorization algebra.

PROOF. This follows immediately from proposition 10.1.1.2. Indeed, quantum ob-
servables form a smoothly translation-invariant factorization algebra. Such an observ-
able O on U is specified by a family O[Φ] ∈ O(Ω0,∗(Cn, V)) of functionals defined for
each holomorphically translation-invariant parametrix Φ, which are supported on U for
Φ sufficiently small. The operators ∂

∂zi
, ∂

∂zi
, ηi act in a natural way on O(Ω0,∗(Cn, V)) by

derivations, and each commutes with the renormalization group flow WΦ
Ψ for holomor-

phically translation-invariant parametrices Ψ, Φ. Thus, ∂
∂zi

, ∂
∂zi

and ηi define derivations of
the factorization algebra Obsq. Explicitly, if O ∈ Obsq(U) is an observable, then for each
holomorphically translation-invariant parametrix Φ,(

∂

∂zi
O
)
[Φ] =

∂

∂zi
(O[Φ]),

and similarly for ∂
∂zi

and ηi.

By definition (Definition ??), a holomorphically translation-invariant factorization al-
gebra is a translation-invariant factorization algebra where the derivation operator ∂

∂zi
on

observables is homotopically trivialized.

Note that, for a holomorphically translation-invariant parametrix Φ, [ηi,4Φ] = 0 and
ηi is a derivation for the Poisson bracket {−,−}Φ. It follows that

[Q + {I[Φ],−}Φ + h̄4Φ, ηi] = [Q, ηi]

as operators on O(Ω0,∗(Cn, V)). Since we wrote Q = ∂+Q0 and required that [Q0, ηi] = 0,
we have

[Q, ηi] = [∂, ηi] =
∂

∂zi
.

Since the differential on Obsq(U) is defined by

(Q̂O)[Φ] = QO[Φ] + {I[Φ], O[Φ]}Φ + h̄4ΦO[Φ],

we see that [Q̂, ηi] =
∂

∂zi
, as desired. �

As we showed in Chapter ??, a holomorphically translation invariant factorization
algebra in one complex dimension, with some mild additional conditions, gives rise to a
vertex algebra. Let us verify that these conditions hold in the examples of interest. We
first need a definition.

10.2.1.3 Definition. A holomorphically translation-invariant field theory on C is S1-invariant if
the following holds. First, we have an S1 action on the vector space V, inducing an action of S1

on the space E = Ω0,∗(C, V) of fields, by combining the S1 action on V with the natural one
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on Ω0,∗(C) coming from rotation on C. . We suppose that all the structures of the field theory
are S1-invariant. More precisely, the symplectic pairing on E and the differential Q on E must
be S1-invariant. Further, for every S1-invariant parametrix Φ, the effective interaction I[Φ] is
S1-invariant.

10.2.1.4 Lemma. Suppose we have a holomorphically translation invariant field theory on C

which is also S1-invariant. Then, the corresponding factorization algebra satisfies the conditions
stated in theorem ?? of Chapter ?? allowing us to construct a vertex algebra structure on the coho-
mology.

PROOF. Let F denote the factorization algebra of observables of our theory. Note that
if U ⊂ C is an S1-invariant subset, then S1 acts on F (U).

Recall that F is equipped with a complete decreasing filtration, and is viewed as a
factorization algebra valued in pro-differentiable cochain complexes. Recall that we need
to check the following properties.

(1) The S1 action on F (D(0, r)) extends to a smooth action of the algebra D(S1) of
distributions on S1.

(2) Let Grm F (D(0, r)) denote the associated graded with respect to the filtration on
F (D(0, r)). Let Grm

k F (D(0, r)) refer to the kth S1-eigenspace in Grm F (D(0, r)).
Then, we require that the map

Grm
k F (D(0, r))→ Grm

k F (D(0, r′))

is a quasi-isomorphism of differentiable vector spaces.
(3) The differentiable vector space H∗(Grm

k F (D(0, r))) is finite-dimensional for all k
and is zero for k� 0.

Let us first check that the S1 action extends to a D(S1)-action. If λ ∈ S1 let ρ∗λ denote
this action. We need to check that for any observable {O[Φ]} and for every distribution
D(λ) on S1 the expression ∫

λ∈S1
D(λ)ρ∗λO[Φ]

makes sense and defines another observable. Further, this construction must be smooth
in both D(λ) and the observable O[Φ], meaning that it must work families.

For fixed Φ, each Oi,k[Φ] is simply a distribution on Ck with some coefficients. For
any distribution α on Ck, the expression

∫
λ D(λ)ρ∗λα makes sense and is continuous in

both α and the distributionD. Indeed,
∫

λ D(λ)ρ∗λα is simply the push-forward map in
distributions applied to the action map S1 ×Ck → Ck.
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It follows that, for each distribution D on S1, we can define

D ∗Oi,k[Φ] :=
∫

λ∈S1
D(λ)ρ∗λOi,k[Φ].

As a function of D and Oi,k[Φ], this construction is smooth. Further, sending an observable
O[Φ] to D ∗O[Φ] commutes with the renormalization group flow (between S1-equivariant
parametrices). It follows that we can define a new observable D ∗O by

(D ∗O)i,k[Φ] = D ∗ (Oi,k[Φ]).

Now, a family of observables Ox (parametrized by x ∈ M, a smooth manifold) is smooth
if and only if the family of functionals Ox

i,k[Φ] are smooth for all i, k and all Φ. In fact
one need not check this for all Φ, but for any collection of parametrices which includes
arbitrarily small parametrices. If follows that the map sending D and O to D ∗O is smooth,
that is, takes smooth families to smooth families.

Let us now check the remaining assumptions of theorem ??. Let F denote the factor-
ization algebra of quantum observables of the theory and let Fk denote the kth eigenspace
of the S1 action. We first need to check that the inclusion

Grm
k F (D(0, r))→ Grm

k F (D(0, r′))

is a quasi-isomorphism for r < r′. We need it to be a quasi-isomorphism of completed
filtered differentiable vector spaces. The space Grm F (D(0, r)) is a finite direct sum of
spaces of the form

Ω
0,∗
c (D(0, r)l , V�l)Sl .

It thus suffices to check that for the map

Ω
0,∗
c (D(0, r)m)→ Ω

0,∗
c (D(0, r′)m)

is a quasi-isomorphism on each S1-eigenspace. This is immediate.

The same holds to check that the cohomology of Grm
k F (D(0, r)) is zero for k� 0 and

that it is finite-dimensional as a differentiable vector space. �

We have seen that any S1-equivariant and holmorphically translation-invariant factor-
ization algebra on C gives rise to a vertex algebra. We have also seen that the obstruction-
theory method applies in this situation to construct holomorphically translation invariant
factorization algebras from appropriate Lagrangians. In this way, we have a very general
method for constructing vertex algebras.

10.3. Renormalizability and factorization algebras

A central concept in field theory is that of renormalizability. This is discussed in detail
in [Cos11b]. The basic idea is the following.
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The group R>0 acts on the collection of field theories on Rn, where the action is in-
duced from the scaling action of R>0 on Rn. This action is implemented differently in dif-
ferent models for field theories. In the language if factorization algebras it is very simple,
because any factorization algebra on Rn can be pushed forward under any diffeomor-
phism of Rn to yield a new factorization algebra on Rn. Push-forward of factorization
algebras under the map x 7→ λ−1x (for λ ∈ R>0) defines the renormalization group flow
on factorization algebra.

We will discuss how to implement this rescaling in the definition of field theory given
in [Cos11b] shortly. The main result of this section is the statement that the map which as-
signs to a field theory the corresponding factorization algebra of observables intertwines
the action of R>0.

Acting by elements λ ∈ R>0 on a fixed quantum field theory produces a one-parameter
family of theories, depending on λ. Let F denote a fixed theory, either in the language of
factorization algebras, the language of [Cos11b], or any other approach to quantum field
theory. We will call this family of theories ρλ(F). We will view the theory ρλ(F) as be-
ing obtained from F by “zooming in” on Rn by an amount dicated by λ, if λ < 1, or by
zooming out if λ > 1.

We should imagine the theory F as having some number of continuous parameters,
called coupling constants. Classically, the coupling constants are simply constants ap-
pearing next to various terms in the Lagrangian. At the quantum level, we could think
of the structure constants of the factorization algebra as being functions of the coupling
constants (we will discuss this more precisely below).

Roughly speaking, a theory is renormalizable if, as λ → 0, the family of theories ρλ(F)
converges to a limit. While this definition is a good one non-pertubatively, in perturbation
theory it is not ideal. The reason is that often the coupling constants depend on the scale
through quantities like λh̄. If h̄ was an actual real number, we could analyze the behaviour
of λh̄ for λ small. In perturbation theory, however, h̄ is a formal parameter, and we must
expand λh̄ in a series of the form 1 + h̄ log λ + . . . . The coefficients of this series always
grow as λ→ 0.

In other words, from a perturbative point of view, one can’t tell the difference between
a theory that has a limit as λ→ 0 and a theory whose coupling constants have logarithmic
growth in λ.

This motivates us to define a theory to be perturbatively renormalizable if it has logarith-
mic growth as λ → 0. We will introduce a formal definition of perturbative renormaliz-
ability shortly. Let us first indicate why this definition is important.

It is commonly stated (especially in older books) that perturbative renormalizability
is a necessary condition for a theory to exist (in perturbation theory) at the quantum level.
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This is not the case. Instead, renormalizability is a criterion which allows one to select a
finite-dimensional space of well-behaved quantizations of a given classical field theory,
from a possibly infinite dimensional space of all possible quantizations.

There are other criteria which one wants to impose on a quantum theory and which
also help select a small space of quantizations: for instance, symmetry criteria. (In ad-
dition, one also requires that the quantum master equation holds, which is a strong con-
straint. This, however, is part of the definition of a field theory that we use). There are
examples of non-renormalizable field theories for which nevertheless a unique quantiza-
tion can be selected by other criteria. (An example of this nature is BCOV theory).

10.3.1. The renormalization group action on factorization algebras. Let us now dis-
cuss the concept of renormalizability more formally. We will define the action of the group
R>0 on the set of theories in the definition used in [Cos11b], and on the set of factorization
algebras on Rn. We will see that the map which assigns a factorization algebra to a theory
is R>0-equivariant.

Let us first define the action of R>0 on the set of factorization algebras on Rn.

10.3.1.1 Definition. If F is a factorization algebra on Rn, and λ ∈ R>0, let ρλ(F ) denote the
factorization algebra on Rn which is the push-forward ofF under the diffeomorphism λ−1 : Rn →
Rn given by multiplying by λ−1. Thus,

ρλ(F )(U) = F (λ(U))

and the product maps in ρλ(F ) arise from those in F . We will call this action of R>0 on the
collection of factorization algebras on Rn the local renormalization group action.

Thus, the action of R>0 on factorization algebras on Rn is simply the obvious action
of diffeomorphisms on Rn on factorization algebras on Rn.

10.3.2. The renormalization group flow on classical theories. The action on field the-
ories as defined in [Cos11b] is more subtle. Let us start by describing the action of R>0 on
classical field theories. Suppose we have a translation-invariant classical field on Rn, with
space of fields E . The space E is the space of sections of a trivial vector bundle on Rn with
fibre E0. The vector space E0 is equipped with a degree −1 symplectic pairing valued in
the line ω0, the fibre of the bundle of top forms on Rn at 0. We also, of course, have a
translation-invariant local functional I ∈ Oloc(E ) satisfying the classical master equation.

Let us choose an action ρ0
λ of the group R>0 on the vector space E0 with the property

that the symplectic pairing on E0 is R>0-equivariant, where the action of R>0 acts on the
line ω0 with weight −n. Let us further assume that this action is diagonalizable, and
that the eigenvalues of ρ0

λ are rational integer powers of λ. (In practise, only integer or
half-integer powers appear).
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The choice of such an action, together with the action of R>0 on Rn by rescaling,
induces an action of R>0 on

E = C∞(Rn)⊗ E0

which sends

φ⊗ e0 7→ φ(λ−1x)ρ0
λ(e0),

where φ ∈ C∞(Rn) and e0 ∈ E0. The convention that x 7→ λ−1x means that for small λ,
we are looking at small scales (for instance, as λ→ 0 the metric becomes large).

This action therefore induces an action on spaces associated to E , such as the spaces
O(E ) of functionals and Oloc(E ) of local functionals. The compatibility between the action
of R>0 and the symplectic pairing on E0 implies that the Poisson bracket on the space
Oloc(E ) of local functionals on E is preserved by the R>0 action. Let us denote the action
of R>0 on Oloc(E ) by ρλ.

10.3.2.1 Definition. The local renormalization group flow on the space of translation-invariant
classical field theories sends a classical action functional I ∈ Oloc(E ) to ρλ(I).

This definition makes sense, because ρλ preserves the Poisson bracket on Oloc(E ).
Note also that, if the action of ρ0

λ on E0 has eigenvalues in 1
n Z, then the action of ρλ on the

space Oloc(E ) is diagonal and has eigenvalues again in 1
n Z.

The action of R>0 on the space of classical field theories up to isomorphism is inde-
pendent of the choice of action of R>0 on E0. If we choose a different action, inducing
a different action ρ′λ of R>0 on everything, then ρλ I and ρ′λ I are related by a linear and
symplectic change of coordinates on the space of fields which covers the identity on Rn.
Field theories related by such a change of coordinates are equivalent.

It is often convenient to choose the action of R>0 on the space E0 so that the quadratic
part of the action is invariant. When we can do this, the local renormalization group flow
acts only on the interactions (and on any small deformations of the quadratic part that
one considers). Let us give some examples of the local renormalization group flow on
classical field theories. Many more details are given in [Cos11b].

Consider the free massless scalar field theory on Rn. The complex of fields is

C∞(Rn)
D−→ C∞(Rn).

We would like to choose an action of R>0 so that both the symplectic pairing and the
action functional

∫
φ D φ are invariant. This action must, of course, cover the action of

R>0 on Rn by rescaling. If φ, ψ denote fields in the copies of C∞(Rn) in degrees 0 and 1
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respectively, the desired action sends

ρλ(φ(x)) = λ
2−n

2 φ(λ−1x)

ρλ(ψ(x)) = λ
−n−2

2 ψ(λ−1x).

Let us then consider how ρλ acts on possible interactions. We find, for example, that if

Ik(φ) =
∫

φk

then
ρλ(Ik) = λn− k(n−2)

2 Ik.

10.3.2.2 Definition. A classical theory is renormalizable if, as λ → 0, it flows to a fixed point
under the local renormalization group flow.

For instance, we see that in dimension 4, the most general renormalizable classical
action for a scalar field theory which is invariant under the symmetry φ 7→ −φ is∫

φ D φ + m2φ2 + cφ4.

Indeed, the φ4 term is fixed by the local renormalization group flow, whereas the φ2 term
is sent to zero as λ→ 0.

10.3.2.3 Definition. A classical theory is strictly renormalizable if it is a fixed point under the
local renormalization group flow.

A theory which is renormalizable has good small-scale behaviour, in that the coupling
constants (classically) become small at small scales. (At the quantum level there may also
be logaritmic terms which we will discuss shortly). A renormalizable theory may, how-
ever, have bad large-scale behaviour: for instance, in four dimensions, a mass term

∫
φ2

becomes large at large scales. A strictly renormalizable theory is one which is classically
scale invariant. At the quantum level, we will define a strictly renormalizable theory to
be one which is scale invariant up to logarithmic corrections.

Again in four dimensions, the only strictly renormalizable interaction for the scalar
field theory which is invariant under φ 7→ −φ is the φ4 interaction. In six dimensions,
the φ3 interaction is strictly renormalizable, and in three dimensions the φ6 interaction
(together with finitely many other interactions involving derivatives) are strictly renor-
malizable.

As another example, recall that the graded vector space of fields of pure Yang-Mills
theory (in the first order formalism) is(

Ω0[1]⊕Ω1 ⊕Ω2
+ ⊕Ω2

+[−1]⊕Ω3[−1]⊕Ω4[−2]
)
⊗ g.
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(Here Ωi indicates forms on R4). The action of R>0 is the natural one, coming from pull-
back of forms under the map x 7→ λ−1x. The Yang-Mills action functional

S(A, B) =
∫

F(A) ∧ B + B ∧ B

is obviously invariant under the action of R>0, since it only involves wedge product and
integration, as well as projection to Ω2

+. (Here A ∈ Ω1 ⊗ g) and B ∈ Ω2
+ ⊗ g). The other

terms in the full BV action functional are also invariant, because the symplectic pairing on
the space of fields and the action of the gauge group are both scale-invariant.

Something similar holds for Chern-Simons theory on R3, where the space of fields
is Ω∗(R3) ⊗ g[1]. The action of R> 0 is by pull-back by the map x 7→ λ−1x, and the
Chern-Simons functional is obviously invariant.

10.3.2.4 Lemma. The map which assigns to a translation-invariant classical field theory on Rn

the associated P0 factorization algebra commutes with the action of the local renormalization group
flow.

PROOF. The action of R>0 on the space of fields of the theory induces an action on the
space Obscl(Rn) of classical observables on Rn, by sending an observable O (which is a
functon on the space E (Rn) of fields) to the observable

ρλO : φ 7→ O(ρλ(φ)).

This preserves the Poisson bracket on the subspace Õbs
cl
(Rn) of functionals with smooth

first derivative, because by assumption the symplectic pairing on the space of fields is
scale invariant. Further, it is immediate from the definition of the local renormalization
group flow on classical field theories that

ρλ{S, O} = {ρλ(I), ρλ(O)}
where S ∈ Oloc(E ) is a translation-invariant solution of the classical master equation
(whose quadratic part is elliptic).

Let Obscl
λ denote the factorization algebra on Rn coming from the theory ρλ(S) (where

S is some fixed classical action). Then, we see that we have an isomorphism of cochain
complexes

ρλ : Obscl(Rn) ∼= Obscl
λ (R

n).
We next need to check what this isomorphism does to the support conditions. Let U ⊂ Rn

and let O ∈ Obscl(U) be an observable supported on U. Then, one can check easily that
ρλ(O) is supported on λ−1(U). Thus, ρλ gives an isomorphism

Obscl(U) ∼= Obscl
λ (λ

−1(U)).

and so,
Obscl(λU) ∼= Obscl

λ (U).
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The factorization algebra
ρλ Obscl = λ∗Obscl

assigns to an open set U ⊂ Rn the value of Obscl on λ(U). Thus, we have constructed an
isomorphism of precosheaves on Rn,

ρλ Obscl ∼= Obscl
λ .

This isomorphism compatible with the commutative product and the (homotopy) Poisson
bracket on both side, as well as the factorization product maps. �

10.3.3. The renormalization group flow on quantum field theories. The most inter-
esting version of the renormalization group flow is, of course, that on quantum field
theories. Let us fix a classical field theory on Rn, with space of fields as above E =
C∞(Rn)⊗ E0 where E0 is a graded vector space. In this section we will define an action of
the group R>0 on the simplicial set of quantum field theories with space of fields E , quan-
tizing the action on classical field theories that we constructed above. We will show that
the map which assigns to a quantum field theory the corresponding factorization algebra
commutes with this action.

Let us assume, for simplicity, that we have chosen the linear action of R>0 on E0 so that
it leaves invariant a quadratic action functional on E defining a free theory. Let Q : E →
E be the corresponding cohomological differential, which, by assumption, is invariant
under the R>0 action. (This step is not necessary, but will make the exposition simpler).

Let us also assume (again for simplicity) that there exists a gauge fixing operator QGF :
E → E with the property that

ρλQGFρ−λ = λkQGF

for some k ∈ Q. For example, for a massless scalar field theory on Rn, we have seen that

the action of R>0 on the space C∞(Rn)⊕ C∞(Rn)[−1] of fields sends φ to λ
2−n

2 φ(λ−1x)

and ψ to λ
−2−n

2 ψ(λ−1x) (where φ is the field of cohomological degree 0 and ψ is the
field of cohomological degree 1). The gauge fixing operator is the identity operator from
C∞(Rn)[−1] to C∞(Rn)[0]. In this case, we have ρλQGFρ−λ = λ2QGF.

As another example, consider pure Yang-Mills theory on R4. The fields, as we have
described above, are built from forms on R4, equipped with the natural action of R>0.
The gauge fixing operator is d∗. It is easy to see that ρλd∗ρ−λ = λ2d∗. The same holds for
Chern-Simons theory, which also has a gauge fixing operator defined by d∗ on forms.

A translation-invariant quantum field theory is defined by a family

{I[Φ] ∈ O+
P,sm(E )Rn

[[h̄]] | Φ a translation-invariant parametrix}
which satisfies the renormalization group equation, quantum master equation, and the
locality condition. We need to explain how scaling of Rn by R>0 acts on the (simplicial)
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set of quantum field theories. To do this, we first need to explain how this scaling action
acts on the set of parametrices.

10.3.3.1 Lemma. If Φ is a translation-invariant parametrix, then λkρλ(Φ) is also a parametrix,
where as above k measures the failure of QGF to commute with ρλ.

PROOF. All of the axioms characterizing a parametrix are scale invariant, except the
statement that

([Q, QGF]⊗ 1)Φ = Kid − something smooth.

We need to check that λkρλΦ also satisfies this. Note that

ρλ([Q, QGF]⊗ 1)Φ = λk([Q, QGF]⊗ 1)ρλ(Φ)

since ρλ commutes with Q but not with QGF. Also, ρλ preserves Kid and smooth kernels,
so the desired identity holds. �

This lemma suggests a way to define the action of the group R>0 on the set of quantum
field theories.

10.3.3.2 Lemma. If {I[Φ]} is a theory, define Iλ[Φ] by

Iλ[Φ] = ρλ(I[λ−kρ−λ(Φ)]).

Then, the collection of functionals {Iλ[Φ]} define a new theory.

On the right hand side of the equation in the lemma, we are using the natural action
of ρλ on all spaces associated to E , such as the space E ⊗̂πE (to define ρ−λ(Φ)) and the
space of functions on E (to define how ρλ acts on the function I[λ−kρ−λ(Φ)]).

Note that this lemma, as well as most things we discuss about renormalizability of
field theories which do not involve factorization algebras, is discussed in more detail in
[Cos11b], except that there the language of heat kernels is used. We will prove the lemma
here anyway, because the proof is quite simple.

PROOF. We need to check that Iλ[Φ] satisfies the renormalization group equation, lo-
cality action, and quantum master equation. Let us first check the renormalization group
flow. As a shorthand notation, let us write Φλ for the parametrix λkρλ(Φ). Then, note that
the propagator P(Φλ) is

P(Φλ) = ρλP(Φ).

Indeed,

ρλ
1
2 (Q

GF ⊗ 1 + 1⊗QGF)Φ = λk 1
2 (Q

GF ⊗ 1 + 1⊗QGF)ρλ(Φ)

= P(Φλ).
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It follows from this that, for all functionals I ∈ O+
P (E )[[h̄]],

ρλ(W (P(Φ)− P(Ψ), I) = W (P(Φλ)− P(Ψλ), ρλ(I).)

We need to verify the renormalization group equation, which states that

W (P(Φ)− P(Ψ), Iλ[Ψ]) = Iλ[Φ].

Because Iλ[Φ] = ρλ I[Φ−λ], this is equivalent to

ρ−λW (P(Φ)− P(Ψ), ρλ(I[Ψ−λ]) = I[Φ−λ].

Bringing ρ−λ inside the W reduces us to proving the identity

W (P(Φ−λ − P(Ψ−λ, I[Ψ−λ]) = I[Φ−λ]

which is the renormalization group identity for the functionals I[Φ].

The fact that Iλ[Φ] satisfies the quantum master equation is proved in a similar way,
using the fact that

ρλ(4Φ I) = 4Φλ
ρλ(I)

where4Φ denotes the BV Laplacian associated to Φ and I is any functional.

Finally, the locality axiom is an immediate consequence of that for the original func-
tionals I[Φ]. �

10.3.3.3 Definition. Define the local renormalization group flow to be the action of R>0 on
the set of theories which sends, as in the previous lemma, a theory {I[Φ]} to the theory

{Iλ[Φ]} = ρλ(I[λ−kρ−λΦ]).

Note that this works in families, and so defines an action of R>0 on the simplicial set of theories.

Note that this definition simply means that we act by R>0 on everything involved in
the definition of a theory, including the parametrices.

Let us now quote some results from [Cos11b], concerning the behaviour of this action.
Let us recall that to begin with, we chose an action of R>0 on the space E = C∞(R4)⊗ E0
of fields, which arose from the natural rescaling action on C∞(R4) and an action on the
finite-dimensional vector space E0. We assumed that the action on E0 is diagonalizable,
where on each eigenspace ρλ acts by λa for some a ∈ Q. Let m ∈ Z be such that the
exponents of each eigenvalue are in 1

m Z.

10.3.3.4 Theorem. For any theory {I[Φ]} and any parametrix Φ, the family of functionals Iλ[Φ]
depending on λ live in

O+
sm,P(E )

[
log λ, λ

1
m , λ−

1
m

]
[[h̄]].
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In other words, the functionals Iλ[Φ] depend on λ only through polynomials in log λ

and λ±
1
m . (More precisely, each functional Iλ,i,k[Φ] in the Taylor expansion of Iλ[Φ] has

such polynomial dependence, but as we quantify over all i and k the degree of the poly-
nomials may be arbitrarily large).

In [Cos11b], this result is only stated under the hypothesis that m = 2, which is the
case that arises in most examples, but the proof in [Cos11b] works in general.

10.3.3.5 Lemma. The action of R>0 on quantum field theories lifts that on classical field theories
described earlier.

This basic point is also discussed in [Cos11b]; it follows from the fact that at the clas-
sical level, the limit of I[Φ] as Φ→ 0 exists and is the original classical interaction.

10.3.3.6 Definition. A quantum theory is renormalizable if the functionals Iλ[Φ] depend on

λ only by polynomials in log λ and λ
1
m (where we assume that m > 0). A quantum theory is

strictly renormalizable if it only depends on λ through polynomials in log λ.

Note that at the classical level, a strictly renormalizable theory must be scale-invariant,
because logarithmic contributions to the dependence on λ only arise at the quantum level.

10.3.4. Quantization of renormalizable and strictly renormalizable theories. Let us
decompose Oloc(E )R4

, the space of translation-invariant local functionals on E , into eigenspaces
for the action of R>0. For k ∈ 1

m Z, we let O
(k)
loc (E )R4

be the subspace on which ρλ acts by

λk. Let O
(≥0)
loc (E )R4

denote the direct sum of all the non-negative eigenspaces.

Let us suppose that we are interested in quantizing a classical theory, given by an
interaction I, which is either strictly renormalizable or renormalizable. In the first case, I
is in O

(0)
loc (E )R4

, and in the second, it is in O
(≥0)
loc (E )R4

.

By our initial assumptions, the Lie bracket on Oloc(E )R4
commutes with the action of

R>0. Thus, if we have a strictly renormalizable classical theory, then O
(0)
loc (E )R4

is a cochain
complex with differential Q + {I−, }. This is the cochain complex controlling first-order
deformations of our classical theory as a strictly renormalizable theory. In physics termi-
nology, this is the cochain complex of marginal deformations.

If we start with a classical theory which is simply renormalizable, then the space
O

(≥0)
loc (E )R4

is a cochain complex under the differential Q + {I−, }. This is the cochain
complex of renormalizable deformations.
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Typically, the cochain complexes of marginal and renormalizable deformations are
finite-dimensional. (This happens, for instance, for scalar field theories in dimensions
greater than 2).

Here is the quantization theorem for renormalizable and strictly renormalizalble quan-
tizations.

10.3.4.1 Theorem. Fix a classical theory on Rn which is renormalizable with classical interaction
I. Let R(n) denote the set of renormalizable quantizations defined modulo h̄n+1. Then, given any
element inR(n), there is an obstruction to quantizing to the next order, which is an element

On+1 ∈ H1
(
O

(≥0)
loc (E )R4

, Q + {I,−}
)

.

If this obstruction vanishes, then the set of quantizations to the next order is a torsor for H0
(
O

(≥0)
loc (E )R4

)
.

This statement holds in the simplicial sense too: if R(n)
4 denotes the simplicial set of renor-

malizable theories defined modulo h̄n+1 and quantizing a given classical theory, then there is a
homotopy fibre diagram of simplicial sets

R(n+1)
4

//

��

R(n)
4

��

0 // DK
(
O

(≥0)
loc (E )R4

[1], Q + {I,−}
)

On the bottom right DK indicates the Dold-Kan functor from cochain complexes to simplicial sets.

All of these statements hold for the (simplicial) sets of strictly renormalizable theories quantiz-
ing a given strictly renormalizable classical theory, except that we should replace O

(≥0)
loc by O

(0)
loc

everywhere. Further, all these results hold in families iwth evident modifications.

Finally, if G F denotes the simplicial set of translation-invariant gauge fixing conditions for
our fixed classical theory (where we only consider gauge-fixing conditions which scale well with
respect to ρλ as discussed earlier), then the simplicial sets of (strictly) renormalizable theories with
a fixed gauge fixing condition are fibres of a simplicial set fibred over GF . As before, this means that
the simplicial set of theories is independent up to homotopy of the choice of gauge fixing condition.

This theorem is proved in [Cos11b], and is the analog of the quantization theorem for
theories without the renormalizability criterion.

Let us give some examples of how this theorem allows us to construct small-dimensional
families of quantizations of theories where without the renormalizability criterion there
would be an infinite dimensional space of quantizations.
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Consider, as above, the massless φ4 theory on R4, with interaction
∫

φ D φ + φ4. At
the classical level this theory is scale-invariant, and so strictly renormalizable. We have
the following.

10.3.4.2 Lemma. The space of strictly-renormalizable quantizations of the massless φ4 theory in
4 dimensions which are also invariant under the Z/2 action φ 7→ −φ is isomorphic to h̄R[[h̄]].
That is, there is a single h̄-dependent coupling constant.

PROOF. We need to check that the obstruction group for this problem is zero, and the
deformation group is one-dimensional. The obstruction group is zero for degree reasons,
because for a theory without gauge symmetry the complex of local functionals is concen-
trated in degrees ≤ 0. To compute the deformation group, note that the space of local
functionals which are scale invariant and invariant under φ 7→ −φ is two-dimensional,
spanned by

∫
φ4 and

∫
φ D φ. The quotient of this space by the image of the differential

Q + {I,−} is one dimensional, because we can eliminate one of the two possible terms by
a change of coordinates in φ. �

Let us give another, and more difficult, example.

10.3.4.3 Theorem. The space of renormalizable (or strictly renormalizable) quantizations of pure
Yang-Mills theory on R4 with simple gauge Lie algebra g is isomorphic to h̄R[[h̄]]. That is, there
is a single h̄-dependent coupling constant.

PROOF. The relevant cohomology groups were computed in [Cos11b], where it was
shown that the deformation group is one dimensional and that the obstruction group is
H5(g). The obstruction group is zero unless g = sln and n ≥ 3. By considering the
outer automorphisms of sln, it was argued in [Cos11b] that the obstruction must always
vanish. �

This theorem then tells us that we have an essentially canonical quantization of pure
Yang-Mills theory on R4, and hence a corresonding factorization algebra.

The following is the main new result of this section.

10.3.4.4 Theorem. The map from translation-invariant quantum theories on Rn to factorization
algebras on Rn commutes with the local renormalization group flow.

PROOF. Suppose we have a translation-invariant quantum theory on Rn with space of
fields E and family of effective actions {I[Φ]}. Recall that the RG flow on theories sends
this theory to the theory defined by

Iλ[Φ] = ρλ(I[λ−kρ−λ(Φ)]).
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We let Φλ = λkρλΦ. As we have seen in the proof of lemma 10.3.3.2, we have

P(Φλ) = ρλ(P(Φ))

4Φλ
= ρλ(4Φ).

Suppose that {O[Φ]} is an observable for the theory {I[Φ]}. First, we need to show that

Oλ[Φ] = ρλ(O[Φ−λ])

is an observable for the theory Oλ[Φ]. The fact that Oλ[Φ] satisfies the renormalization
group flow equation is proved along the same lines as the proof that Iλ[Φ] satisfies the
renormalization group flow equation in lemma 10.3.3.2.

If Obsq
λ denotes the factorization algebra for the theory Iλ, then we have constructed

a map

Obsq(Rn)→ Obsq
λ(R

n)

{O[Φ]} 7→ {Oλ[Φ]}.
The fact that4Φλ

= ρλ(4Φ) implies that this is a cochain map. Further, it is clear that this
is a smooth map, and so a map of differentiable cochain complexes.

Next we need to check is the support condition. We need to show that if {O[Φ]} is
in Obsq(U), where U ⊂ Rn is open, then {Oλ[Φ]} is in Obsq(λ−1(U)). Recall that the
support condition states that, for all i, k, there is some parametrix Φ0 and a compact set
K ⊂ U such that Oi,k[Φ] is supported in K for all Φ ≤ Φ0.

By making Φ0 smaller if necessary, we can assume that Oi,k[Φλ] is supported on K for
Φ ≤ Φ0. (If Φ is supported within ε of the diagonal, then Φλ is supported within λ−1ε.)
Then, ρλOi,k[Φλ] will be supported on λ−1K for all Φ ≤ Φ0. This says that Oλ is supported
on λ−1K as desired.

Thus, we have constructed an isomorphism

Obsq(U) ∼= Obsq
λ(λ

−1(U)).

This isomorphism is compatible with inclusion maps and with the factorization product.
Therefore, we have an isomorphism of factorization algebras

(λ−1)∗Obsq ∼= Obsq
λ

where (λ−1)∗ indicates pushforward under the map given by multiplication by λ−1. Since
the action of the local renormalization group flow on factorization algebras on Rn sends
F to (λ−1)∗F , this proves the result. �

The advantage of the factorization algebra formulation of the local renormalization
group flow is that it is very easy to define; it captures precisely the intuition that the
renormalization group flow arises the action of R>0 on Rn. This theorem shows that



10.4. COTANGENT THEORIES AND VOLUME FORMS 163

the less-obvious definition of the renormalization group flow on theories, as defined in
[Cos11b], coincides with the very clear definition in the language of factorization algebras.
The advantage of the definition presented in [Cos11b] is that it is possible to compute
with this definition, and that the relationship between this definition and how physicists
define the β-function is more or less clear. For example, the one-loop β-function (one-loop
contribution to the renormalization group flow) is calculated explicitly for the φ4 theory
in [Cos11b].

10.4. Cotangent theories and volume forms

In this section we will examine the case of a cotangent theory, in which our defini-
tion of a quantization of a classical field theory acquires a particularly nice interpretation.
Suppose that L is an elliptic L∞ algebra on a manifold M describing an elliptic moduli
problem, which we denote by BL. As we explained in Chapter ??, section 5.6, we can con-
struct a classical field theory from L, whose space of fields is E = L[1]⊕L![−2]. The main
observation of this section is that a quantization of this classical field theory can be inter-
preted as a kind of “volume form” on the elliptic moduli problem BL. This point of view
was developed in [Cos13], and used in [Cos11a] to provide a geometric interpretation of
the Witten genus.

The relationship between quantization of field theories and volume forms was dis-
cussed already at the very beginning of this book, in Chapter ??. There, we explained
how to interpret (heuristically) the BV operator for a free field theory as the divergence
operator for a volume form.

While this heuristic interpretation holds for many field theories, cotangent theories
are a class of theories where this relationship becomes very clean. If we have a cotan-
gent theory to an elliptic moduli problem L on a compact manifold, then the L∞ algebra
L(M) has finite-dimensional cohomology. Therefore, the formal moduli problem BL(M)
is an honest finite-dimensional formal derived stack. We will find that a quantization of a
cotangent theory leads to a volume form on BL(M) which is of a “local” nature.

Morally speaking, the partition function of a cotangent theory should be the volume of
BL(M) with respect to this volume form. If, as we’ve been doing, we work in perturbation
theory, then the integral giving this volume often does not converge. One has to replace
BL(M) by a global derived moduli space of solutions to the equations of motion to have a
chance at defining the volume. The volume form on a global moduli space is obtained by
doing perturbation theory near every point and then gluing together the formal volume
forms so obtained near each point.

This program has been successfully carried out in a number of examples, such as
[?, GG11, ?]. For example, in [Cos11a], the cotangent theory to the space of holomorphic
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maps from an elliptic curve to a complex manifold was studied, and it was shown that
the partition function (defined in the way we sketched above) is the Witten elliptic genus.

10.4.1. A finite dimensional model. We first need to explain an algebraic interpreta-
tion of a volume form in finite dimensions. Let X be a manifold (or complex manifold or
smooth algebraic variety; nothing we will say will depend on which geometric category
we work in). Let O(X) denote the smooth functions on X, and let Vect(X) denote the
vector fields on X.

If ω is a volume form on X, then it gives a divergence map

Divω : Vect(X)→ O(X)

defined via the Lie derivative:
Divω(V)ω = LVω

for V ∈ Vect(X). Note that the divergence operator Divω satisfies the equations

(†)
Divω( f V) = f Divω V + V( f ).

Divω([V, W]) = V Divω W −W Divω V.

The volume form ω is determined up to a constant by the divergence operator Divω.

Conversely, to give an operator Div : Vect(X) → O(X) satisfying equations (†) is the
same as to give a flat connection on the canonical bundle KX of X, or, equivalently, to give
a right D-module structure on the structure sheaf O(X).

10.4.1.1 Definition. A projective volume form on a space X is an operator Div : Vect(X) →
O(X) satisfying equations (†).

The advantage of this definition is that it makes sense in many contexts where more
standard definitions of a volume form are hard to define. For example, if A is a quasi-free
differential graded commutative algebra, then we can define a projective volume form on
the dg scheme Spec A to be a cochain map Der(A)→ A satisfying equations (†). Similarly,
if g is a dg Lie or L∞ algebra, then a projective volume form on the formal moduli problem
Bg is a cochain map C∗(g, g[1])→ C∗(g) satisfying equations (†).

10.4.2. There is a generalization of this notion that we will use where, instead of
vector fields, we take any Lie algebroid.

10.4.2.1 Definition. Let A be a commutative differential graded algebra over a base ring k. A Lie
algebroid L over A is a dg A-module with the following extra data.

(1) A Lie bracket on L making it into a dg Lie algebra over k. This Lie bracket will be typically
not A-linear.

(2) A homomorphism of dg Lie algebras α : L→ Der∗(A), called the anchor map.
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(3) These structures are related by the Leibniz rule

[l1, f l2] = (α(l1)( f )) l2 + (−1)|l1|| f | f [l1, l2]

for f ∈ A, li ∈ L.

In general, we should think of L as providing the derived version of a foliation. In
ordinary as opposed to derived algebraic geometry, a foliation on a smooth affine scheme
with algebra of functions A consists of a Lie algebroid L on A which is projective as an
A-module and whose anchor map is fibrewise injective.

10.4.2.2 Definition. If A is a commutative dg algebra and L is a Lie algebroid over A, then an
L-projective volume form on A is a cochain map

Div : L→ A

satisfying

Div(al) = a Div l + (−1)|l||a|α(l)a.

Div([l1, l2]) = l1 Div l2 − (−1)|l1||l2|l2 Div l1.

Of course, if the anchor map is an isomorphism, then this structure is the same as a
projective volume form on A. In the more general case, we should think of an L-projective
volume form as giving a projective volume form on the leaves of the derived foliation.

10.4.3. Let us explain how this definition relates to the notion of quantization of P0
algebras.

10.4.3.1 Definition. Give the operad P0 a C× action where the product has weight 0 and the
Poisson bracket has weight 1. A graded P0 algebra is a C×-equivariant differential graded algebra
over this dg operad.

Note that, if X is a manifold, O(T∗[−1]X) has the structure of graded P0 algebra,
where the C× action on O(T∗[−1]X) is given by rescaling the cotangent fibers.

Similarly, if L is a Lie algebroid over a commutative dg algebra A, then Sym∗A L[1] is a
C×-equivariant P0 algebra. The P0 bracket is defined by the bracket on L and the L-action
on A; the C× action gives Symk L[1] weight −k.

10.4.3.2 Definition. Give the operad BD over C[[h̄]] a C× action, covering the C× action on
C[[h̄]], where h̄ has weight −1, the product has weight 0, and the Poisson bracket has weight 1.
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Note that this C× action respects the differential on the operad BD, which is defined
on generators by

d(− ∗−) = h̄{−,−}.
Note also that by describing the operad BD as a C×-equivariant family of operads over
A1, we have presented BD as a filtered operad whose associated graded operad is P0.

10.4.3.3 Definition. A filtered BD algebra is a BD algebra A with a C× action compatible with
the C× action on the ground ring C[[h̄]], where h̄ has weight −1, and compatible with the C×

action on BD.

10.4.3.4 Lemma. If L is Lie algebroid over a dg commutative algebra A, then every L-projective
volume form yields a filtered BD algebra structure on Sym∗A(L[1])[[h̄]], quantizing the graded P0
algebra Sym∗A(L[1]).

PROOF. If Div : L→ A is an L-projective volume form, then it extends uniquely to an
order two differential operator4 on Sym∗A(L[1]) which maps

Symi
A(L[1])→ Symi−1

A (L[1]).

Then Sym∗A L[1][[h̄]], with differential d + h̄4, gives the desired filtered BD algebra.

�

10.4.4. Let BL be an elliptic moduli problem on a compact manifold M. The main
result of this section is that there exists a special kind of quantization of the cotangent
field theory for BL that gives a projective volume on this formal moduli problem BL.
Projective volume forms arising in this way have a special “locality” property, reflecting
the locality appearing in our definition of a field theory.

Thus, let L be an elliptic L∞ algebra on M. This gives rise to a classical field theory
whose space of fields is E = L[1] ⊕ L![−2], as described in Chapter ??, section 5.6. Let
us give the space E a C×-action where L[1] has weight 0 and L![−1] has weight 1. This
induces a C× action on all associated spaces, such as O(E ) and Oloc(E ).

This C× action preserves the differential Q + {I,−} on O(E ), as well as the commu-
tative product. Recall (Chapter ??, section 6.2) that the subspace

Õbs
cl
(M) = Osm(E ) ⊂ O(E )

of functionals with smooth first derivative has a Poisson bracket of cohomological degree
1, making it into a P0 algebra. This Poisson bracket is of weight 1 with respect to the C×

action on Õbs
cl
(M), so Õbs

cl
(M) is a graded P0 algebra.

We are interested in quantizations of our field theory where the BD algebra Obsq
Φ(M)

of (global) quantum observables (defined using a parametrix Φ) is a filtered BD algebra.
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10.4.4.1 Definition. A cotangent quantization of a cotangent theory is a quantization, given by
effective interaction functionals I[Φ] ∈ O+

sm,P(E )[[h̄]] for each parametrix Φ, such that I[Φ] is of
weight −1 under the C× action on the space O+

sm,P(E )[[h̄]] of functionals.

This C× action gives h̄ weight −1. Thus, this condition means that if we expand

I[Φ] = ∑ h̄i Ii[Φ],

then the functionals Ii[Φ] are of weight i− 1.

Since the fields E = L[1]⊕ L![−2] decompose into spaces of weights 0 and 1 under the C×

action, we see that I0[Φ] is linear as a function of L![−2], that I1[Φ] is a function only of L[1],
and that Ii[Φ] = 0 for i > 1.

Remark: (1) The quantization {I[Φ]} is a cotangent quantization if and only if the
differential Q+ {I[Φ],−}Φ + h̄4Φ preserves the C× action on the space O(E )[[h̄]]
of functionals. Thus, {I[Φ]} is a cotangent quantization if and only if the BD
algebra Obsq

Φ(M) is a filtered BD algebra for each parametrix Φ.
(2) The condition that I0[Φ] is of weight −1 is automatic.
(3) It is easy to see that the renormalization group flow

W (P(Φ)− P(Ψ),−)

commutes with the C× action on the space O+
sm,P(E )[[h̄]].

♦

10.4.5. Let us now explain the volume-form interpretation of cotangent quantization.
Let L be an elliptic L∞ algebra on M, and let O(BL) = C∗(L) be the Chevalley-Eilenberg
cochain complex of M. The cochain complexes O(BL(U)) for open subsets U ⊂ M define
a commutative factorization algebra on M.

As we have seen in Chapter ??, section ??, we should interpret modules for an L∞
algebra g as sheaves on the formal moduli problem Bg. The g-module g[1] corresponds
to the tangent bundle of Bg, and so vector fields on g correspond to the O(Bg)-module
C∗(g, g[1]).

Thus, we use the notation

Vect(BL) = C∗(L,L[1]);

this is a dg Lie algebra and acts on C∗(L) by derivations (see Appendix ??, section B.2, for
details).
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For any open subset U ⊂ M, the L(U)-module L(U)[1] has a sub-module Lc(U)[1]
given by compactly supported elements of L(U)[1]. Thus, we have a sub-O(BL(U))-
module

Vectc(BL(U)) = C∗(L(U),Lc(U)[1]) ⊂ Vect(BL(U)).

This is in fact a sub-dg Lie algebra, and hence a Lie algebroid over the dg commutative
algebra O(BL(U)). Thus, we should view the subspaceLc(U)[1] ⊂ Lc(U)[1] as providing
a foliation of the formal moduli problem BL(U), where two points of BL(U) are in the
same leaf if they coincide outside a compact subset of U.

If U ⊂ V are open subsets of M, there is a restriction map of L∞ algebras L(V) →
L(U). The natural extension map Lc(U)[1]→ Lc(V)[1] is a map of L(V)-modules. Thus,
by taking cochains, we find a map

Vectc(BL(U))→ Vectc(BL(V)).

Geometrically, we should think of this map as follows. If we have an R-point α of BL(V)
for some dg Artinian ring R, then any compactly-supported deformation of the restriction
α |U of α to U extends to a compactly supported deformation of α.

We want to say that a cotangent quantization of L leads to a “local” projective vol-
ume form on the formal moduli problem BL(M) if M is compact. If M is compact, then
Vectc(BL(M)) coincides with Vect(BL(M)). A local projective volume form on BL(M)
should be something like a divergence operator

Div : Vect(BL(M))→ O(BL(M))

satisfying the equations (†), with the locality property that Div maps the subspace

Vectc(BL(U)) ⊂ Vect(BL(M))

to the subspace O(BL(U)) ⊂ O(BL(M)).

Note that a projective volume form for the Lie algebroid Vectc(BL(U)) over O(BL(U))
is a projective volume form on the leaves of the foliation of BL(U) given by Vectc(BL(U)).
The leaf space for this foliation is described by the L∞ algebra

L∞(U) = L(U)/Lc(U) = colim
K⊂U

L(U \ K).

(Here the colimit is taken over all compact subsets of U.) Consider the one-point com-
pactification U∞ of U. Then the formal moduli problem L∞(U) describes the germs at ∞
on U∞ of sections of the sheaf on U of formal moduli problems given by L.

Thus, the structure we’re looking for is a projective volume form on the fibers of the
maps BL(U) → BL∞(U) for every open subset U ⊂ M, where the divergence operators
describing these projective volume forms are all compatible in the sense described above.
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What we actually find is something a little weaker. To state the result, recall (section
9.2) that we use the notation P for the contractible simplicial set of parametrices, and C P
for the cone on P . The vertex of the cone C P will denoted 0̄.

10.4.5.1 Theorem. A cotangent quantization of the cotangent theory associated to the elliptic L∞
algebra L leads to the following data.

(1) A commutative dg algebra OC P(BL) over Ω∗(C P). The underlying graded algebra of
this commutative dg algebra is O(BL)⊗Ω∗(C P). The restriction of this commutative
dg algebra to the vertex 0 of C P is the commutative dg algebra O(BL).

(2) A dg Lie algebroid VectC P
c (BL) over OC P(BL), whose underlying graded OC P(BL)-

module is Vectc(BL)⊗Ω∗(C P). At the vertex 0 of C P , the dg Lie algebroid VectC P
c (BL)

coincides with the dg Lie algebroid Vectc(BL).
(3) We let OP(BL) and VectPc (BL) be the restrictions of OC P(BL) and VectC P

c (BL) to
P ⊂ C P . Then we have a divergence operator

DivP : VectPc (BL)→ OP(BL)

defining the structure of a VectPc (BL) projective volume form on OP(BL) and VectPc (BL).

Further, when restricted to the sub-simplicial set PU ⊂ P of parametrices with support in a
small neighborhood of the diagonal U ⊂ M×M, all structures increase support by an arbitrarily
small amount (more precisely, by an amount linear in U, in the sense explained in section 9.2).

PROOF. This follows almost immediately from theorem 9.2.2.1. Indeed, because we
have a cotangent theory, we have a filtered BD algebra

Obsq
P(M) =

(
O(E )[[h̄]]⊗Ω∗(P), Q̂P , {−,−}P

)
.

Let us consider the sub-BD algebra Õbs
q
P(M), which, as a graded vector space, is Osm(E )[[h̄]]⊗

Ω∗(P) (as usual, Osm(E ) indicates the space of functionals with smooth first derivative).

Because we have a filtered BD algebra, there is a C×-action on this complex Õbs
q
P(M).

We let
OP(BL) = Õbs

q
P(M)0

be the weight 0 subspace. This is a commutative differential graded algebra over Ω∗(P),
whose underlying graded algebra is O(BL); further, it extends (using again the results of
9.2.2.1) to a commutative dg algebra OC P(BL) over Ω∗(C P), which when restricted to
the vertex is O(BL).

Next, consider the weight −1 subspace. As a graded vector space, this is

Õbs
q
P(M)−1 = Vectc(BL)⊗Ω∗(P)⊕ h̄OP(BL).
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We thus let
VectPc (BL) = Õbs

q
P(M)−1/h̄OP(BL).

The Poisson bracket on Õbs
q
P(M) is of weight 1, and it makes the space Õbs

q
P(M)−1 into

a sub Lie algebra.

We have a natural decomposition of graded vector spaces

Õbs
q
P(M)−1 = VectPc (BL)⊕ h̄OP(BL).

The dg Lie algebra structure on Õbs
q
P(M)−1 gives us

(1) The structure of a dg Lie algebra on VectPc (BL) (as the quotient of Õbs
q
P(M)−1

by the differential Lie algebra ideal h̄OP(BL)).
(2) An action of VectPc (BL) on OP(BL) by derivations; this defines the anchor map

for the Lie algebroid structure on VectPc (BL).
(3) A cochain map

VectPc (BL)→ h̄OP(BL).
This defines the divergence operator.

It is easy to verify from the construction of theorem 9.2.2.1 that all the desired properties
hold. �

10.4.6. The general results about quantization of [Cos11b] thus apply to this situa-
tion, to show that the following.

10.4.6.1 Theorem. Consider the cotangent theory E = L[1]⊕L![−2] to an elliptic moduli prob-
lem described by an elliptic L∞ algebra L on a manifold M.

The obstruction to constructing a cotangent quantization is an element in

H1(Oloc(E )C×) = H1(Oloc(BL)).
If this obstruction vanishes, then the simplicial set of cotangent quantizations is a torsor for the
simplicial Abelian group arising from the cochain complex Oloc(BL) by the Dold-Kan correspon-
dence.

As in Chapter ??, section 4.5, we are using the notation Oloc(BL) to refer to a “local”
Chevalley-Eilenberg cochain for the elliptic L∞ algebra L. If L is the vector bundle whose
sections are L, then as we explained in [Cos11b], the jet bundle J(L) is a DM L∞ algebra
and

Oloc(BL) = DensM⊗DM C∗red(J(L)).
There is a de Rham differential (see section 5.3) mapping Oloc(BL) to the complex of local
1-forms,

Ω1
loc(BL) = C∗loc(L,L![−1]).



10.5. CORRELATION FUNCTIONS 171

The de Rham differential maps Oloc(BL) isomorphically to the subcomplex of Ω1
locBL) of

closed local one-forms. Thus, the obstruction is a local closed 1-form on BL of cohomol-
ogy degree 1: it is in

H1(Ω1
loc(BL).

Since the obstruction to quantizing the theory is the obstruction to finding a locally-
defined volume form on BL, we should view this obstruction as being the local first Chern
class of BL.

10.5. Correlation functions

So far in this chapter, we have proved the quantization theorem showing that from
a field theory we can construct a factorization algebra. We like to think that this factor-
ization algebra encodes most things one would want to with a quantum field theory in
perturbation theory. To illustrate this, in this section, we will explain how to construct
correlation frunctions form the factorization algebra, under certain additional hypothesis.

Suppose we have a field theory on a compact manifold M, with space of fields E and
linearized differential Q on the space of fields. Let us suppose that

H∗(E (M), Q) = 0.

This means the following: the complex (E (M), Q) is tangent complex to the formal mod-
uli space of solutions to the equation of motion to our field theory, at the base point around
which we are doing perturbation theory. The statement that this tangent complex has no
cohomology means that there the trivial solution of the equation of motion has no defor-
mations (up to whatever gauge symmetry we have). In other words, we are working with
an isolated point in the moduli of solutions to the equations of motion.

As an example, consider a massive interacting scalar field theory on a compact mani-
fold M, with action functional for example∫

M
φ(D+m2)φ + φ4

where φ ∈ C∞(M) and m > 0. Then, the complex E (M) of fields is the complex

C∞(M)
D+m2

−−−→ C∞(M).

Hodge theory tells us that this complex has no cohomology.

Let Obsq denote the factorization algebra of quantum observables of a quantum field
theory which satisfies this (classical) condition.

10.5.0.1 Lemma. In this situation, there is a canonical isomorphism

H∗(Obsq(M)) = C[[h̄]].
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(Note that we usually work, for simplicity, with complex vector spaces; this result
holds where everything is real too, in which case we find R[[h̄]] on the right hand side).

PROOF. There’s a spectral sequence

H∗(Obscl(M))[[h̄]]� H∗(Obsq(M)).

Further, Obscl(M) has a complete decreasing filtration whose associated graded is the
complex

Gr Obscl(M) = ∏
n

Symn(E (M)∨)

with differential arising from the linear differential Q on E (M). The condition that H∗(E (M), Q) =

0 implies that the cohomology of Symn(E (M)∨) is also zero, so that H∗(Obscl(M)) =
C. This shows that there is an isomorphism of C[[h̄]]-modules from H∗(Obsq(M)) to
C[[h̄]]. To make this isomorphism canonical, we declare that the vacuum observable |0〉 ∈
H0(Obsq(M)) (that is, the unit in the factorization algebra) gets sent to 1 ∈ C[[h̄]]. �

10.5.0.2 Definition. As above, let Obsq denote the factorization algebra of obsevables of a QFT
on M which satisfies H∗(E (M), Q) = 0.

Let U1, . . . , Un ⊂ M be disjoint open sets, and let Oi ∈ Obsq(Ui). Define the expectation
value (or correlation function) of the obsevables Oi, denoted by

〈O1, . . . , On〉 ∈ C[[h̄]],

to be the image of the product observable

O1 ∗ · · · ∗On ∈ H∗(Obsq(M))

under the canonical isomorphism between H∗(Obsq(M)) and C[[h̄]].

We have already encountered this definition when we discussed free theories (see
definition ?? in Chapter ??). There we saw that this definition reproduced usual physics
definitions of correlation functions for free field theories.
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CHAPTER 11

Noether’s theorem in classical field theory

Noether’s theorem is a central result in field theory, which states that there is a bijec-
tion between symmetries of a field theory and conserved currents. In this chapter we will
develop a very general version of Noether’s theorem for classical field theories in the lan-
guage of factorization algebras. In the following chapter, we will develop the analogous
theorem for quantum field theories.

The statement for classical field theories is the following. Suppose we have a classical

field theory on a manifold M, and let Õbs
cl

denote the P0 factorization algebra of observ-
ables of the theory. Suppose that L is a local L∞ algebra on M which acts on our classical
field theory (we will define precisely what we mean by an action shortly). Let Lc denote
the precosheaf of L∞ algebras on M given by compactly supported section of L. Note that

the P0 structure on Õbs
cl

means that Õbs
cl
[−1] is a precosheaf of dg Lie algebras.

The formulation of Noether’s theorem we will prove involves shifted central exten-
sions of hte cosheaf Lc of L∞ algebras on M. Such central extensions were discussed
insection ??; we are interested in −1-shifted central extensions, which fit into short exact
sequences

0→ C[−1]→ L̃c → Lc → 0,

where C is the constant precosheaf.

The theorem is the following.

Theorem. Suppose that a local L∞ algebra L acts on a classical field theory with observables
Obscl . Then, there is a −1-shifted central extension L̃c of the precosheaf Lc of L∞ algebras on M,
and a map of precosheaves of L∞ algebras

L̃c → Õbs
cl
[−1]

which, for every open subset U, sends the central element of L̃c to the observable 1 ∈ Obscl(U)[−1].

This map is not arbitrary. Rather, it is compatible with the action of the cosheaf Lc on
Obscl arising from the action Lc on the field theory. Let us explain the form this compati-
bility takes.

175
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Note that the dg Lie algebra Õbs
cl
(U)[−1] acts on Obscl(U) by the Poisson bracket,

in such a way that the subspace spanned by the observable 1 acts by zero. The L∞ map
we just discussed therefore gives an action of L̃c(U) on Obscl(U), which descends to an
action of Lc(U) because the central element acts by zero.

Theorem. In this situation, the action of Lc(U) coming from the L∞-map L̃c → Õbs
cl

and the
action coming from the action of L on the classical field theory coincide up to a homotopy.

. Let us relate this formulation of Noether’s theorem to familiar statements in classical
field theory. Suppose we have a symplectic manifold X with an action of a Lie algebra g
by symplectic vector fields. Let us work locally on X, so that we can assume H1(X) = 0.
Then, there is a short exact sequence of Lie algebras

0→ R→ C∞(X)→ SympVect(X)→ 0

where SympVect(X) is the Lie algebra of symplectic vector fields on X, and C∞(X) is a
Lie algebra under the Poisson bracket.

We can pull back this central extension under the Lie algebra homomorphism g →
SympVect(X) to obtain a central extension g̃ of g. This is the analog of the central extension
L̃c that appeared in our formulation of Noether’s theorem.

The Poisson algebra C∞(X) is observables of the classical field theory. The map g̃ →
C∞(X) sends the central element of g̃ to 1 ∈ C∞(X). Further, the action of g on C∞(X)
arising from the homomorphism g → C∞(X) coincides with the one arising from the
original homomorphism g→ SympVect(X).

Thus, the map g → C∞(X) is entirely analogous to the map that appears in our for-
mulation of classical Noether’s theorem. Indeed, we defined a field theory to be a sheaf of
formal moduli problems with a−1-shifted symplectic form. The P0 Poisson bracket on the
observables of a classical field theory is analogous to the Poisson bracket on observables
in classical mechanics. Our formulation of Noether’s theorem can be rephrased as saying
that, after passing to a central extension, an action of a sheaf of Lie algebras by symplectic
symmetries on a sheaf of formal moduli probblems is Hamiltonian.

This similarity is more than just an analogy. After some non-trivial work, one can
show that our formulation of Noether’s theorem, when applied to classical mechanics,
yields the statement discussed above about actions of a Lie algebra on a symplectic man-
ifold. The key result one needs in order to translate is a result of Nick Rozenblyum [].
Observables of classical mechanics form a locally-constant P0 factorization algebra on the
real line, and so (by a theorem of Lurie discussed in section ??) an E1 algebra in P0 alge-
bras. Rozenblyum shows E1 algebras in P0 algebras are the same as P1, that is ordinary
Poisson, algebras. This allows us to translate the shifted Poisson bracket on the factoriza-
tion algebra on R of observable of classical mechanics into the ordinary unshifted Poisson
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bracket that is more familiar in classical mechanics, and to translate our formulation of
Noether’s theorem into the statement about Lie algebra actions on symplectic manifolds
discussed above.

11.0.1.

11.0.1.1 Theorem. Suppose we have a quantum field theory on a manifold M, which is acted on
by a local dg Lie (or L∞) algebra on M. Then, there is a map of factorization algebras on M from
the twisted factorization envelope (??) of L to observables of the field theory.

Of course, this is not an arbitrary map; rather, the action of L on observables can be
recovered from this map together with the factorization product.

This theorem may seem quite different from Noether’s theorem as it is usually stated.
We explain the link between this result and the standard formulation in section ??.

For us, the power of this result is that it gives us a very general method for under-
standing quantum observables. The factorization envelope of a local L∞ algebra is a very
explicit and easily-understood object. By contrast, the factorization algebra of quantum
observables of an interacting field theory is a complicated object which resists explicit de-
scription. Our formulation of Noether’s theorem shows us that, if we have a field theory
which has many symmetries, we can understand explicitly a large part of the factorization
algebra of quantum observables.

11.1. Symmetries of a classical field theory

We will start our discussion of Noether’s theorem by examining what it means for
a homotopy Lie algebra to act on a field theory. We are particularly interested in what it
means for a local L∞ algebra to act on a classical field theory. Recall ?? that a local L∞ algebra
L is a sheaf of L∞ algebras which is the sheaf of sections of a graded vector bundle L, and
where the L∞-structure maps are poly-differential operators.

We know from chapter ?? that a perturbative classical field theory is described by
an elliptic moduli problem on M with a degree −1 symplectic form. Equivalently, it is
described by a local L∞ algebra M on M equipped with an invariant pairing of degree
−3. Therefore, an action of L on M should be an L∞ action of L on M. Thus, the first
thing we need to understand is what it means for one L∞ algebra to act on the other.

11.1.1. Actions of L∞ algebras. If g, h are ordinary Lie algebras, then it is straightfor-
ward to say what it means for g to act on h. If g does act on h, then we can define the
semi-direct product gn h. This semi-direct product lives in a short exact sequence of Lie
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algebras
0→ h→ gn h→ g→ 0.

Further, we can recover the action of g on h from the data of a short exact sequence of Lie
algebras like this.

We will take this as a model for the action of one L∞ algebra g on another L∞ algebra
h.

11.1.1.1 Definition. An action of an L∞ algebra g on an L∞ algebra h is, by definition, an L∞-
algebra structure on g⊕ h with the property that the (linear) maps in the exact sequence

0→ h→ g⊕ h→ g→ 0

are maps of L∞ algebras.

Remark: (1) The set of actions of g on h enriches to a simplicial set, whose n-simplices
are families of actions over the dg algebra Ω∗(4n).

(2) There are other possible notions of action of g on h which might seem more nat-
ural to some readers. For instance, an abstract notion is to say that an action of g
on h is an L∞ algebra h̃ with a map φ : h̃→ g and an isomorphism of L∞ algebras
between the homotopy fibre φ−1(0) and h. One can show that this more fancy
definition is equivalent to the concrete one proposed above, in the sense that the
two ∞-groupoids of possible actions are equivalent.

If h is finite dimensional, then we can identify the dg Lie algebra of derivations of
C∗(h) with C∗(h, h[1]) with a certain dg Lie bracket. We can thus view C∗(h, h[1]) as the
dg Lie algebra of vector fields on the formal moduli problem Bh.

11.1.1.2 Lemma. Actions of g on h are the same as L∞-algebra maps g→ C∗(h, h[1]).

PROOF. This is straightforward. �

This lemma shows that an action of g on h is the same as an action of g on the formal
moduli problem Bh which may not preserve the base-point of Bh.

11.1.2. Actions of local L∞ algebras. Now let us return to the setting of local L∞ al-
gebras, and define what it means for one local L∞ algebra to act on another.

11.1.2.1 Definition. Let L,M be local L∞ algebras on M. Then an L action onM is given by a
local L∞ structure on L⊕M, such that the exact sequence

0→M→ L⊕M→ L → 0

is a sequence of L∞ algebras.
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More explicitly, this says thatM (with its original L∞ structure) is a sub-L∞-algebra
ofM⊕L, and is also an L∞-ideal: all operations which take as input at least one element
ofM land inM. We will refer to the L∞ algebra L ⊕M with the L∞ structure defining
the action as LnM.

11.1.2.2 Definition. Suppose thatM has an invariant pairing. An action of L onM preserves
the pairing if, for local compactly supported sections αi, β j of L andM the tensor

〈lr+s(α1, . . . , αr, β1, . . . , βs), βs+1〉

is totally symmetric if s + 1 is even (or antisymmetric if s + 1 is odd) under permutation of the βi.

11.1.2.3 Definition. An action of a local L∞ algebra L on a classical field theory defined by a local
L∞ algebraM with an invariant pairing of degree−3 is, as above, an L∞ action of L onM which
preserves the pairing.

As an example, we have the following.

11.1.2.4 Lemma. Suppose that L acts on an elliptic L∞ algebraM. Then L acts on the cotangent
theory forM.

PROOF. This is immediate by naturality, but we can also write down explicitly the
semi-direct product L∞ algebra describing the action. Note that LnM acts linearly on

(LnM)! [−3] = L![−3]⊕M![−3].

Further, L![−3] is a submodule for this action, so that we can form the quotientM![−3].
Then,

(LnM)nM![−3]

is the desired semi-direct product. �

Remark: Note that this construction is simply giving the−1-shifted relative cotangent bun-
dle to the map

B(LnM)→ BL.

The definition we gave above of an action of a local L∞ algebra on a classical field
theory is a little abstract. We can make it more concrete as follows.

Recall that the space of fields of the classical field theory associated toM isM[1], and
that the L∞ structure onM is entirely encoded in the action functional

S ∈ Oloc(M[1])

which satisfies the classical master equation {S, S} = 0. (The notation Oloc always indi-
cates local functionals modulo constants).
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An action of a local L∞ algebra L onM can also be encoded in a certain local func-
tional, which depends on L. We need to describe the precise space of functionals that arise
in this interpretation.

If X denotes the space-time manifold on which L andM are sheaves, then L(X) is an
L∞ algebra. Thus, we can form the Chevalley-Eilenberg cochain complex

C∗(L(X)) = (O(L(X)[1]), dL)

as well as it’s reduced version C∗red(L(X)).

We can form the completed tensor product of this dg algebra with the shifted Lie
algebra Oloc(M[1]), to form a new shifted dg Lie algebra C∗red(L(X))⊗Oloc(M[1]).

Inside this is the subspace

Oloc(L[1]⊕M[1])/ (Oloc(L[1])⊕Oloc(M[1])) ⊂ C∗red(L(X))⊗Oloc(M[1])

of functionals which are local as a function of L[1]. Note that we are working with func-
tionals which must depend on both L[1] and M[1]: we discard those functionals which
depend only on one or the other.

One can check that this graded subspace is preserved both by the Lie bracket {−,−},
the differential dL and the differential dM (coming from the L∞ structure on L andM).
This space thus becomes a shifted dg Lie algebra, with the differential dL ⊕ dM and with
the degree +1 bracket {−,−}.

11.1.2.5 Lemma. To give an action of a local L∞ algebraL on a classical field theory corresponding
to a local L∞ algebraM with invariant pairing, is the same as to give an action functional

SL ∈ Oloc(L[1]⊕M[1])/ (Oloc(L[1])⊕Oloc(M[1]))

which is of cohomological degree 0, and satisfied the Maurer-Cartan equation

(dL + dM)SL + 1
2{S

L, SL} = 0.

PROOF. Given such an SL, then

dL + dM + {SL,−}

defines a differential on O(L(X)[1] ⊕M(X)[1]). The classical master equation implies
that this differential is of square zero, so that it defines an L∞ structure on L(X)⊕M(X).
The locality condition on SL guarantees that this is a local L∞ algebra structure. A simple
analysis shows that this L∞ structure respects the exact sequence

0→M→ L⊕M→ L → 0

and the invariant pairing onM. �
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This lemma suggests that we should look at a classical field theory with an action of L
as a family of classical field theories over the sheaf of formal moduli problems BL. Further
justification for this idea will be offered in proposition ??.

11.1.3. Let g be an ordinary L∞ algebra (not a sheaf of such), which we assume to be
finite-dimensional for simplicity. Let C∗(g) be it’s Chevalley-Eilenberg cochain algebra,
viewed as a pro-nilpotent commutative dga. Suppose we have a classical field theory,
represented as an elliptic L∞ algebra M with an invariant pairing. Then we can define
the notion of a g-action onM as follows.

11.1.3.1 Definition. A g-action onM is any of the following equivalent data.

(1) An L∞ structure on g⊕M(X) such that the exact sequence

0→M(X)→ g⊕M(X)→ g

is a sequence of L∞-algebras, and such that the structure maps

g⊗n ⊗M(X)⊗m →M(X)

are poly-differential operators in theM-variables.
(2) An L∞-homomorphism

g→ Oloc(BM)[−1]
(the shift is so that Oloc(BM)[−1] is an ordinary, and not shifted, dg Lie algebra).

(3) An element
Sg ∈ C∗red(g)⊗Oloc(BM)

which satisfies the Maurer-Cartan

dgSgdMSg + 1
2{S

g, Sg} = 0.

It is straightforward to verify that these three notions are identical. The third version
of the definition can be viewed as saying that a g-action on a classical field theory is a fam-
ily of classical field theories over the dg ring C∗(g) which reduces to the original classical
field theory modulo the maximal ideal C>0(g). This version of the definition generalizes
to the quantum level.

Our formulation of Noether’s theorem will be phrased in terms of the action of a local
L∞ algebra on a field theory. However, we are often presented with the action of an or-
dinary, finite-dimensional L∞-algebra on a theory, and we would like to apply Noether’s
theorem to this situation. Thus, we need to be able to formulate this kind of action as an
action of a local L∞ algebra.

The following lemma shows that we can do this.

11.1.3.2 Lemma. Let g be an L∞-algebra. Then, the simplicial sets describing the following are
canonically homotopy equivalent:
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(1) Actions of g on a fixed classical field theory on a space-time manifold X.
(2) Actions of the local L∞ algebra Ω∗X ⊗ g on the same classical field theory.

Note that the sheaf Ω∗X⊗ g is a fine resolution of the constant sheaf of L∞ algebras with
value g. The lemma can be generalized to show that, given any locally-constant sheaf of
L∞ algebras g, an action of g on a theory is the same thing as an action of a fine resolution
of g.

PROOF. Suppose thatM is a classical field theory, and suppose that we have an action
of the local L∞ algebra Ω∗X ⊗ g onM.

Actions of g onM are Maurer-Cartan elements of the pro-nilpotent dg Lie algebra

Act(g,M)
def
= C∗red(g)⊗Oloc(M[1])

, with dg Lie structure described above. Actions of Ω∗X ⊗ g are Maurer-Cartan elements of
the pro-nilpotent dg Lie algebra

Act(Ω∗X ⊗ g,M)
def
= Oloc(Ω∗X ⊗ g[1]⊕M[1])/ (Oloc(Ω∗X ⊗ g[1])⊕Oloc(M[1])) ,

again with the dg Lie algebra structure defined above.

Recall that there is an inclusion of dg Lie algebras

Oloc(Ω∗X ⊗ g[1]⊕M[1])/Oloc(Ω∗X ⊗ g[1]) ⊂ C∗(Ω∗(X)⊗ g)⊗Oloc(M[1]).

Further, there is an inclusion of L∞ algebras

g ↪→ Ω∗(X)⊗ g

(by tensoring with the constant functions). Composing these maps gives a map of dg Lie
algebras

Act(Ω∗X ⊗ g,M)→ Act(g,M).
It suffices to show that this map is an equivalence.

We will do this by using the DX-module interpretation of the left hand side. Let J(M)
and J(Ω∗X) refer to the DX-modules of jets of sections ofM and of the de Rham complex,
respectively. Note that the natural map of DX-modules

C∞
X → J(Ω∗X)

is a quasi-isomorphism (this is the Poincaré lemma.).

Recall that
Oloc(M[1]) = ωX ⊗DX C∗red(J(M)).

The cochain complex underlying the dg Lie algebra Act(Ω∗X ⊗ g,M) has the following
interpretation in the language of DX-modules:

Act(Ω∗X ⊗ g,M) = ωX ⊗DX

(
C∗red(J(Ω∗X)⊗C g)⊗C∞

X
C∗red(J(M))

)
.
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Under the other hand, the complex Act(g,M) has the DX-module interpretation

Act(g,M) = ωX ⊗DX

(
C∗red(g⊗ C∞

X )⊗C∞
X

C∗red(J(M))
)

.

Because the map C∞
X → J(Ω∗X) is a quasi-isomorphism of DX-modules, the natural map

C∗red(J(Ω∗X)⊗C g)⊗C∞
X

C∗red(J(M))

→ C∗red(g⊗ C∞
X )⊗C∞

X
C∗red(J(M))

is a quasi-isomorphism of DX-modules. Now, both sides of this equation are flat as left
DX-modules; this follows from the fact that C∗red(J(M)) is a flat DX-module. If follows
that this map is still a quasi-isomorphism after tensoring over DX with ωX. �

11.2. Examples of classical field theories with an action of a local L∞ algebra

One is often interested in particular classes of field theories: for example, conformal
field theories, holomorphic field theories, or field theories defined on Riemannian mani-
folds. It turns out that these ideas can be formalized by saying that a theory is acted on
by a particular local L∞ algebra, corresponding to holomorphic, Riemannian, or confor-
mal geometry. This generalizes to any geometric structure on a manifold which can be
described by a combination of differential equations and symmetries.

In this section, we will describe the local L∞ algebras corresponding to holomorphic,
conformal, and Riemannian geometry, and give examples of classical field theories acted
on by these L∞ algebras.

We will first discuss the holomorphic case. Let X be a complex manifold, and define a
local dg Lie algebra algebra Lhol by setting

Lhol(X) = Ω0,∗(X, TX),

equipped with the Dolbeault differential and the Lie bracket of vector fields. A holomor-
phic classical field theory will be acted on by Lhol(X).

Remark: A stronger notion of holomorphicity might require the field theory to be acted
on by the group of holomorphic symmetries of X, and that the derivative of this action
extends to an action of the local dg Lie algebra Lhol .

Let us now give some examples of field theories acted on by Lhol .

Example: Let X be a complex manifold of complex dimension d, and let g be a finite-
dimensional Lie algebra with Lie group G. Then, Ω0,∗(X, g) describes the formal moduli
space of principle G-bundles on X. We can form the cotangent theory to this, which is a
classical field theory, by letting

M = Ω0,∗(X, g)⊕Ωd,∗(X, g∨)[d− 3].
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As discussed in [Cos13], this example is important in physics. If d = 2 it describes a
holomorphic twist of N = 1 supersymmetric gauge theory. In addition, one can use the
formalism of L∞ spaces [Cos11a, Cos13] to write twisted supersymmetric σ-models in
these terms (when d = 1 and g is a certain sheaf of L∞ algebras on the target space).

The dg Lie algebra Lhol(X) acts by Lie derivative on Ωk,∗(X) for any k. One can make
this action explicit as follows: the contraction map

Ω0,∗(X, TX)×Ωk,∗(X)→ Ωk−1,∗(X)

(V, ω) 7→ ιVω

is Ω0,∗(X)-linear and defined on Ω0,0(X, TX) in the standard way. The Lie derivative is
defined by the Cartan homotopy formula

LVω = [ιV , ∂]ω.

In this way, L acts onM. This action preserves the invariant pairing.

We can write this in terms of an L-dependent action functional, as follows. If α ∈
Ω0,∗(X, g)[1], β ∈ Ωd,∗(X, g∨)[d− 2] and V ∈ Ω0,∗(X, TX)[1], we define

SL(α, β, V) =
∫ 〈

β, (∂ + LV)α
〉
+ 1

2 〈β, [α, α]〉 .

(The fields α, β, V can be of mixed degree).

Note that if V ∈ Ω0,∗(X, TX) is of cohomological degree 1, it defines a deformation of
complex structure of X, and the ∂-operator for this deformed complex structure is ∂ +LV .
The action functional SL therefore describes the variation of the original action functinal
S as we vary the complex structure on X. Other terms in SL encode the fact that S is
invariant under holomorphic symmetries of X.

We will return to this example throughout our discussion of Noether’s theorem. We
will see that, in dimension d = 1 and with g Abelian, it leads to a version of the Segal-
Sugawara construction: a map from the Virasoro vertex algebra to the vertex algebra as-
sociated to a free β− γ system.

Example: Next, let us discuss the situation of field theories defined on a complex mani-
fold X together with a holomorphic principal G-bundle. In the case that X is a Riemann
surface, field theories of this form play an important role in the mathematics of chiral
conformal field theory.

For this example, we define a local dg Lie algebra L on a complex manifold X by

L(X) = Ω0,∗(X, TX)n Ω0,∗(X, g)

so that L(X) is the semi-direct product of the Dolbeault resolution of holomorphic vector
fields with the Dolbeault complex with coefficients in g. Thus, L(X) is the dg Lie algebra
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controlling deformations of X as a complex manifold equipped with a holomorphic G-
bundle, near the trivial bundle. (The dg Lie algebra controlling deformations of the pair
(X, P) where P is a non-trivial principal G-bundle on X is Ω0,∗(X, AtP) where AtP is the
Atiyah algebroid of P, and everything that follows works in the more general case when
P is non-trivial and we use Ω0,∗(X, AtP) in place of L).

Let V be a representation of G. We can form the cotangent theory to the elliptic moduli
problem of sections of V, defined by the Abelian elliptic L∞ algebra

M(X) = Ω0,∗(X, V)[−1]⊕Ω0,∗(X, V∨)[d− 2].

This is acted on by the local L∞ algebra L we described above.

More generally, we could replace V by a complex manifold M with a G-action and
consider the cotangent theory to the moduli of holomorphic maps to M.

Example: In this example we will introduce the local dg Lie algebra LRiem on a Riemannian
manifold X which controls deformations of X as a Riemannian manifold. This local dg
Lie algebra acts on field theories which are defined on Riemannian manifolds; we will
show this explicitly in the case of scalar field theories.

Let (X, g0) be a Riemannian manifold of dimension d, which for simplicity we assume
to be oriented.

Consider the local dg Lie algebra

LRiem(X) = Vect(X)⊕ Γ(X, Sym2 TX)[−1].

The differential is dV = LV g0 where LV indicates Lie derivative. The Lie bracket is
defined by saying that the bracket of a vector field V with anything is given by Lie deriv-
ative.

Note that LRiem(X) is the dg Lie algebra describing the formal neighbourhood of X in
the moduli space of Riemannian manifolds.

Consider the free scalar field theory on X, defined by the abelian elliptic dg Lie algebra

M(X) = C∞(X)[−1]
4g0−−→ Ωd(X)[−2]

where the superscript indicates cohomological degree, and

4g0 = d ∗ d

is the Laplacian for the metric g0, landing in top-forms.
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We define the action of LRiem(X) onM(X) by defining an action functional SL which
couples the fields in LRiem(X) to those inM(X). If φ, ψ ∈ M(X)[1] are fields of cohomo-
logical degree 0 and 1, and V ∈ Vect(X), α ∈ Γ(X, Sym2 TX), then we define SL by

SL(φ, ψ, V, α) =
∫

φ(4g0+α −4g0)φ +
∫
(Vφ)ψ.

On the right hand side we interpret 4g0+α as a formal power series in the field α. The
fact that this satisfies the master equation follows from the fact that the Laplacian 4g0+α

is covariant under infinitesimal diffeomorphisms:

4g0+α + ε[V,4g0+α] = 4g0+α+εLV g0+εLV α.

One can rewrite this in the language of L∞ algebras by Taylor expanding 4g0+α in
powers of α. The resulting semi-direct product L∞-algebra LRiem(X)nM(X) is the de-
scribes the formal moduli space of Riemannian manifolds together with a harmonic func-
tion φ.

Example: Let us modify the previous example by considering a scalar field theory with a
polynomial interaction, so that the action functional is of the form∫

φ4g0 φ + ∑
n≥2

λn
1
n! φ

ndVolg0 .

In this case,M is deformed into a non-abelian L∞ algebra, with maps ln defined by

ln : C∞(X)⊗n → Ωd(X)

ln(φ1, . . . , φn) = λnφ1 · · · φndVolg0 .

The action of LRiem onM is defined, as above, by declaring that the action functional SL
coupling the two theories is

SL(φ, ψ, V, α) + S(φ, ψ) =
∫

φ4g0+αφ + ∑
n≥2

λn
1
n! φ

ndVolg0+α +
∫
(Vφ)ψ.

Example: Next let us discuss the classical conformal field theories.

As above, let (X, g0) be a Riemannian manifold. Define a local dg Lie algebra Lcon f on
X by setting

Lcon f (X) = Vect(X)⊕ C∞(X)⊕ Γ(X, Sym2 TX)[−1].
The copy of C∞(X) corresponds to Weyl rescalings.

The differential on Lcon f (X) is

d(V, f ) = LV g0 + f g0

where V ∈ Vect(X) and f ∈ C∞(X). The Lie bracket is defined by saying that Vect(X)
acts on everything by Lie derivative, and that if f ∈ C∞(X) and α ∈ Γ(X, Sym2 TX),
[ f , α] = f α.
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It is easy to verify that H0(Lcon f (X)) is the Lie algebra of conformal symmetries of X,
and that H1(Lcon f (X)) is the space of first-order conformal deformations of X. The local
dg Lie algebra Lcon f will act on any classical conformal field theory.

We will see this explicitly in the case of the free scalar field theory in dimension 2.
Let M be the elliptic dg Lie algebra corresponding to the free scalar field theory on a
Riemannian 2-manifold X, as described in the previous example.

The action of Lcon f onM is defined such that the sub-algebra LRiem acts in the same
way as before, and that C∞(X) acts by zero.

This does not define an action for the two-dimensional theory with polynomial inter-
action, because the polynomial interaction is not conformally invariant.

There are many other, more complicated, examples of this nature. If X is a conformal
4-manifold, then Yang-Mills theory on X is conformally invariant at the classical level.
The same goes for self-dual Yang-Mills theory. One can explicitly write an action of Lcon f

on the elliptic L∞-algebra on X describing either self-dual or full Yang-Mills theory.

Example: In this example, we will see how we can describe sources for local operators in
the language of local dg Lie algebras.

Let X be a Riemannian manifold, and consider a scalar field theory on X with a φ3

interaction, whose associated elliptic L∞ algebraM has been described above. Recall that
M(X) consists of C∞(X) in degree 1 and of Ωd(X) in degree 2, where d = dim X.

The action functional encoding the L∞ structure onM is the functional onM[1] de-
fined by

S(φ, ψ) =
∫

φ4φ +
∫

φ3.

where φ is a degree 0 element ofM(X)[1], so that φ is a smooth function.

Let us view the sheaf C∞
X [−1] as an Abelian local L∞-algebra on X, situated in degree

1 with zero differential and bracket.

Let us define an action of L onM by giving an action functional

SL(α, φ, ψ) =
∫

φ4φ +
∫

φα.

Here,

α ∈ L[1] = C∞(M)
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and φ, ψ are elements of degrees 0 and 1 ofM(X)[1]. This gives a semi-direct product L∞
algebra LnM, whose underlying cochain complex is

C∞(X)1

Id

%%
C∞(X)1 4 // C∞(X)2

where the first row is L and the second row isM. The only non-trivial Lie bracket is the
original Lie bracket onM.

11.3. The factorization algebra of equivariant observable

11.3.0.1 Proposition. Suppose thatM is a classical field theory with an action of L. Then, there
is a P0 factorization algebra Obscl

L of equivariant observables, which is a factorization algebra in
modules for the factorization algebra in commutative dg algebras C∗(L), which assigns to an open
subset U the commutative dga C∗(L(U)).

PROOF. Since L acts onM, we can construct the semi-direct product local L∞ algebra
LnM. We define the equivariant classical observables

Obscl
L = C∗(LnM)

to be the Chevalley-Eilenberg cochain factorization algebra associated to this semi-direct
product.

As in section 6.4, we will construct a sub-factorization algebra on which the Poisson
bracket is defined and which is quasi-isomorphic. We simply let

Õbs
cl
L(U) ⊂ Obscl

L(U)

be the subcomplex consisting of those functionals which have smooth first derivative but
only in the M-directions. As in section 6.4, there is a P0 structure on this subcomplex,
which on generators is defined by the dual of the non-degenerate invariant pairing on
M. Those functionals which lie in C∗(L(U)) are central for this Poisson bracket.

It is clear that this constructs a P0-factorization algebra over the factorization algebra
C∗(L). �

11.4. Inner actions

A stronger notion of action of a local L∞ algebra on a classical field theory will be
important for Noeother’s theorem. We will call this stronger notion an inner action of a
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local L∞ algebra on a classical field theory. For classical field theories, every action can be
lifted canonically to an inner action, but at the quantum level this is no longer the case.

We defined an action of a local L∞ algebra L on a field theoryM (both on a manifold
X) to be a Maurer-Cartan element in the differential graded Lie algebra Act(L,M) whose
underlying cochain complex is

Oloc(L[1]⊕M[1])/ (Oloc(L[1])⊕Oloc(M[1]))

with the Chevalley-Eilenberg differential for the direct sum L∞ algebra L⊕M.

An inner action will be defined as a Maurer-Cartan element in a larger dg Lie algebra
which is a central extension of Act(L,M) by Oloc(L[1]). Note that

Oloc(L[1]⊕M[1]) ⊂ C∗red(L(X)⊕M)

has the structure of dg Lie algebra, where the differential is the Chevalley-Eilenberg differ-
ential for the direct sum dg Lie algebra, and the bracket arises, as usual, from the invariant
pairing onM.

Further, there’s a natural map of dg Lie algebras from this to Oloc(M[1]), which arises
by applying the functor of Lie algebra cochains to the inclusion M ↪→ M⊕ L of L∞
algebras.

We let
InnerAct(L,M) ⊂ Oloc(L[1]⊕M[1])

be the kernel of this map. Thus, as a cochain complex,

InnerAct(L,M) = Oloc(L[1]⊕M[1])/Oloc(M[1])

with differential the Chevalley-Eilenberg differential for the direct sum L∞ algebra L ⊕
M. Note that the Lie bracket on InnerAct(L,M) is of cohomological degree +1.

11.4.0.1 Definition. An inner action of L onM is a Maurer-Cartan element

SL ∈ InnerAct(L,M).

Thus, SL is of cohomological degree 0, and satisfies the master equation

dSL + 1
2{S

L, SL}.

11.4.0.2 Lemma. Suppose we have an action of L on a field theoryM. Then there is an obstruc-
tion class in H1(Oloc(L[1])) such that the action extends to an inner action if and only if this class
vanishes.

PROOF. There is a short exact sequence of dg Lie algebras

0→ Oloc(L[1])→ InnerAct(L,M)→ Act(L,M)→ 0

and Oloc(L[1]) is central. The result follows from general facts about Maurer-Cartan sim-
plicial sets.
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More explicitly, the obstruction is calculated as follows. Suppose we have an action
functional

SL ∈ Act(L,M) ⊂ C∗red(L(X))⊗ C∗red(M(X)).
Then, let us view SL as a functional in

S̃L InnerAct(L,M) ⊂ C∗red(L(X))⊗ C∗(M(X))

using the natural inclusion C∗red(M(X)) ↪→ C∗(M(X)). The obstruction is simply the
failure of S̃L to satisfy the Maurer-Cartan equation in InnerAct(L,M). �

Let us now briefly remark on some refinements of this lemma, which give some more
control over obstruction class.

Recall that we sometimes use the notation C∗red,loc(L) for the complex Oloc(L[1]). Thus,
C∗red,loc(L) is a subcomplex of C∗red(L(X)). We let C≥2

,loc(L) be the kernel of the natural map

C∗red,loc(L)→ L!(X)[−1].

Thus, C≥2
red,loc(L) is a subcomplex of C≥2

red(L(X)).

11.4.0.3 Lemma. If a local L∞ algebra L acts on a classical field theoryM, then the obstruction
to extending L to an inner action lifts naturally to an element of the subcomplex

C≥2
red,loc(L) ⊂ C∗red,loc(L).

PROOF. Suppose that the action of L onM is encoded by an action functional SL, as
before. The obstruction is(

dLSL + dMSL + 1
2{S

L, SL}
)
|Oloc(L[1])∈ Oloc(L[1]).

Here, dL and dM are the Chevalley-Eilenberg differentials for the two L∞ algebras.

We need to verify that no terms in this expression can be linear in L. Recall that
the functional SL has no linear terms. Further, the differentials dL and dM respect the
filtration on everything by polynomial degree, so that they can not produce a functional
with a linear term from a functional which does not have a linear term. �

Remark: There is a somewhat more general situation when this lemma is false. When
one works with families of classical field theories over some dg ring R with a nilpotent
ideal I, one allows the L∞ algebraM describing the field theory to be curved, as long as
the curving vanishes modulo I. This situation is encountered in the study of σ-models:
see [Cos11a]. WhenM is curved, the differential dM does not preserve the filtration by
polynomial degree, so that this argument fails.

Let us briefly discuss a special case when the obstruction vanishes.
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11.4.0.4 Lemma. Suppose that the action of L onM, when viewed as an action of L on the sheaf
of formal moduli problems BM, preserves the base point of BM. In the language of L∞ algebras,
this means that the L∞ structure on L⊕M defining the action has no terms mapping

L⊗n →M

for some n > 0.

Then, the action of L extends canonically to an inner action.

PROOF. We need to verify that the obstruction(
dLSL + dMSL + 1

2{S
L, SL}

)
|Oloc(L[1])∈ Oloc(L[1]).

is identically zero. Our assumptions on SL mean that it is at least quadratic as a function
onM[1]. It follows that the obstruction is also at least quadratic as a function ofM[1], so
that it is zero when restricted to being a function of just L[1]. �

11.5. Classical Noether’s theorem

As we showed in lemma ??, there is a bijection between classes in H1(C∗red,loc(L)) and
local central extensions of Lc shifted by −1.

11.5.0.1 Theorem. LetM be a classical field theory with an action of a local L∞ algebra L. Let
L̃c be the central extension corresponding to the obstruction class α ∈ H1(C∗red,loc(L)) for lifting

L to an inner action. Let Õbs
cl

be the classical observables of the field theoryM, equipped with
its P0 structure. Then, there is an L∞-map of precosheaves of L∞-algebras

L̃c → Õbs
cl
[−1]

which sends the central element c to the unit 1 ∈ Õbs
cl
[−1] (note that, after the shift, the unit 1

is in cohomological degree 1, as is the central element c).

Remark: The linear term in the L∞-morphism is a map of precosheaves of cochain com-
plexes from L̃c → Obscl [−1]. The fact that we have such a map of precosheaves implies
that we have a map of commutative dg factorization algebras

Ŝym
∗
(L̃c[1])→ Õbs

cl
.

which, as above, sends the central element to 1. This formulation is the one that will
quantize: we will find a map from a certain Chevalley-Eilenberg chain complex of L̃c[1]
to quantum observables.
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Remark: Lemma 11.4.0.3 implies that the central extension L̃c is split canonically as a
presheaf of cochain complexes:

L̃c(U) = C[−1]⊕Lc(U).

Thus, we have a map of precosheaves of cochain complexes

Lc → Obscl .

The same proof will show that that this cochain map to a continuous map from the distri-
butional completion Lc(U) to Obscl .

PROOF. Let us first consider a finite-dimensional version of this statement, in the case
when the central extension splits. Let g, h be L∞ algebras, and suppose that h is equipped
with an invariant pairing of degree−3. Then, C∗(h) is a P0 algebra. Suppose we are given
an element

G ∈ C∗red(g)⊗ C∗(h)
of cohomological degree 0, satisfying the Maurer-Cartan

dG + 1
2{G, G} = 0

where dg, dh are the Chevalley-Eilenberg differentials for g and h respectively, and {−,−}
denotes the Poisson bracket coming from the P0 structure on C∗(h).

Then, G is precisely the data of an L∞ map

g→ C∗(h)[−1].

Indeed, for any L∞ algebra j, to give a Maurer-Cartan element in C∗red(g)⊗ j is the same as
to give an L∞ map g→ j. Further, the simplicial set of L∞-maps and homotopies between
them is homotopy equivalent to the Maurer-Cartan simplicial set.

Let us now consider the case when we have a central extension. Suppose that we have
an element

G ∈ C∗red(g)⊗ C∗(h)
of degree 0, and an obstruction element

α ∈ C∗red(g)

of degree 1, such that
dG + 1

2{G, G} = α⊗ 1.

Let g̃ be the −1-shifted central extension determined by α, so that there is a short exact
sequence

0→ C[−1]→ g̃→ g→ 0.

Then, the data of G and α is the same as a map of L∞ algebras g̃→ C∗(h)[−1] which sends
the central element of g̃ to 1 ∈ C∗(h).
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To see this, let us choose a splitting g̃ = g ⊕ C · c where the central element c is of
degree 1. Let c∨ be the linear functional on g̃ which is zero on g and sends c to 1.

Then, the image of α under the natural map C∗(g) → C∗(g̃) is made exact by c∨,
viewed as a zero-cochain in C∗(g̃). It follows that

G + c∨ ⊗ 1 ∈ C∗red(g̃)⊗ C∗(h)

satisfies the Maurer-Cartan equation, and therefore defines (as above) an L∞-map g̃ →
C∗(h)[−1]. This L∞-map sends c → 1: this is because G only depends on c by the term
c∨ ⊗ 1.

Let us apply these remarks to the setting of factorization algebras. First, let us remark
a little on the notation: we normally use the notation Oloc(L[1]) to refer to the complex of
local functionals on L[1], with the Chevalley-Eilenberg differential. However, we can also
refer to this object as C∗red,loc(L), the reduced, local cochains of L. It is the subcomplex of
C∗red(L(X)) of cochains which are local.

Suppose we have an action of a local L∞-algebra L on a classical field theoryM. Let

α ∈ Oloc(L[1]) = C∗red,loc(L)

be a 1-cocycle representing the obstruction to lifting to an inner action onM. Let

L̃c = Lc ⊕C[−1]

be the corresponding central extension.

By the definition of α, we have a functional

SL ∈ C∗red,loc(L⊕M)/C∗red,loc(M)

of cohomological degree 0 satisfying the Maurer-Cartan equation

dSL + 1
2{S

L, SL} = α.

For every open subset U ⊂ M, we have an injective cochain map

Φ : C∗red,loc(L⊕M)/C∗red,loc(M)→ C∗red(Lc(U))⊗̂C̃∗(M(U)),

where ⊗̂ refers to the completed tensor product and C̃∗(M(U)) refers to the subcomplex
of C∗(M(U)) consisting of functionals with smooth first derivative. The reason we have
such a map is simply that a local functional on U is defined when at least if its inputs is
compactly supported.

The cochain map Φ is in fact a map of dg Lie algebras, where the Lie bracket arises as
usual from the pairing onM. Thus, for every U, we have an element

SL(U) ∈ C∗red(Lc(U))⊗̂C̃∗(M(U))
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satisfying the Maurer-Cartan equation

dSL(U) + 1
2{S

L(U), SL(U)} = α(U).

It follows, as in the finite-dimensional case discussed above, that SL(U) gives rise to a
map of L∞ algebras

L̃c(U)→ C̃∗(M(U))[−1] = Õbs
cl
(U)[−1]

sending the central element c in L̃c(U) to the unit 1 ∈ Õbs
cl
(U). The fact that SL is local

implies immediately that this is a map of precosheaves. �

11.6. Conserved currents

Traditionally, Noether’s theorem states that there is a conserved current associated
to every symmetry. Let us explain why the version of (classical) Noether’s theorem pre-
sented above leads to this more traditional statement. Similar remarks will hold for the
quantum version of Noether’s theorem.

In the usual treatment, a current is taken to be an d− 1-form valued in Lagrangians (if
we’re dealing with a field theory on a manifold X of dimension d). In our formalism, we
make the following definition (which will be valid at the quantum level as well).

11.6.0.1 Definition. A conserved current in a field theory is a map of precosheaves

J : Ω
∗
c [1]→ Obscl

to the factorization algebra of classical observables.

Dually, J can be viewed as a closed, degree 0 element of

J(U)Ω∗(U)[n− 1]⊗̂Obscl(U)

defined for every open subset U, and which is compatible with inclusions of open subsets
in the obviious way.

In particular, we can take the component of J(U)n−1,0 which is an element

J(U)n−1,0 ∈ Ωn−1(U)⊗̂Obscl(U)0.

The superscript in Obscl(U)0 indicates cohomological degree 0. Thus, J(U)n−1,0 is an
n− 1-form valued in observables, which is precisely what is traditionally called a current.

Let us now explain why our definition means that this current is conserved (up to
homotopy). We will need to introduce a little notation to explain this point. If N ⊂ X is a
closed subset, we let

Obscl(N) = holimN⊂U Obscl(U)
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be the homotopy limit of observables on open neighbourhoods of N. Thus, an element of
Obscl(N) is an observable defined on every open neighbourhood of N, in a way compati-
ble (up to homotopy) with inclusions of open sets. The fact that we are taking a homotopy
limit instead of an ordinary limit is not so important for this discussion, it’s to ensure that
the answer doesn’t depend on arbitrary choices.

For example, if p ∈ X is a point, then Obscl(p) should be thought of as the space of
local observables at p.

Suppose we have a conserved current (in the sense of the definition above). Then, for
every compact codimension 1 oriented submanifold N ⊂ X, the delta-distribution on N
is an element

[N] ∈ Ω
1
(U)

defined for every open neighbourhood U of N. Applying the map defining the closed
current, we get an element

J[N] ∈ Obscl(U)

for every neighbourhood U of N. This element is compatible with inclusions U ↪→ U′, so
defines an element of Obscl(N).

Let M ⊂ X be a top-dimensional submanifold with boundary ∂M = N q N′. Then,

dJ[M] = J[N]− J[N′] ∈ Obscl(M).

It follows that the cohomology class [J[N]] of J[N] doesn’t change if N is changed by a
cobordism.

In particular, let us suppose that our space-time manifold X is a product

X = N ×R.

Then, the observable [J[Nt]] associated to the submanifold N × {t} is independent of t.

This is precisely the condition (in the traditional formulation) for a current to be con-
served.

Now let us explain why our version of Noether’s theorem, as explained above, pro-
duces a conserved current from a symmetry.

11.6.0.2 Lemma. Suppose we have a classical field theory on a manifold X which has an infinites-
imal symmetry. To this data, our formulation of Noether’s theorem produces a conserved current.

PROOF. A theory with an infinitesimal symmetry is acted on by the abelian Lie algebra
R (or C). Lemma ?? shows us that such an action is equivalent to the action of the Abelian
local dg Lie algebra Ω∗X. Lemma 11.4.0.3 implies that the central extension L̃c is split as a
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cochain complex (except in the case that we work in families and the classical field theory
M has curving). We thus get a map

Ω∗X,c[1]→ Obscl .

The remark following theorem 11.5.0.1 tells us that this map extends to a continuous
cochain map

Ω
∗
X,c[1]→ Obscl

which is our defintion of a conserved current.

�

11.7. Examples of classical Noether’s theorem

Let’s give some simple examples of this construction. All of the examples we will
consider here will satisfy the criterion of lemma ?? which implies that the central extension
of the local L∞ algebra of symmetries is trivial.

Example: Suppose that a field theory on a manifold X of dimension d has an inner action
of the Abelian local L∞ algebra Ωd

X[−1]. Then, we get a map of presheaves of cochain
complexes

Ω
d
X → Obscl .

Since, for every point p ∈ X, the delta-function δp is an element of Ω
d
(X), in this way we

get a local observable in Obscl(p) for every point. This varies smoothly with p.

For example, consider the free scalar field theory on X. We can define an action of
Ωd

X[−1] on the free scalar field theory as follows. If φ ∈ C∞(X) and ψ ∈ Ωd(X)[−1] are
fields of the free scalar field theory, and γ ∈ Ωd(X) is an element of the Abelian local L∞
algebra we want to act, then the action is described by the action functional describing
how L

SL(φ, ψ, γ) =
∫

φγ.

The corresponding map L∞ map

(†) Ωd
c (U)→ Obscl(U)

is linear, and sends γ ∈ Ωd
c (U) to the observable

∫
φγ.

Example: Let’s consider the example of a scalar field theory on a Riemannian manifold X,
described by the action functional ∫

X
φ4φ + φ3dVol.

This is acted on by the dg Lie algebra LRiem describing deformations of X as a Riemannian
manifold.
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If U is an open subset of X, then LRiem
c (U) consists, in degree 0, of the compactly-

supported first-order deformations of the Riemannian metric g0 on U ⊂ X. If

α ∈ Γc(U, Sym2 TX)

is such a deformation, let us Taylor expand the Laplace-Beltrami operator φ4g0+αφ as a
sum

4g0+α = 4g0 ∑
n≥1

1
n! Dn(α, . . . , α)

where Dn are poly-differential operators from Γ(X, TX)⊗n to the space of order ≤ 2 dif-
ferential operators on X. Explicit formula for the operators Dn can be derived from the
formula for the Laplace-Beltrami operator in terms of the metric.

Note that if α has compact support in U, then∫
φDn(α, . . . , α)φ

defines an observable in Obscl(U), and in fact in Õbs
cl
(U) (as it has smooth first derivative

in φ.

The L∞ map
LRiem

c (U)→ Obscl(U)[−1]
has Taylor terms

Φn : LRiem
c (U)⊗n → Obscl(U)

defined by the observables

Φn((α1, V1), . . . , (αn, Vn))(φ, ψ) =

{∫
φDn(α1, . . . , αn)φ if n > 1∫
φD1(α)φ +

∫
(Vφ)ψ if n = 1.

One is often just interested in the cochain map

LRiem
c (U)→ Obscl(U),

corresponding to φ1 above, and not in the higher terms. This cochain map has two terms:
one given by the observable describing the first-order variation of the metric, and one
given by the observable

∫
(Vφ)ψ describing the action of vector fields on the fields of the

theory.

A similar analysis describes the map from LRiem
c to the observables of a scalar field

theory with polynomial interaction.

Example: Let us consider the βγ system in one complex dimension, on C. The dg Lie
algebraM describing this theory is

M(C) = Ω0,∗(C, V)[−1]⊕Ω1,∗(C, V∗)[−1].

Let
L = Ω0,∗(C, TC)
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be the Dolbeault resolution of holomorphic vector fields on C. L acts onM by Lie deriv-
ative. We can write down the action functional encoding this action by

SL(β, γ, V) =
∫
(LV β)γ.

Here, β ∈ Ω0,∗(C, V), γ ∈ Ω1,∗(C, V∗) and V ∈ Ω0,∗(C, TC).

Lemma ?? implies that in this case there is no central extension. Therefore, we have a
map

Φ : Lc[1]→ Obscl

of precosheaves of cochain complexes. At the cochain level, this map is very easy to
describe: it simply sends a compactly supported vector field V ∈ Ω0,∗

c (U, TU)[1] to the
observable

Φ(V)(β, γ) =
∫

U
(LV β) γ.

We are interested in what this does at the level of cohomology. Let us work on an
open annulus A ⊂ C. We have seen (section ????) that the cohomology of Obscl(A) can
be expressed in terms of the dual of the space of holomorphic functions on A:

H0(Obscl(A)) = Ŝym
∗ (

Hol(A)∨ ⊗V∨ ⊕Ω1
hol(A)∨ ⊗V

)
.

Higher cohomology of Obscl(A) vanishes.

Here, Hol(A) denotes holomorphic functions on A, Ω1
hol(A) denotes holomorphic 1-

forms, and we are taking the continuous linear duals of these spaces. Further, we use, as
always, the completed tensor product when defining the symmetric algebra.

In a similar way, we can identify

H∗(Ω0,∗
c (A, TA)) = H∗(Ω0,∗(A, K⊗2

A )∨[−1].

The residue pairing gives a dense embedding

C[t, t−1]dt ⊂ Hol(A)∨.

A concrete map
C[t, t−1][−1]→ Ω0,∗

c (A)

which realizes this map is defined as follows. Choose a smooth function f on the annulus
which takes value 1 near the outer boundary and value 0 near the inner boundary. Then,
∂ f has compact support. The map sends a polynomial P(t) to ∂( f P). One can check,
using Stokes’ theorem, that this is compatible with the residue pairing: if Q(t)dt is a
holomorphic one-form on the annulus,∮

P(t)Q(t)dt =
∫

A
∂( f (t, t)P(t))Q(t)dt.
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In particular, the residue pairing tells us that a dense subspace of H1(Lc(A)) is

C[t, t−1]∂t ⊂ H1(Ω0,∗
c (A, TA)).

We therefore need to describe a map

Φ : C[t, t−1]∂t → Ŝym
∗ (

Hol(A)∨ ⊗V∨ ⊕Ω1
hol(A)∨ ⊗V

)
.

In other words, given an element P(t)∂t ∈ C[t, t−1]dt, we need to describe a functional
Φ(P(t)∂t) on the space of pairs

(β, γ) ∈ Hol(A)⊗V ⊕Ω1
hol(A)⊗V∨.

From what we have explained so far, it is easy to calculate that this functional is

Φ(P(t)∂t)(β, γ) =
∮

(P(t)∂tβ(t)) γ(t).

The reader familiar with the theory of vertex algebras will see that this is the classical limit
of a standard formula for the Virasoro current.





CHAPTER 12

Noether’s theorem in quantum field theory

12.1. Quantum Noether’s theorem

So far, we have explained the classical version of Noether’s theorem, which states that
given an action of a local L∞ algebra L on a classical field theory, we have a central exten-
sion L̃c of the precosheaf Lc of L∞-algebras, and a map of precosheaves of L∞ algebras

L̃c → Obscl [−1].

Our quantum Noether’s theorem provides a version of this at the quantum level. Before
we explain this theorem, we need to introduce some algebraic ideas about enveloping
algebras of homotopy Lie algebras.

Given any dg Lie algebra g, one can construct its P0 envelope, which is the universal
P0 algebra containing g. This functor is the homotopy left adjoint of the forgetful functor
from P0 algebras to dg Lie algebras. Explicitly, the P0 envelope is

UP0(g) = Sym∗ g[1]

with the obvious product. The Poisson bracket is the unique bi-derivation which on the
generators g is the given Lie bracket on g.

Further, if we have a shifted central extension g̃ of g by C[−1], determined by a class
α ∈ H1(g), we can define the twisted P0 envelope

UP0
α (g) = UP0(g̃)⊗C[c] Cc=1

obtained from the P0 envelope of g̃ by specializing the central parameter to 1.

We will reformulate the classical Noether theorem using the factorization P0 envelope
of a sheaf of L∞ algebras on a manifold. The quantum Noether theorem will then be
formulated in terms of the factorization BD envelope, which is the quantum version of
the factorization P0 envelope. The factorization BD envelope is a close relative of the
factorization envelope of a sheaf of L∞ algebras that we discussed in Section ?? of Chapter
??.

For formal reasons, a version of these construction holds in the world of L∞ algebras.
One can show that a commutative dg algebra together with a 1-shifted L∞ structure with

201
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the property that all higher brackets are multi-derivations for the product structure de-
fines a homotopy P0 algebra. (The point is that the operad describing such gadgets is
naturally quasi-isomorphic to the operad P0).

If g is an L∞ algebra, one can construct a homotopy P0 algebra which has underlying
commutative algebra Sym∗ g[1], and which has the unique shifted L∞ structure where
g[1] is a sub-L∞ algebra and all higher brackets are derivations in each variable. This L∞
structure makes Sym∗ g[1] into a homotopy P0 algebra, and one can show that it is the
homotopy P0 envelope of g.

We can rephrase the classical version of Noether’s theorem as follows.

12.1.0.1 Theorem. Suppose that a local L∞ algebra L acts on a classical field theory, and that the
obstruction to lifting this to an inner action is a local cochain α. Then there is a map of homotopy
P0 factorization algebras

UP0
α (Lc)→ Obscl .

Here UP0
α (Lc) is the twisted homotopy P0 factorization envelope, which is defined by saying that

on each open subset U ⊂ M it is UP0
α (Lc(U)).

The universal property of UP0
α (Lc) means that this theorem is a formal consequence

of the version of Noether’s theorem that we have already proved. At the level of com-
mutative factorization algebras, this map is obtained just by taking the cochain map
L̃c(U) → Obscl(U) and extending it in the unique way to a map of commutative dg
algebras

Sym∗(L̃c(U))→ Obscl(U),

before specializing by setting the central parameter to be 1. There are higher homotopies
making this into a map of homotopy P0 algebras, but we will not write them down ex-
plicitly (they come from the higher homotopies making the map L̃c(U) → Obscl(U) into
a map of L∞ algebras).

This formulation of classical Noether’s theorem is clearly ripe for quantization. We
must simply replace classical observables by quantum observables, and the P0 envelope
by the BD envelope.

Recall that the BD operad is an operad over C[[h̄]] which quantizes the P0 operad.
A BD algebra cochain complex with a Poisson bracket of degree 1 and a commutative
product, such that the failure of the differential to be a derivation for the commutative
product is measured by h̄ times the Poisson bracket.

There is a map of operads over C[[h̄]] from the Lie operad to the BD operad. At the
level of algebras, this map takes a BD algebra A to the dg Lie algebra A[−1] over C[[h̄]],
with the Lie bracket given by the Poisson bracket on A. The BD envelope of a dg Lie
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algebra g is defined to be homotopy-universal BD algebra UBD(g) with a map of dg Lie
algebras from g[[h̄]] to UBD(g)[−1].

One can show that for any dg Lie algebra g, the homotopy BD envelope of g is the
Rees module for the Chevalley chain complex C∗(g) = Sym∗(g[−1]), which is equipped
with the increasing filtration defined by the symmetric powers of g. Concretely,

UBD(g) = C∗(g)[[h̄]] = Sym∗(g[−1])[[h̄]]

with differential dg+ h̄dCE, where dg is the internal differential on g and dCE is the Chevalley-
Eilenberg differential. The commutative product and Lie bracket are the h̄-linear exten-
sions of those on the P0 envelope we discussed above. A similar statement holds for L∞
algebras.

This discussion holds at the level of factorization algebras too: the BD envelope of
a local L∞ algebra L is defined to be the factorization algebra which assigns to an open
subset U the BD envelope of Lc(U). Thus, it is the Rees factorization algebra associated
to the factorization envelope of U. (We will describe this object in more detail in section
12.5 of this chapter).

Now we can state the quantum Noether theorem.

12.1.0.2 Theorem. Suppose we have a quantum field theory on a manifold M acted on by a local
L∞ algebra L. Let Obsq be the factorization algebra of quantum observables of this field theory.

In this situation, there is a h̄-dependent local cocycle

α ∈ H1(Oloc(L[1]))[[h̄]]

and a homomorphism of factorization algebras from the twisted BD envelope

UBD
α (Lc)→ Obsq .

The relationship between this formulation of quantum Noether’s theorem and the
traditional point of view on Noether’s theorem was discussed (in the classical case) in
section ??.Let us explain, however, some aspects of this story which are slightly different
in the quantum and classical settings.

Suppose that we have an action of an ordinary Lie algebra g on a quantum field theory
on a manifold M. Then the quantum analogue of the result of lemma ?? (which we will
prove below) shows that we have an action of the local dg Lie algebra Ω∗X ⊗ g on the
field theory. It follows that we have a central extention of Ω∗X ⊗ g, given by a class α ∈
H1(Oloc(Ω∗X ⊗ g[1])), and a map from the twisted BD envelope of this central extension to
observables of our field theory.
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Suppose that N ⊂ X is an oriented codimension 1 submanifold. (We assume for
simplicity that X is also oriented). Let us choose an identification of a tubular neighbour-
hood of N with N × R. Let πN : N × R → R denote the projection map to R. The
push forward of the factorization algebra UBD(Ω∗X ⊗ g) along the projection πR defines a
locally-constant facotrization algebra on R, and so an associative algebra.

Let us assume, for the moment, that the central extension vanishes. Then a variant of
lemma ?? shows that there is an isomorphism of associative algebras

H∗
(

πNUBD(Ω∗X ⊗ g)
)
∼= Rees(U(H∗(N)⊗ g)).

The algebra on the right hand side is the Rees algebra for the universal enveloping algebra
of H∗(N)⊗ g. This algebra is a C[[h̄]]-algebra which specializes at h̄ = 0 to the completed
symmetric algebra of H∗(N)⊗ g, but is generically non-commutative.

In this way, we see that Noether’s theorem gives us a map of factorization algebras on
R

Rees(U(g))→ H0(πN Obsq)

where on the right hand side we have quantum observables of our theory, projected to R.

Clearly this is closely related to the traditional formulation of Noether’s theorem: we
are saying that every symmetry (i.e. element of g) gives rise to an observable on every
codimension 1 manifold (that is, a current). The operator product between these observ-
ables is the product in the universal enveloping algebra.

Now let us consider the case when the central extension is non-zero. A small calcula-
tion shows that the group containing possible central extensions can be identified as

H1(Oloc(Ω∗X ⊗ g[1]))[[h̄]] = Hd+1(X, C∗red(g)) = ⊕i+j=d+1Hi(X)⊗ H j
red(g)[[h̄]],

where d is the real dimension of X, and C∗red(g) is viewed as a constant sheaf of cochain
complexes on X.

Let us assume that X is of the form N×R, where as above N is compact and oriented.
Then the cocycle above can be integrated over N to yield an element in H2

red(g), which can
be viewed as an ordinary, unshifted central extension of the Lie algebra g (which depends
on h̄). We can form the twisted universal enveloping algebra Uα(g), obtained as usual by
taking the universal enveloping algebra of the central extension of g and then setting the
central parameter to 1. This twisted enveloping algebra admits a filtration, so that we can
form the Rees algebra. Our formulation of Noether’s theorem then produces a map of
factorization algebras on R

Rees(Uα(g))→ H0(π∗N Obsq).
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12.2. Actions of a local L∞-algebra on a quantum field theory

Let us now turn to the proof of the quantum version of Noether’s theorem. As in the
discussion of the classical theory, the first thing we need to pin down is what it means for
a local L∞ algebra to act on a quantum field theory.

As in the setting of classical field theories, there are two variants of the definition we
need to consider: one defining a field theory with an L action, and one a field theory with
an inner L-action. Just as in the classical story, the central extension that appears in our
formulation of Noether’s theorem appears as the obstruction to lifting a field theory with
an action to a field theory with an inner action.

We have used throughout the definition of quantum field theory given in [Cos11b].
The concept of field theory with an action of a local L∞-algebra L relies on a refined defini-
tion of field theory, also given in [Cos11b]: the concept of a field theory with background
fields. Let us explain this definition.

Let us fix a classical field theory, defined by a local L∞ algebra M on X with an in-
variant pairing of cohomological degree −3. Let us choose a gauge fixing operator QGF

onM, as discussed in section ??. Then as before, we have an elliptic differential operator
[Q, QGF] (where Q refers to the linear differential onM). As explained in section ??, this
leads to the following data.

(1) A propagator P(Φ) ∈ M[1]⊗2, defined for every parametrix Φ. If Φ, Ψ are para-
metrices, then P(Φ)− P(Ψ) is smooth.

(2) A kernel KΦ ∈ M[1]⊗2 for every parametrix Φ, satisfying

Q(P(Φ)− P(Ψ)) = KΨ − KΦ.

These kernels lead, in turn, to the definition of the RG flow operator and of the BV Lapla-
cian

W(P(Φ)− P(Ψ),−) : O+
P,sm(M[1])[[h̄]]→ O+

P,sm(M[1])[[h̄]]

4Φ : O+
P,sm(M[1])[[h̄]]→ O+

P,sm(M[1])[[h̄]]

associated to parametrices Φ and Ψ. There is also a BV bracket {−,−}Φ which satisfies
the usual relation with the BV Laplacian 4Φ. The space O+

P,sm(M[1])[[h̄]] is the space
of functionals with proper support and smooth first derivative which are at least cubic
modulo h̄.

The homological interpretation of these objects are as follows.
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(1) For every parametrix Φ, we have the structure of 1-shifted differential graded Lie
algebra on O(M[1])[[h̄]]. The Lie bracket is {−,−}Φ, and the differential is

Q + {I[Φ],−}Φ + h̄4Φ.

The subspace O+
sm,P(M[1])[[h̄]] is a nilpotent sub-dgla. The Maurer-Cartan equa-

tion in this space is called the quantum master equation.
(2) The map W(P(Φ)− P(Ψ),−) takes solutions to the QME with parametrix Ψ to

solutions with parametrix Φ. Equivalently, the Taylor terms of this map define
an L∞ isomorphism between the dglas associated to the parametrices Ψ and Φ.

If L is a local L∞ algebra, then O(L[1]), with its Chevalley-Eilenberg differential, is
a commutative dg algebra. We can identify the space O(L[1]⊕M[1]) of functionals on
L[1]⊕M[1] with the completed tensor product

O(L[1]⊕M[1]) = O(L[1])⊗̂πO(M[1]).

The operations 4Φ, {−,−}Φ and ∂P(Φ) associated to a parametrix on M extend, by
O(L[1])-linearity, to operations on the space O(L[1] ⊕M[1]). For instance, the opera-
tor ∂P(Φ) is associated to the kernel

P(Φ) ∈ (M[1])⊗2 ⊂ (M[1]⊕L[1])⊗2.

If dL denotes the Chevalley-Eilenberg differential on O(L[1]), then we can form an op-
erator dL ⊗ 1 on O(L[1] ⊕M[1]). Similarly, the linear differential Q on M induces a
derivation of O(M[1]) which we also denote by Q; we can for a derivation 1 ⊗ Q of
O(L[1]⊕M[1]).

The operators 4Φ and ∂Φ both commute with dL ⊗ 1 and satisfy the same relation
described above with the operator 1⊗Q.

We will let
O+

sm,P(L[1]⊕M[1])[[h̄]] ⊂ O(L[1]⊕M[1])

denote the space of those functionals which satisfy the following conditions.

(1) They are at least cubic modulo h̄ when restricted to be functions just on M[1].
That is, we allow functionals which are quadratic as long as they are either qua-
dratic in L[1] or linear in both L[1] and inM[1], and we allow linear functionals
as long as they are independent ofM[1]. Further, we work modulo the constants
C[[h̄]]. (This clause is related to the superscript + in the notation).

(2) We require our functionals to have proper support, in the usual sense (as func-
tionals on L[1]⊕M[1]).

(3) We require our functionals to have smooth first derivative, again in the sense we
discussed before. Note that this condition involves differentiation by elements of
both L[1] andM[1].
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The renormalization group flow operator W(P(Φ)− P(Ψ),−) on the space O+
sm,P(M[1])[[h̄]]

extends to an O(L)-linear operator on the space

O+
sm,P(L[1]⊕M[1])[[h̄]].

It is defined by the equation, as usual,

W(P(Φ)− P(Ψ), I) = h̄ log exp(h̄∂P(Φ) − h̄∂P(Ψ)) exp(I/h̄).

We say that an element

I ∈ O+
sm,P(L[1]⊕M[1])[[h̄]]

satisfies the quantum master equation for the parametrix Φ if it satisfies the equation

dL I + QI + {I, I}Φ + h̄4Φ I = 0.

Here dL indicates the Chevalley differential on O(L[1]), extended by tensoring with 1 to
an operator on O(L[1]⊕M[1]), and Q is the extension of the linear differential onM[1].

The renormalization group equation takes solutions to the quantum master equation
for the parametrix Φ to those for the parametrix Ψ.

There are two different versions of quantum field theory with an action of a Lie algebra
that we consider: an actionn and an inner action. For theories with just an action, the
functionals we consider are in the quotient

O+
P,sm(L[1]⊕M[1] | L[1])[[h̄]] = O+

P,sm(L[1]⊕M[1])/OP,sm(L[1])[[h̄]]

of our space of functionals by those which only depend on L.

Now we can define our notion of a quantum field theory acted on by the local L∞
algebra L.

12.2.0.1 Definition. Suppose we have a quantum field theory on M, with space of fieldsM[1].
Thus, we have a collection of effective interactions

I[Φ] ∈ O+
P,sm(M[1])[[h̄]]

satisfying the renormalization group equation, BV master equation, and locality axiom, as detailed
in subsection 8.2.9.1.

An action of L on this field theory is a collection of functionals

IL[Φ] ∈ OP,sm(L[1]⊕M[1] | L[1])[[h̄]]
satisfying the following properties.

(1) The renormalization group equation

W(P(Φ)− P(Ψ), IL[Ψ]) = IL[Φ].
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(2) Each I[Φ] must satisfy the quantum master equation (or Maurer-Cartan equation) for
the dgla structure associated to the parametrix Φ. We can explicitly write out the various
terms in the quantum master equation as follows:

dL IL[Φ] + QIL[Φ] + 1
2{IL[Φ], IL[Φ]}Φ + h̄4Φ IL[Φ] = 0.

Here dL refers to the Chevalley-Eilenberg differential on O(L[1]), and Q to the linear dif-
ferential onM[1]. As above, {−,−}Φ is the Lie bracket on O(M[1]) which is extended
in the natural way to a Lie bracket on O(L[1]⊕M[1]).

(3) The locality axiom, as explained in subsection 8.2.9.1, holds: saying that the support of
IL[Φ] converges to the diagonal as the support of Φ tends to zero, with the same bounds
explained in section 8.2.9.1.

(4) The image of IL[Φ] under the natural map

O+
sm,P(L[1]⊕M[1] | L[1])[[h̄]]→ O+

sm,P(M[1])[[h̄]]

(given by restricting to functions just of M[1]) must be the original action functional
I[Φ] defining the original theory.

An inner action is defined in exactly the same way, except that the functionals IL[Φ] are
elements

IL[Φ] ∈ OP,sm(L[1]⊕M[1])[[h̄]].

That is, we don’t quotient our space of functionals by functionals just of L[1]. We require that
axioms 1− 5 hold in this context as well.

Remark: One should interpret this definition as a variant of the definition of a family of
theories over a pro-nilpotent base ring A. Indeed, if we have an L-action on a theory on
M, then the functionals IL[Φ] define a family of theories over the dg base ring C∗(L(M))
of cochains on the L∞ algebra L(M) of global sections of L. In the case that M is compact,
the L∞ algebra L(M) often has finite-dimensional cohomology, so that we have a family
of theories over a finitely-generated pro-nilpotent dg algebra.

Standard yoga from homotopy theory tells us that a g-action on any mathematical
object (if g is a homotopy Lie algebra) is the same as a family of such objects over the base
ring C∗(g) which restrict to the given object at the central fibre. Thus, our definition of an
action of the sheaf L of L∞ algebras on a field theory on M gives rise to an action (in this
homotopical sense) of the L∞ algebra L(M) on the field theory.

However, our definition of action is stronger than this. The locality axiom we impose
on the action functionals IL[Φ] involves both fields in L and inM. As we will see later,
this means that we have a homotopy action of L(U) on observables of our theory on U,
for every open subset U ⊂ M, in a compatible way. ♦
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12.3. Obstruction theory for quantizing equivariant theories

The main result of [Cos11b] as explained in section ?? states that we can construct
quantum field theories from classical ones by obstruction theory. If we start with a classi-
cal field theory described by an elliptic L∞ algebraM, the obstruction-deformation com-
plex is the reduced local Chevalley-Eilenberg cochain complex C∗red,loc(M), which by defi-
nition is the complex of local functionals onM[1] equipped with the Chevalley-Eilenberg
differential.

A similar result holds in the equivariant context. Suppose we have a classical field
theory with an action of a local L∞ algebra L. In particular, the elliptic L∞ algebraM is
acted on by L, so we can form the semi-direct product L nM. Thus, we can form the
local Chevalley-Eilenberg cochain complex

Oloc((LnM)[1]) = C∗red,loc(LnM).

The obstruction-deformation complex for quantizing a classical field theory with an
action of L into a quantum field theory with an action of L is the same as the deformation
complex of the original classical field theory with an action of L. This is the complex
C∗red,loc(LnM | L), the quotient of C∗red,loc(LnM) by C∗red,loc(L).

One can also study the complex controlling deformations of the action of L on M,
while fixing the classical theory. This is the complex we denoted by Act(L,M) earlier: it
fits into an exact sequence of cochain complexes

0→ Act(L,M)→ C∗red,loc(LnM | L)→ C∗red,loc(M)→ 0.

There is a similar remark at the quantum level. Suppose we fix a non-equivariant quan-
tization of our original L-equivariant classical theory M. Then, one can ask to lift this
quantization to an L-equivariant quantization. The obstruction/deformation complex for
this problem is the group Act(L,M).

We can analyze, in a similar way, the problem of quantizing a classical field theory
with an inner L-action into a quantum field theory with an inner L-acion. The relevant
obstruction/deformation complex for this problem is C∗red,loc(LnM). If, instead, we fix
a non-equivariant quantization of the original classical theoryM, we can ask for the ob-
struction/deformation complex for lifting this to a quantization with an inner L-action.
The relevant obstruction-deformation complex is the complex denoted InnerAct(L,M)
in section 11.4. Recall that InnerAct(L,M) fits into a short exact sequence of cochain
complexes (of sheaves on X)

0→ InnerAct(L,M)→ C∗red,loc(LnM)→ C∗red,loc(M)→ 0.

A more formal statement of these results about the obstruction-deformation com-
plexes is the following.
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Fix a classical field theoryM with an action of a local L∞ algebra L. Let T (n)
L denote

the simplicial set of L-equivariant quantizations of this field theory defined modulo h̄n+1.
The simplicial structure is defined exactly as in chapter 8.2: an n-simplex is a family of the-
ories over the base ring Ω∗(4n) of forms on the n-simplex. Let T (n) denote the simplicial
set of quantizations without any L-equivariance condition.

Theorem. The simplicial sets T (n)
L are Kan complexes. Further, the main results of obstruction

theory hold. That is, there is an obstruction map of simplicial sets

T (n)
L → DK

(
C∗red,loc(LnM | L)[1]

)
.

(Here DK denotes the Dold-Kan functor). Further, there is a homotopy fibre diagram

T
(n+1)
L

��

// 0

��

T
(n)
L

// DK
(

C∗red,loc(LnM | L)[1]
)

.

Further, the natural map

T
(n)
L → T (n)

(obtained by forgetting the L-equivariance data in the quantization) is a fibration of simplicial sets.

Finally, there is a homotopy fibre diagram

T
(n+1)
L

��

// T (n+1) ×T (n) T
(n)
L

��
T

(n)
L

// DK (Act(L,M)[1]) .

We should interpret the second fibre diagram as follows. The simplicial set T (n+1)×T (n)

T
(n)
L describes pairs consisting of an L-equivariant quantization modulo h̄n+1 and a non-

equivariant quantization modulo h̄n+2, which agree as non-equivariant quantizations mod-
ulo h̄n+1. The deformation-obstruction group to lifting such a pair to an equivariant quan-
tization modulo h̄n+2 is the group Act(L,M). That is, a lift exists if the obstruction class
in H1(Act(L,M)) is zero, and the simplicial set of such lifts is a torsor for the simpli-
cial Abelian group associated to the cochain complex Act(L,M)). At the level of zero-
simplices, the set of lifts is a torsor for H0(Act(L,M)).
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This implies, for instance, that if we fix a non-equivariant quantization to all orders,
then the obstruction-deformation complex for making this into an equivariant quantiza-
tion is Act(L,M)).

Further elaborations, as detailed in chapter 8.2, continue to hold in this context. For
example, we can work with families of theories over a dg base ring, and everything is
fibred over the (typically contractible) simplicial set of gauge fixing conditions. In addi-
tion, all of these results hold when we work with translation-invariant objects on Rn and
impose “renormalizability” conditions, as discussed in section ??.

The proof of this theorem in this generality is contained in [Cos11b], and is essentially
the same as the proof of the corresponding non-equivariant theorem. In [Cos11b], the
term “field theory with background fields” is used instead of talking about a field theory
with an action of a local L∞ algebra.

For theories with an inner action, the same result continues to hold, except that the
obstruction-deformation complex for the first statement is C∗red,loc(LnM), and in the sec-
ond case is InnerAct(L,M).

12.3.1. Lifting actions to inner actions. Given a field theory with an action of L, we
can try to lift it to one with an inner action. For classical field theories, we have seen that
the obstruction to doing this is a class in H1(Oloc(L[1])) (with, of course, the Chevalley-
Eilenberg differential).

A similar result holds in the quantum setting.

12.3.1.1 Proposition. Suppose we have a quantum field theory with an action of L. Then there is
a cochain

α ∈ Oloc(L[1])[[h̄]] = C∗red,loc(L)
of cohomological degree 1 which is closed under the Chevalley-Eilenberg differential, such that
trivializing α is the same as lifting L to an inner action.

PROOF. This follows immediately from the obstruction-deformation complexes for
constructing the two kinds of L-equivariant field theories. However, let us explain explic-
itly how to calculate this obstruction class (because this will be useful later). Indeed, let
us fix a theory with an action of L, defined by functionals

IL[Φ] ∈ O+
P,sm(L[1]⊕M[1] | L[1])[[h̄]].

It is always possible to lift I[Φ] to a collection of functionals

ĨL[Φ] ∈ O+
P,sm(L[1]⊕M[1])[[h̄]]

which satisfy the RG flow and locality axioms, but may not satisfy the quantum master
equation. The space of ways of lifting is a torsor for the graded abelian group Oloc(L[1])[[h̄]]
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of local functionals on L. The failure of the lift ĨL[Φ] to satisfy the quantum master equa-
tion is, as explained in [Cos11b], independent of Φ, and therefore is a local functional
α ∈ Oloc(L[1]). That is, we have

α = dL ĨL[Φ] + QĨL[Φ] + 1
2{ ĨL[Φ], ĨL[Φ]}Φ + h̄4Φ ĨL[Φ].

Note that functionals just of L are in the centre of the Poisson bracket {−,−}Φ, and are
also acted on trivially by the BV operator4Φ.

We automatically have dLα = 0. It is clear that to lift IL[Φ] to a functional ĨL[Φ] which
satisfies the quantum master equation is equivalent to making α exact in C∗red,loc(L)[[h̄]].

�

12.4. The factorization algebra associated to an equivariant quantum field theory

In this section, we will explain what structure one has on observables of an equivari-
ant quantum field theory. As above, letM denote the elliptic L∞ algebra on a manifold
M describing a classical field theory, which is acted on by a local L∞-algebra L. Let us
define a factorization algebra C∗f act(L) by saying that to an open subset U ⊂ M it assigns
C∗(L(U)). (As usual, we use the appropriate completion of cochains). Note that C∗f act(L)
is a factorization algebra valued in (complete filtered differentiable) commutative dg al-
gebras onM.

In this section we will give a brief sketch of the following result.

12.4.0.1 Proposition. Suppose we have a quantum field theory equipped with an action of a local
Lie algebra L; letM denote the elliptic L∞ algebra associated to the corresponding classical field
theory. Then there is a factorization algebra of equivariant quantum observables which is a factor-
ization algebra in modules for the factorization algebra C∗(L) of cochains on L. This quantizes
the classical factorization algebra of equivariant observables constructed in proposition 11.3.0.1.

PROOF. The construction is exactly parallel to the non-equivariant version which was
explained in chapter 8.2, so we will only sketch the details. We define an element of
Obsq

L(U) of cohomological degree k to be a family of functionals O[Φ], of cohomological
degree k one for every parametrix, on the space L(M)[1]⊕M(M)[1] of fields of the the-
ory. We require that, if ε is a parameter of cohomological degree −k and square zero, that
IL[Φ] + εO[Φ] satisfies the renormalization group equation

W(P(Φ)− P(Ψ), IL[Ψ] + εO[Ψ]) = IL[Φ] + εO[Φ].

Further, we require the same locality axiom that was detailed in section 9.4, saying roughly
that O[Φ] is supported on U for sufficiently small parametrices U.
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The differential on the complex Obsq
L(U) is defined by

(dO)[Φ] = dLO[Φ] + QO[Φ] + {IL[Φ], O[Φ]}Φ + h̄4ΦO[Φ],

where Q is the linear differential onM[1], and dL corresponds to the Chevalley-Eilenberg
differential on C∗(L).

We can make Obsq
L(U) into a module over C∗(L(U)) as follows. If O ∈ Obsq

L(U) and
α ∈ C∗(L(U)), we can define a new observable α ·O defined by

(α ·O)[Φ] = α · (O[Φ]).

This makes sense, because α is a functional on L(U)[1] and so can be made a functional on
M(U)[1]⊕L(U)[1]. The multiplication on the right hand side is simply multiplication of
functionals onM(U)[1]⊕L(U)[1].

It is easy to verify that α ·O satisfies the renormalization group equation; indeed, the
infinitesimal renormalization group operator is given by differentiating with respect to a
kernel inM[1]⊗2, and so commutes with multiplication by functionals of L[1]. Similarly,
we have

d(α ·O) = (dα) ·O + α · dO
where dO is the differential discussed above, and dα is the Chevalley-Eilenberg differen-
tial applied to α ∈ C∗(L(U)[1]).

As is usual, at the classical level we can discuss observables at scale 0. The differential
at the classical level is dL + Q + {IL,−} where IL ∈ Oloc(L[1] ⊕M[1]) is the classical
equivariant Lagrangian. This differential is the same as the differential on the Chevalley-
Eilenberg differential on the cochains of the semi-direct product L∞ algebra LnM. Thus,
it is quasi-isomorphic, at the classical level, to the one discussed in proposition 11.3.0.1.

�

12.5. Quantum Noether’s theorem

Finally, we can explain Noether’s theorem at the quantum level. As above, suppose
we have a quantum field theory on a manifold M with space of fieldsM[1]. Let L be a
local L∞ algebra which acts on this field theory. Let α ∈ H1(C∗red,loc(L))[[h̄]] denote the
obstruction to lifting this action to an inner action.

Recall that the factorization envelope of the local L∞ algebra L is the factorization
algebra whose value on an open subset U ⊂ M is the Chevalley chain complex C∗(Lc(U)).
Given a cocycle β ∈ H1(C∗red,loc(L)), we can form a shifted central extension

0→ C[−1]→ L̃c → Lc → 0

of the precosheaf Lc of L∞ algebras on M. Central extensions of this form have already
been discussed in section ??.
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We can then form the twisted factorization envelope Uβ(L), which is a factorization
algebra on M. The twisted factorization envelope is defined by saying that it’s value on
an open subset V ⊂ M is

Uβ(L)(V) = Cc=1 ⊗C[c] C∗(L̃c(V)).

Here the complex C∗(L̃c(V)) is made into a C[c]-module by multiplying by the central
element.

We have already seen ?? that the Kac-Moody vertex algebra arises as an example of a
twisted factorization envelope.

There is a C[[h̄]]-linear version of the twisted factorization envelope construction too:
if our cocycle α is in H1(C∗red,loc(L))[[h̄]], then we can form a central extension of the form

0→ C[[h̄]][−1]→ L̃c[[h̄]]→ Lc[[h̄]]→ 0.

This is an exact sequence of precosheaves of L∞ algebras on M in the category of C[[h̄]]-
modules. By performing the C[[h̄]]-linear version of the construction above, one finds the
twisted factorization envelope Uα(L). This is a factorization algebra on M in the category
of C[[h̄]]-modules, whose value on an open subset V ⊂ M is

Uα(L)(V) = C[[h̄]]c=1 ⊗C[[h̄]][c] C∗(L̃c[[h̄]]).

Here Chevalley chains are taken in the C[[h̄]]-linear sense.

Our version of Noether’s theorem will relate the factorization envelope of Lc, twisted
by the cocycle α, to the factorization algebra of quantum observables of the field theory
on M. The main theorem is the following.

12.5.0.1 Theorem. Suppose that the local L∞-algebra L acts on a field theory on M, and that the
obstruction to lifting this to an inner action is a cocycle α ∈ H1(C∗red,loc(L))[[h̄]]. Then, there is a
C((h̄))-linear homomorphism of factorization algebras

Uα(L)[h̄−1]→ Obsq[h̄−1].

(Note that on both sides we have inverted h̄).

One can ask how this relates to Noether’s theorem for classical field theories. In order
to provide such a relationship, we need to state a version of quantum Noether’s theorem
which holds without inverting h̄. For every open subset V ⊂ M, we define the Rees
module

Rees Uα(L)(V) ⊂ Uα(L)(V)

to be the submodule spanned by elements of the form h̄kγ where γ ∈ Sym≤k(Lc(V)). This
is a sub-C[[h̄]]-module, and also forms a sub-factorization algebra. The reason for the ter-
minology is that in the case α = 0, or more generally α is independent of h̄, Rees Uα(L)(V)
is the Rees module for the filtered chain complex Cα

∗(Lc(V)).
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One can check that Rees Uα(V) is a free C[[h̄]]-module and that, upon inverting h̄, we
find

(Rees Uα(V)) [h̄−1] = Uα(V).

12.5.0.2 Theorem. The Noether map of factorization algebras

Uα(L)[h̄−1]→ Obsq[h̄−1]

over C((h̄)) refines to a map
Rees Uα(L)→ Obsq

of factorization algebras over C[[h̄]].

We would like to compare this statement to the classical version of Noether’s theorem.
Let α0 denote the reduction of α modulo h̄. Let L̃c denote the central extension ofLc arising
from α0. We have seen that the classical Noether’s theorem states that there is a map of
precosheaves L∞ algebras

L̃c → Õbs
cl
[−1]

where on the right hand side, Õbs
cl
[−1] is endowed with the structure of dg Lie algebra

coming from the shifted Poisson bracket on Õbs
cl

. Further, this map sends the central

element in L̃c to the unit element in Õbs
cl
[−1].

In particular, the classical Noether map gives rise to a map of precosheaves of cochain
complexes

L̃c[1]→ Obscl .

We will not use the fact that this arises from an L∞ map in what follows. Because Obscl is
a commutative factorization algebra, we automatically get a map of commutative prefac-
torization algebras

Sym∗ L̃c[1]→ Obscl .
Further, because the Noether map sends the central element to the unit observable, we get
a map of commutative factorization algebras

(†) Cc=1 ⊗C[c] Sym∗ L̃c[1]→ Obscl .

Now we have set up the classical Noether map in a way which is similar to the quantum
Noether map. Recall that the quantum Noether map with h̄ not inverted is expressed in
terms of the Rees module Rees Uα(L). When we set h̄ = 0, we can identify

Rees Uα(L)(V)⊗C[[h̄]] Ch̄=0 = Sym∗(L̃c(V))⊗C[c] Cc=1.

12.5.0.3 Lemma. The quantum Noether map

Rees Uα(L)→ Obsq

of factorization algebras becomes, upon setting h̄ = 0, the map in equation (†).
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12.5.1. Proof of the quantum Noether theorem. Before we being our proof of quan-
tum Noether’s theorem, it will be helpful to discuss the meaning (in geometric terms) of
the chains and cochains of an L∞ algebra twisted by a cocycle.

If g is an L∞ algebra, then C∗(g) should be thought of as functions on the formal
moduli problem Bg associated to g. Similarly, C∗(g) is the space of distributions on Bg. If
α ∈ H1(C∗(g)), then α defines a line bundle on Bg, or equivalently, a rank 1 homotopy
representation of g. Sections of this line bundle are C∗(g) with the differential dg − α, i.e.
we change the differential by adding a term given by multiplication by −α. Since α is
closed and of odd degree, it is automatic that this differential squares to zero. We will
sometimes refer to this complex as C∗α(g).

Similarly, we can define C∗,α(g) to be C∗(g) with a differential given by adding the
operator of contracting with −α to the usual differential. We should think of C∗,α(g) as
the distributions on Bg twisted by the line bundle associated to α; i.e. distributions which
pair with sections of this line bundle.

Let g̃ be the shifted central extension of g associated to α. Then C∗(g̃) is a module over
C[c], where c is the central parameter. Then we can identify

C∗(g̃)⊗C[c] Cc=1 = C∗,α(g).

A similar remark holds for cochains.

In particular, if L is a local L∞ algebra on a manifold M and α ∈ H1(C∗red,loc(L)) is a
local cochain, then

Uα(L)(V) = C∗,α(Lc(V))

for an open subset V ⊂ M.

Now we will turn to the proof of theorems 12.5.0.1 and 12.5.0.2 and lemma 12.5.0.3, all
stated in the previous section.

The first thing we need to do is to produce, for every open subset V ⊂ M, a chain map

Cα
∗(Lc(V))→ Obsq(V)[h̄−1].

A linear map

f : Sym∗(Lc(V)[1])→ Obsq(V)[h̄−1]

is the same as a collection of linear maps

f [Φ] : Sym∗(Lc(V)[1])→ O(M(M)[1])((h̄))

one for every parametrix Φ, which satisfy the renormalization group equation and the
locality axiom. This, in turn, is the same as a collection of functionals

O[Φ] ∈ O(Lc(V)[1]⊕M(M)[1])((h̄))
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satisfying the renormalization group equation and the locality axiom. We are using the
natural pairing between the symmetric algebra of Lc(V)[1] and the space of functionals
on Lc(V)[1] to identify a linear map f [Φ] with a functional O[Φ].

We will write down such a collection of functionals. Recall that, because we have an
action of the local L∞ algebra L on our theory, we have a collection of functionals

IL[Φ] ∈ O(Lc(M)[1]⊕Mc(M)[1])[[h̄]]

which satisfy the renormalization group equation and the following quantum master
equation:

(dL + Q)IL[Φ] + 1
2{IL[Φ], IL[Φ]}Φ + h̄4Φ

(
IL[Φ]

)
= α.

We will use the projections from Lc(M)[1]⊕Mc(M)[1] to Lc(M)[1] andMc(M)[1] to lift
functionals on these smaller spaces to functionals on Lc(M)[1]⊕Mc(M)[1]. In particular,
if as usual I[Φ] denotes the effective action of our quantum field theory, which is a func-
tion of the fields inMc(M)[1], we will use the same notation to denote the lift of I[Φ] to a
function of the fields in Lc(M)[1]⊕Mc(M)[1].

Let
ÎL[Φ] = IL[Φ]− I[Φ] ∈ O(Lc(M)[1]⊕Mc(M)[1])[[h̄]].

This functional satisfies the following master equation:

(dL + Q) ÎL[Φ] + 1
2{ ÎL[Φ], ÎL[Φ]}Φ + {I[Φ], ÎL[Φ]}Φ + h̄4Φ

(
ÎL[Φ]

)
= α.

The renormalization group equation for the functionals ÎL[Φ] states that

exp
(

h̄∂P(Φ) − h̄∂P(Ψ)

)
exp (I[Ψ]/h̄) exp

(
ÎL[Ψ]/h̄

)
= exp (I[Φ]/h̄) exp

(
ÎL[Φ]/h̄

)
.

This should be compared with the renormalization group equation that an observable
{O[Φ]} in Obsq(M) satisfies:

exp
(

h̄∂P(Φ) − h̄∂P(Ψ)

)
exp (I[Ψ]/h̄)O[Ψ] = exp (I[Φ]/h̄)O[Φ].

Note also that
ÎL[Φ] ∈ O(Lc(V)[1]⊕M(M))[[h̄]].

The point is the following. Let

ÎLi,k,m[Φ] : Lc(M)⊗k ×Mc(M)⊗m → C

denote the coefficients of h̄i in the Taylor terms of this functional. This Taylor term is zero
unless k > 0, and further it has proper support (which can be made as close as we like to
the diagonal by making Φ small). The proper support condition implies that this Taylor
term extends to a functional

Lc(M)⊗k ×M(M)⊗m → C,
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that is, only one of the inputs has to have compact support and we can choose this to be
an L-input.

From this, it follows that

exp
(

ÎL[Φ]/h̄
)
∈ O(Lc(V)[1]⊕M(M)[1])((h̄)).

Although there is a h̄−1 in the exponent on the left hand side, each Taylor term of this
functional only involves finitely many negative powers of h̄, which is what is required to
be in the space on the right hand side of this equation.

Further, the renormalization group equation satisfied by exp
(

ÎL[Φ]/h̄
)

is precisely
the one necessary to define (as Φ varies) an element which we denote

exp
(

ÎL/h̄
)
∈ C∗α(Lc(V), Obsq(M))[h̄−1].

The locality property for the functionals ÎL[Φ] tells us that for Φ small these functionals
are supported arbitrarily close to the diagonal. This locality axiom immediately implies
that

exp
(

ÎL/h̄
)
∈ C∗α(Lc(V), Obsq(V))[h̄−1].

Thus, we have produced the desired linear map

F : Cα
∗(Lc(V))→ Obsq(V)[h̄−1].

Explicitly, this linear map is given by the formula

F(l)[Φ] =
〈

l, exp
(

ÎL[Φ]/h̄
)〉

where 〈−,−〉 indicates the duality pairing between Cα
∗(Lc(V)) and C∗α(Lc(V)).

Next, we need to verify that F is a cochain map. Since the duality pairing between
changes and cochains of Lc(V) (twisted by α) is a cochain map, it suffices to check that
the element exp

(
ÎL/h̄

)
is closed. This is equivalent to saying that, for each parametrix

Φ, the following equation holds:

(dL − α + h̄4Φ + {I[Φ],−}Φ) exp
(

ÎL/h̄
)
= 0.

Here, dL indicates the Chevalley-Eilenberg differential on C∗(Lc(V)) and α indicates the
operation of multiplying by the cochain α in C1(Lc(V)).

This equation is equivalent to the statement that

(dL − α + h̄4Φ) exp
(

I[Φ]/h̄ + ÎL[Φ]/h̄
)
= 0

which is equivalent to the quantum master equation satisfied by IL[Φ].
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Thus, we have produced a cochain map from Cα
∗(Lc(V)) to Obsq(V)[h̄−1]. It remains

to show that this cochain map defines a map of factorization algebras.

It is clear from the construction that the map we have constructed is a map of pre-
cosheaves, that is, it is compatible with the maps coming from inclusions of open sets
V ⊂W. It remains to check that it is compatible with products.

Let V1, V2 be two disjoint subsets of M, but contained in W. We need to verify that the
following diagram commutes:

Cα
∗(Lc(V1))× Cα

∗(Lc(V2)) //

��

Obsq(V1)[h̄−1]×Obsq(V2)[h̄−1]

��

Cα
∗(Lc(W)) // Obsq(W)[h̄−1].

Let li ∈ Cα
∗(Lc(Vi)) for i = 1, 2. Let · denote the factorization product on the factorization

algebra Cα
∗(Lc). This is simply the product in the symmetric algebra on each open set,

coupled with the maps coming from the inclusions of open sets.

Recall that if Oi are observables in the open sets Vi, then the factorization productO1O2 ∈
Obsq(W) of these observables is defined by

(O1O2)[Φ] = O1[Φ] ·O2[Φ]

for Φ sufficiently small, where · indicates the obvious product on the space of functions
onM(M)[1]. (Strictly speaking, we need to check that for each Taylor term this identity
holds for sufficiently small parametrices, but we have discussed this technicality many
times before and will not belabour it now).

We need to verify that, for Φ sufficiently small,

F(l1)[Φ] · F(l2)[Φ] = F(l1 · l2)[Φ] ∈ O(M(M)[1])((h̄)).

By choosing a sufficiently small parametrix, we can assume that ÎL[Φ] is supported as
close to the diagonal as we like. We can further assume, without loss of generality, that
each li is a product of elements in Lc(Vi). Let us write li = m1i . . . mkii for i = 1, 2 and each
mji ∈ Lc(Vi). (To extend from this special case to the case of general li requires a small
functional analysis argument using the fact that F is a smooth map, which it is. Since we
restrict attention to this special case only for notation convenience, we won’t give more
details on this point).

Then, we can explicitly write the map F applied to the elements li by the formula

F(li)[Φ] =

{
∂

∂m1i
. . .

∂

∂mkii
exp

(
ÎL[Φ]/h̄

)}
|0×M(M)[1] .
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In other words, we apply the product of all partial derivatives by the elements mji ∈
Lc(Vi) to the function exp

(
ÎL[Φ]/h̄

)
(which is a function on Lc(M)[1]⊕M(M)[1]) and

then restrict all the Lc(Vi) variables to zero.

To show that
F(l1 · l2)[Φ] = F(l1)[Φ] · F(l2)[Φ]

for sufficiently small Φ, it suffices to verify that{
∂

∂m11
. . .

∂

∂mk11
exp

(
ÎL[Φ]/h̄

)}{ ∂

∂m12
. . .

∂

∂mk22
exp

(
ÎL[Φ]/h̄

)}
=

∂

∂m11
. . .

∂

∂mk11

∂

∂m12
. . .

∂

∂mk22
exp

(
ÎL[Φ]/h̄

)
.

Each side can be expanded, in an obvious way, as a sum of terms each of which is a
product of factors of the form

(†)
∂

∂mj1i1
. . .

∂

∂mjr ir
ÎL[Φ]

together with an overall factor of exp
(

ÎL[Φ]/h̄
)

. In the difference between the two sides,
all terms cancel except for those which contain a factor of the form expressed in equation
(†) where i1 = 1 and i2 = 2. Now, for sufficiently small parametrices,

∂

∂mj11

∂

∂mj22
ÎL[Φ] = 0

because ÎL[Φ] is supported as close as we like to the diagonal and mj11 ∈ Lc(V1) and
mj22 ∈ Lc(V2) have disjoint support.

Thus, we have constructed a map of factorization algebras

F : Uα(L)→ Obsq[h̄−1].

It remains to check the content of theorem 12.5.0.2 and of lemma 12.5.0.3. For theorem
12.5.0.2, we need to verify that if

l ∈ Symk(Lc(V))

(for some open subset V ⊂ M) then

F(l) ∈ h̄−k Obsq(V).

That is, we need to check that for each Φ, we have

F(l)[Φ] ∈ h̄−kO(M(M)[1])[[h̄]].

Let us assume, for simplicty, that l = m1 . . . mk where mi ∈ Lc(V). Then the explicit
formula

F(l)[Φ] =
{

∂m1 . . . ∂mk exp
(

ÎL[Φ]/h̄
)}
|M(M)[1]
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makes it clear that the largest negative power of h̄ that appears is h̄−k. (Note that ÎL[Φ] is
zero when restricted to a function of justM(M)[1].)

Finally, we need to check lemma 12.5.0.3. This states that the classical limit of our
quantum Noether map is the classical Noether map we constructed earlier. Let l ∈ Lc(V).
Then the classical limit of our quantum Noether map sends l to the classical observable

lim
h̄→0

h̄F(l) = lim
Φ→0

lim
h̄→0

{
h̄∂l exp

(
ÎL[Φ]/h̄

)}
|M(M)[1]

= lim
Φ→0

{
∂l ILclassical [Φ]

}
|M(M)[1]

=
{

∂l ILclassical

}
|M(M)[1] .

Note that by ILclassical [Φ] we mean the scale Φ version of the functional on L[1] ⊕M[1]
which defines the inner action (at the classical level) of L on our classical theory, and by
ILclassical we mean the scale zero version.

Now, our classical Noether map is the map appearing in the last line of the above
displayed equation.

This completes the proof of theorems 12.5.0.1 and 12.5.0.2 and lemma 12.5.0.3.

12.6. The quantum Noether theorem and equivariant observables

So far in this chapter, we have explained that if we have a quantum theory with an
action of the local L∞ algebra L, then one finds a homotopical action of L on the quantum
observables of the theory. We have also stated and proved our quantum Noether theorem:
in the same situation, there is a homomorphism from the twisted factorization envelope
of L to the quantum observables. It is natural to expect that these two constructions are
closely related. In this section, we will explain the precise relationship. Along the way, we
will prove a somewhat stronger version of the quantum Noether theorem. The theorems
we prove in this section will allow us to formulate later a definition of the local index of an
elliptic complex in the language of factorization algebras.

Let us now give an informal statement of the main theorem in this section. Quantum
observables on U have a homotopy action of the sheaf L(U) of L∞ algebras. By restricting
to compactly-supported sections, we find that Obsq(U) has a homotopy action of Lc(U).
This action is compatible with the factorization structure, in the sense that the product
map

Obsq(U)⊗Obsq(V)→ Obsq(W)

(defined when UqV ⊂W) is a map of Lc(U)⊕Lc(V)-modules, where Obsq(W) is made
into an Lc(U) ⊕ Lc(V) module via the natural inclusion map from this L∞ algebra to
Lc(W).
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We can say that the factorization algebra Obsq is an Lc-equivariant factorization alge-
bra.

It can be a little tricky formulating correctly all the homotopy coherences that go into
such an action. When we state our theorem precisely, we will formulate this kind of action
slightly differently in a way which captures all the coherences we need.

In general, for an L∞ algebra g, an element α ∈ H1(C∗(g)) defines an L∞-homomorphism
g → C (where C is given the trivial L∞ structure). In other words, we can view such a
cohomology class as a character of g. (More precisely, the choice of a cochain representa-
tive of α leads to such an L∞ homomorphism, and different cochain representatives give
L∞-equivalent L∞-homomorphisms).

Suppose thatL is a local L∞ algebra on M and that we have an element α ∈ H1(C∗red,loc(L)).
This means, in particular, that for every open subset V ⊂ M we have a character of Lc(V),
and so an action of Lc(V) on C. Let C denote the trivial factorization algebra, which as-
signs the vector space C to each open set. The fact that α is local guarantees that the action
of each Lc(V) on C makes C into an Lc-equivariant factorization algebra. Let us denote
this Lc-equivariant factorization algebra by Cα.

More generally, given any Lc-equivariant factorization algebra F on M, we can form
a new Lc-equivariant factorization algebra Fα, defined to be the tensor product of F and
Cα in the category of factorization algebras with multiplicative Lc-actions.

Suppose that we have a field theory on M with an action of a local L∞ algebra L, and
with factorization algebra of quantum observables Obsq. Let α ∈ H1(C∗red,loc(L))[[h̄]] be
the obstruction to lifting this to an inner action. Let Cα[[h̄]] denote the trivial factorization
algebra C[[h̄]] viewed as an Lc-equivariant factorization algebra using the character α. As
we have seen above, the factorization algebra Obsq is an Lc-equivariant factorization al-
gebra. We can tensor Obsq with Cα[[h̄]] to form a new Lc-equivariant factorization algebra
Obsq

α (the tensor product is of course taken over the base ring C[[h̄]]). As a factorization
algebra, Obsq

α is the same as Obsq. Only the Lc-action has changed.

The main theorem is the following.

12.6.0.1 Theorem. The Lc-action on Obsq
α[h̄−1] is homotopically trivial.

In other words, after twisting the action of Lc by the character α, and inverting h̄,
the action of Lc on observables is homotopically trivial. The trivialization of the action
respects the fact that its multiplicative.
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An alternative way to state the theorem is that the action of Lc on Obsq[h̄−1] is homo-
topically equivalent to the α-twist of the trivial action. That is, on each open set V ⊂ M
the action of Lc(V) on Obsq(V)[h̄−1] is by the identity times the character α.

Let us now explain how this relates to Noether’s theorem. If we have anLc-equivariant
factorization algebra F (valued in convenient or pro-convenient vector spaces) then on
every open subset V ⊂ M we can form the Chevalley chain complex C∗(Lc(V),F (V))
of Lc(V) with coefficients in F (V). This is defined by taking the (bornological) tensor
product of C∗(Lc(V)) with F (V) on every open set, with a differential which incorpo-
rates the usual Chevalley differential as well as the action of Lc(V) on F (V). The cochain
complexes C∗(Lc(V),F (V)) form a new factorization algebra which we call C∗(Lc,F ).
(As we will see shortly in our more technical statement of the theorem, the factorization
algebra C∗(Lc,F ), with a certain structure of C∗(Lc)-comodule, encodes the F as an Lc-
equivariant factorization algebra).

In particular, when we have an action of L on a quantum field theory on a manifold
M, we can form the factorization algebra C∗(Lc, Obsq), and also the version of this twisted
by α, namely C∗(Lc, Obsq

α). We can also consider the chains of Lc with coefficients on Obsq

with the trivial action: this is simply U(Lc)⊗Obsq (where we complete the tensor product
to the bornological tensor product).

Then, the theorem above implies that we have an isomorphism of factorization alge-
bras

Φ : C∗(Lc, Obsq
α)[h̄−1] ∼= U(Lc)⊗Obsq[h̄−1].

(Recall that U(Lc) is another name for C∗(Lc) with trivial coefficients, and that the tensor
product on the right hand side is the completed bornological one).

Now, the action of Lc on Obsq preserves the unit observable. This means that the unit
map

1 : C[[h̄]]→ Obsq

of factorization algebras is Lc-equivariant. Taking Chevalley chains and twisting by α, we
get a map of fatorization algebras

1 : C∗(Lc, Cα[[h̄]]) = Uα(Lc)→ C∗(Lc, Obsq
α).

Further, there is a natural map of factorization algebras

ε : U(Lc)→ C,

which on every open subset is the map C∗(Lc(V))→ C which projects onto Sym0 Lc(V).
(This map is the counit for a natural cocommutative coalgebra structure on C∗(Lc(V)).
Tensoring this with the identity map gives a map

ε⊗ Id : U(Lc)⊗Obsq → Obsq .
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The compatibility of the theorem stated in this section with the Noether map is the fol-
lowing.

Theorem. The composed map of factorization algebras

Uα(Lc)
1−→ C∗(Lc, Obsq

α)[h̄−1]
∼=−→ U(Lc)⊗Obsq[h̄−1]

ε⊗Id−−→ Obsq[h̄−1]

is the Noether map from theorem 12.5.0.1.

This theorem therefore gives a compatibility between the action of Lc on observables
and the Noether map.

12.6.1. Let us now turn to a more precise statement, and proof, of theorem 12.6.0.1.
We first need to give a more careful statement of what it means to have a factorization
algebra with a multiplicative action of Lc, where, as usual, L indicates a local L∞ algebra
on a manifold M.

The first fact we need is that the factorization algebra U(L), which assigns to every
open subset V ⊂ M the complex C∗(Lc(V)), is a factorization algebra valued in commu-
tative coalgebras (in the symmetric monoidal category of convenient cochain complexes).

To see this, first observe that for any L∞ algebra g, the cochain complex C∗(g) is a
cocommutative dg coalgebra. The coproduct

C∗(g)→ C∗(g)⊗ C∗(g)

is the map induced from the diagonal map of Lie algebras g → g ⊕ g, combined with
the Chevalley-Eilenberg chain complex functor. Here we are using the fact that there is a
natural isomorphism

C∗(g⊕ h) ∼= C∗(g)⊗ C∗(h).

We want, in the same way, to show that C∗(Lc(V)) is a cocommutative coalgebra, for
every open subset V ⊂ M. The diagonal map Lc(V)→ Lc(V)⊕Lc(V) gives us, as above,
a putative coproduct map

C∗(Lc(V))→ C∗(Lc(V)⊕Lc(V)).

The only point which is non-trivial is to verify that the natural map

C∗(Lc(V))⊗̂βC∗(Lc(V))→ C∗(Lc(V)⊕Lc(V))

is an isomorphism, where on the right hand side we use the completed bornological tensor
product of convenient vector spaces.

The fact that this map is an isomorphism follows from the fact that for any two mani-
folds X and Y, we have a natural isomorphism

C∞
c (X)⊗̂βC∞

c (Y) ∼= C∞
c (X×Y).
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Thus, for every open subset V ⊂ M, U(L)(V) is a cocommutative coalgebra. The fact
that the assignment of the cocommutative coalgebra C∗(g) to an L∞ algebra g is functorial
immediately implies that U(L)(V) is a prefactorization algebra in the category of cocom-
mutative coalgebras. (It is a factorization algebra, and not just a pre-algebra, because the
forgetful functor from cocommutative coalgebras to cochain complexes preserves colim-
its).

Now we can give a formal definition of a factorization algebra with a multiplicative
Lc-action.

12.6.1.1 Definition. LetF be a factorization algebra on a manifold M valued in convenient vector
spaces, and let L be a local L∞ algebra. Then, a multiplicative Lc-action on F is is the following:

(1) A factorization algebra FL in the category of (convenient) comodules for U(L).
(2) Let us give F the trivial coaction of U(L). Then, we have a map of dg U(L)-comodule

factorization algebras F → FL.
(3) For every open subset V ⊂ M, FL is quasi-cofree: this means that there is an isomor-

phism
FL ∼= U(Lc)(V)⊗̂βF (V).

of graded, but not dg, U(Lc)(V) comodules, such that the given map from F (V) is ob-
tained by tensoring the identity onF (V) with the coaugmentation map C→ U(Lc)(V).
(The coaugmentation map is simply the natural inclusion of C into C∗(Lc(V)) = Sym∗ Lc(V)[1]).

More generally, suppose that F is a convenient factorization algebra with a complete decreas-
ing filtration. We give U(L) a complete decreasing filtration by saying that Fi(U(L))(V) = 0
for i > 0. In this situation, a multiplicative Lc-action on F is a complete filtered convenient U(L)
comodule FLc with the same extra data and properties as above, except that the tensor product is
the one in the category of complete filtered convenient vector spaces.

One reason that this is a good definition is the following.

12.6.1.2 Lemma. Suppose that F is a (complete filtered) convenient factorization algebra with a
multiplicative Lc action in the sense above. Then, for every open subset V ⊂ M, there is an L∞
action of Lc(V) on F (V) and an isomorphism of dg C∗(Lc(V))-comodules

C∗(Lc(V),F (V)) ∼= FLc(V),

where on the left hand side we take chains with coefficients in the L∞-module F (V).

PROOF. Let g be any L∞ algebra. There is a standard way to translate between L∞
g-modules and C∗(g)-comodules: if W is an L∞ g-module, then C∗(g, W) is a C∗(g)-
comodule. Conversely, to give a differential on C∗(g)⊗W making it into a C∗(g)-comodule
with the property that the map W → C∗(g)⊗W is a cochain map, is the same as to give
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an L∞ action of g on W. Isomorphisms of comodules (which are the identity on the copy
of W contained in C∗(g, W)) are the same as L∞ equivalences.

This lemma just applies these standard statements to the symmetric monoidal cate-
gory of convenient cochain complexes. �

To justify the usefulness of our definition to the situation of field theories, we need to
show that if we have a field theory with an action of L then we get a factorization algebra
with a multiplicative Lc action in the sense we have explained.

12.6.1.3 Proposition. Suppose we have a field theory on a manifold M with an action of a local
L∞ algebra L. Then quantum observables Obsq of the field theory have a multiplicative Lc-action
in the sense we described above.

PROOF. We need to define the space of elements of Obsq,Lc . �

Now we can give the precise statement, and proof, of the main theorem of this section.
Suppose that we have a quantum field theory on a manifold M, with an action of a local
L∞ algebra L. Let α ∈ H1(C∗red,loc(L))[[h̄]] be the obstruction to lifting this to an inner
action.

12.7. Noether’s theorem and the local index

In this section we will explain how Noether’s theorem – in the stronger form formu-
lated in the previous section – gives rise to a definition of the local index of an elliptic
complex with an action of a local L∞ algebra.

Let us explain what we mean by the local index. Suppose we have an elliptic complex
on a compact manifold M. We will let E (U) denote the cochain complex of sections of
this elliptic complex on an open subset U ⊂ M.

Then, the cohomology of E (M) is finite dimensional, and the index of our elliptic
complex is defined to be the Euler characteristic of the cohomology. We can write this as

Ind(E (M)) = STrH∗(E (M)) Id .

That is, the index is the super-trace (or graded trace) of the identity operator on cohomol-
ogy.

More generally, if g is a Lie algebra acting on global sections of our elliptic complex
E (M), then we can consider the character of g on H∗(E (M)). If X ∈ g is any element, the
character can be written as

Ind(X, E (M)) = STrH∗(E (M)) X.



12.7. NOETHER’S THEOREM AND THE LOCAL INDEX 227

Obviously, the usual index is the special case when g is the one-dimensional Lie algebra
acting on E (M) by scaling.

We can rewrite the index as follows. For any endomorphism X of H ∗ (E (M)), the
trace of X is the same as the trace of X acting on the determinant of H∗(E (M)). Note
that for this to work, we need H∗(E (M)) to be treated as a super-line: it is even or odd
depending on whether the Euler characteristic of H∗(E (M)) is even or odd.

It follows that the character of the action of a Lie algebra g on E (M)) can be encoded
entirely in the natural action of g on the determinant of H∗(E (M)). In other words,
the character of the g action is the same data as the one-dimensional g-representation
det H∗(E (M)).

Now suppose that g is global sections of a sheaf L of dg Lie algebras (or L∞ algebras)
on M. We will further assume that L is a local L∞ algebra. Let us also assume that the
action of g = L(M) on E (M) arises from a local action of the sheaf L of L∞ algebras on
the sheaf E of cochain complexes.

Then, one can ask the following question: is there some way in which the character of
the L(M) action on E (M) can be expressed in a local way on the manifold? Since, as we
have seen, the character of the L(M) action is entirely expressed in the homotopy L(M)
action on the determinant of the cohomology of E (M), this question is equivalent to the
following one: is it possible to express the determinant of the cohomology of E (M) in a
way local on the manifold M, in an L-equivariant way?

Now, E (M) is a sheaf, so that we can certainly describe E (M) in a way local on M.
Informally, we can imagine E (M) as being a direct sum of its fibres at various points in
M. More formally if we choose a cover U of M, then the Čech double complex for U with
coefficients in the sheaf E produces for us a complex quasi-isomorphic to E (M). This
double complex is an additive expression describing E (M) in terms of sections of E in the
open cover U of M.

Heuristically, the Čech double complex gives a formula of the form

E (M) ∼∑
i

E (Ui)−∑
i,j

E (Ui ∩Uj) + ∑
i,j,k

E (Ui ∩Uj ∩Uk)− . . .

which we should imagine as the analog of the inclusion-exclusion formula from combi-
natorics. If U is a finite cover and each E (U) has finite-dimensional cohomology, this
formula becomes an identity upon taking Euler characteristics.

Since M is compact, one can also view E (M) as the global sections of the cosheaf of
compactly supported sections of E , and then Čech homology gives us a similar expres-
sion.
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The determinant functor from vector spaces to itself takes sums to tensor products.
We thus could imagine that the determinant of the cohomology of E (M) can be expressed
in a local way on the manifold M, but where the direct sums that appear in sheaf theory
are replaced by tensor products.

Factorization algebras have the feature that the value on a disjoint union is a tensor
product (rather than a direct sum as appears in sheaf theory). That is, factorization alge-
bras are multiplicative versions of cosheaves.

It is therefore natural to express that the determinant of the cohomology of E (M) can
be realized as global sections of a factorization algebra, just as E (M) is global sections of
a cosheaf.

It turns out that this is the case.

12.7.0.1 Lemma. Let E be any elliptic complex on a compact manifold M. Let us form the free
cotangent theory to the Abelian elliptic Lie algebra E [−1]. This cotangent theory has elliptic
complex of fields E ⊕ E ![−1].

Let Obsq
E denote the factorization algebra of observables of this theory. Then, there is a quasi-

isomorphism

H∗(Obsq
E (M)) = det H∗(E (M))[d]

where d is equal to the Euler characteristic of H∗(E (M)) modulo 2.

Recall that by det H∗(E (M)) we mean

det H∗(E (M)) = ⊗i

{
det Hi(E (M))

}(−1)i

.

This lemma therefore states that the cohomology of global observables of the theory is the
determinant of the cohomology of E (M), with its natural Z/2 grading. The proof of this
lemma, although easy, will be given at the end of this section.

This lemma shows that the factorization algebra Obsq
E is a local version of the deter-

minant of the cohomology of E (M). One can then ask for a local version of the index.
Suppose that L is a local L∞ algebra on M which acts linearly on E . Then, as we have
seen, the precosheaf of L∞-algebras given by compactly supported sections Lc of L acts
on the factorization algebra Obsq. We have also seen that, up to coherent homotopies
which respect the factorization algebra structure, the action of Lc(U) on Obsq(U) is by a
character α times the identity matrix.

12.7.0.2 Definition. In this situation, the local index is the multiplicative Lc-equivariant fac-
torization algebra Obsq

E .
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This makes sense, because as we have seen, the action of L(M) on Obsq
E (M) is the

same data as the character of the L(M) action on E (M), that is, the index.

Theorem 12.6.0.1 tells us that the multiplicative action of Lc on Obsq
E is through the

character α of Lc, which is also the obstruction to lifting the action to an inner action.

12.7.1. Proof of lemma 12.7.0.1. Before we give the (simple) proof, we should clar-
ify some small points. Recall that for a free theory, there are two different versions of
quantum observables we can consider. We can take our observables to be polynomial
functions on the space of fields, and not introduce the formal parameter h̄; or we can take
our observables to be formal power series on the space of fields, in which case one needs
to introduce the parameter h̄. These two objects encode the same information: the second
construction is obtained by applying the Rees construction to the first construction. We
will give the proof for the first (polynomial) version of quantum observables. A similar
statement holds for the second (power series) version, but one needs to invert h̄ and tensor
the determinant of cohomology by C((h̄)).

Globally, polynomial quantum observables can be viewed as the space P(E (M)) of
polynomial functions on E (M), with a differential which is a sum of the linear differential
Q on E (M) with the BV operator. Let us compute the cohomology by a spectral sequence
associated to a filtration of Obsq

E (M). The filtration is the obvious increasing filtration
obtained by declaring that

Fi Obsq
E (M) = Sym≤i(E (M)⊕ E !(M)[−1])∨.

The first page of this spectral sequence is cohomology of the associated graded. The asso-
ciated graded is simply the symmmetric algebra

H∗Gr Obsq
E (M) = Sym∗

(
H∗(E (M))∨ ⊕ H∗(E !(M)[−1])∨

)
.

The differential on this page of the spectral sequence comes from the BV operator asso-
ciated to the non-degenerate pairing between H∗(E (M)) and H∗(E !(M))[−1]. Note that
H∗(E !(M)) is the dual to H∗(E (M)).

It remains to show that the cohomology of this secondary differential yields the deter-
minant of H∗(E (M)), with a shift.

We can examine a more general problem. Given any finite-dimensional graded vector
space V, we can give the algebra P(V⊕V∗[−1]) of polynomial functions on V⊕V∗[−1] a
BV operator4 arising from the pairing between V and V∗[−1]. Then, we need to produce
an isomorphism

H∗(P(V ⊕V∗[−1]),4) ∼= det(V)[d]

where the shift d is equal modulo 2 to the Euler characteristic of V.



230 12. NOETHER’S THEOREM IN QUANTUM FIELD THEORY

Sending V to H∗(P(V⊕V∗[−1]),4) is a functor from the groupoid of finite-dimensional
graded vector spaces and isomorphisms between them, to the category of graded vector
spaces. It sends direct sums to tensor products. It follows that to check whether or not it
returns the determinant, one needs to check that it does in the case that V is a graded line.

Thus, let us assume that V = C[k] for some k ∈ Z. We will check that our functor
returns V[1] if k is even and V∗ if k is odd. Thus, viewed as a Z/2 graded line, our functor
returns det V with a shift by the Euler characteristic of V.

To check this, note that
P(V ⊕V∗[−1]) = C[x, y]

where x is of cohomological degree k and y is of degree −1− k. The BV operator is

4 =
∂

∂x
∂

∂y
.

A simple calculation shows that the cohomology of this complex is 1 dimensional, spanned
by x if k is odd and by y if k is even. Since x is a basis of V∗ and y is a basis of V, this
completes the proof.

12.8. The partition function and the quantum Noether theorem

Our formulation of the quantum Noether theorem goes beyond a statement just about
symmetries (in the classical sense of the word). It also involves deformations, which are
symmetries of cohomological degree 1, as well as symmetries of other cohomological de-
gree. Thus, it has important applications when we consider families of field theories.

The first application we will explain is that the quantum Noether theorem leads to a
definition of the partition function of a perturbative field theory.

Suppose we have a family of field theories which depends on a formal parameter c,
the coupling constant. (Everything we will say will work when the family depends on a
number of formal parameters, or indeed on a pro-nilpotent dg algebra). For example, we
could start with a free theory and deform it to an interacting theory. An example of such
a family of scalar field theories is given by the action functional

S(φ) =
∫

φ(4+ m2)φ + cφ4.

We can view such a family of theories as being a single theory – in this case the free scalar
field theory – with an action of the Abelian L∞ algebra C[1]. Indeed, by definition, an
action of an L∞ algebra g on a theory is a family of theories over the dg ring C∗(g) which
specializes to the original theory upon reduction by the maximal ideal C>0(g).

We have seen (lemma ??) that actions of g on a theory are the same thing as actions of
the local Lie algebra Ω∗X ⊗ g. In this way, we see that a family of theories over the base
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ring C[[c]] is the same thing as a single field theory with an action of the local abelian L∞
algebra Ω∗X[−1].

Here is our definition of the partition function. We will give the definition in a general
context, for a field theory acted on by a local L∞ algebra; afterwards, we will analyze what
it means for a family of field theories depending on a formal parameter c.

The partition function is only defined for field theories with some special properties.
Suppose we have a theory on a compact manifold M, described classically by a local
L∞ algebra M with an invariant pairing of degree −3. Suppose that H∗(M(M)) = 0;
geometrically, this means we are perturbing around an solated solution to the equations
of motion on the compact manifold M. This happens, for instance, with a massive scalar
field theory.

This assumption implies that H∗(Obsq(M)) = C[[h̄]]. There is a preferred C[[h̄]]-linear
isomorphism which sends the observable 1 ∈ H0(Obsq(M)) to the basis vector of C.

Suppose that this field theory is equipped with an inner action of a local L∞ algebra
L. Then, proposition ?? tells us that for any open subset U ⊂ M, the action of Lc(U)
on Obsq(U) is homotopically trivialized. In particular, since M is compact, the action of
L(M) on Obsq(M) is homotopically trivialized.

A theory with an L-action is the same as a family of theories over BL. The complex
Obsq(M)L(M) of L(M)-equivariant observables should be interpreted as the C∗(L(M))-
module of sections of the family of observables over BL(M).

Since the action of L(M) is trivialized, we have a quasi-isomorphism of C∗(L)[[h̄]]-
modules

Obsq(M)L(M) ' Obsq(M)⊗ C∗(L).

Since Obsq(M) is canonically quasi-isomorphic to C[[h̄]], we get a quasi-isomorphism

Obsq(M)L(M) ' C∗(L)[[h̄]].

12.8.0.1 Definition. The partition function is the element in C∗(L)[[h̄]] which is the image of the
observable 1 ∈ Obsq(M)L(M).

Another way to interpret this is as follows. The fact that L acts linearly on our the-
ory implies that the family of global observables over BL(M) is equipped with a flat
connection. Since we have also trivialized the central fibre, via the quasi-isomorphism
Obsq(M) ' C[[h̄]], this whole family is trivialized. The observable 1 then becomes a sec-
tion of the trivial line bundle on BL(M) with fibre C[[h̄]], that is, an element of C∗(L(M))[[h̄]].

Let us now analyze some examples of this definition.
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Example: Let us first see what this definition amounts to when we work with one-dimensional
topological field theories, which (in our formalism) are encoded by associative algebras.

Thus, suppose that we have a one-dimensional topological field theory, whose factor-
ization algebra is described by an associative algebra A. We will view A as a field theory
on S1. For any interval I ⊂ S1, observables of theory are A, but observables on S1 are the
Hochschild homology HH∗(A).

Suppose that g is a Lie algebra with an inner action on A, given by a Lie algebra
homomorphism g → A. The analog of proposition ?? in this situation is the statement
that that the action of g on the Hochschild homology of A is trivialized. At the level of
HH0, this is clear, as HH0(A) = A/[A, A] and bracketing with any element of A clearly
acts by zero on A/[A, A].

The obstruction to extending an action of Ω∗X[−1] to an inner action is an element in
H1(C∗red,loc(Ω

∗
X[−1])). The D-module formulation ?? of the complex of local cochains of a

local Lie algebra gives us a quasi-isomorphism

C∗red,loc(Ω
∗
X[−1]) ∼= cΩ∗(X)[[c]][d]

where d = dim X and c is a formal parameter. Therefore, there are no obstructions to
lifting an action of Ω∗X[−1] to an inner action. However, there is an ambiguity in giving
such a lift, coming from the space cHd(X)[[c]].

Let us suppose that we have a field theory with an inner action of Ω∗X[−1]. Let Obsq

denote observables of this theory. Then, Noether’s theorem gives us a map of factorization
algebras

ÛBD(Ω∗X,c)→ Obsq

where Obsq denotes the factorization algebra of observables of our theory, and ÛBD(Ω∗X[−1])
is the completed BD envelope factorization algebra of Ω∗X. Since Ω∗X[−1] is abelian, then
the BD envelope is simply a completed symmetric algebra:

ÛBD(Ω∗c (U)[−1]) = Ŝym
∗
(Ω∗c (U))[[h̄]].

In particular, if M is a compact manifold, then we have a natural isomorphism

Ŝym
∗
(H∗(M))[[h̄]] = H∗

(
ÛBD(Ω∗c (M)[−1])

)
.

Applying Noether’s theorem, we get a map

Ŝym
∗
(H0(M))[[h̄]]→ H0(Obsq(M)).



APPENDIX A

Background

A.1. Lie algebras and L∞ algebras

Lie algebras, and their homotopical generalization L∞ algebras, appear throughout
this book in a variety of contexts. It might surprise the reader that we never use their rep-
resentation theory or almost any aspects emphasized in textbooks on Lie theory. Instead,
we primarily use dg Lie algebras as a convenient language for formal derived geometry.
In this section, we overview homological constructions with dg Lie algebras, and in the
following section, we overview the relationship with derived geometry.

We use these ideas in the following settings.

• We use the Chevalley-Eilenberg complex to construct a large class of factorization
algebras, via the factorization envelope of a sheaf of dg Lie algebras. This class
includes the observables of free field theories and the Kac-Moody vertex algebras.
• We use the Lie-theoretic approach to deformation functors to motivate our ap-

proach to classical field theory.
• We introduce the notion of a local Lie algebra to capture the symmetries of a field

theory and prove generalizations of Noether’s theorem.

We also use Lie algebras in the construction of gauge theories in the usual way.

A.1.1. Dg Lie algebras and L∞ algebras. We now quickly extend and generalize ho-
mologically the notion of a Lie algebra. Our base ring will now be a commutative algebra
R over a characteristic zero field K, and we encourage the reader to keep in mind the
simplest case: where R = R or C. Of course, one can generalize the setting considerably,
with a little care, by working in a symmetric monoidal category (with a linear flavor); the
cleanest approach is to use operads.

Before introducing L∞ algebras, we treat the simplest homological generalization.

A.1.1.1 Definition. A dg Lie algebra over R is a Z-graded R-module g such that
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(1) there is a differential

· · · d→ g−1 d→ g0 d→ g1 → · · ·
making (g, d) into a dg R-module;

(2) there is a bilinear bracket [−,−] : g⊗R g→ g such that
• [x, y] = −(−1)|x||y|[y, x] (graded antisymmetry),
• d[x, y] = [dx, y] + (−1)|x|[x, dy] (graded Leibniz rule),
• [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] (graded Jacobi rule),

where |x| denotes the cohomological degree of x ∈ g.

In other words, a dg Lie algebra is an algebra over the operad Lie in the category of dg
R-modules. In practice — and for the rest of the section — we require the graded pieces
gk to be projective R-modules so that we do not need to worry about the tensor product
or taking duals.

Here are several examples.

(a) We construct the dg analog of gln. Let (V, dV) be a cochain complex over K. Let
End(V) = ⊕n Homn(V, V) denote the graded vector space where Homn consists
of the linear maps that shift degree by n, equipped with the differential

dEnd V = [dV ,−] : f 7→ dV ◦ f − (−1)| f | f ◦ dV .

The commutator bracket makes End(V) a dg Lie algebra over K.
(b) For M a smooth manifold and g an ordinary Lie algebra (such as su(2)), the ten-

sor product Ω∗(M)⊗R g is a dg Lie algebra where the differential is simply the
exterior derivative and the bracket is

[α⊗ x, β⊗ y] = α ∧ β⊗ [x, y].

We can view this dg Lie algebra as living over K or over the commutative dg
algebra Ω∗(M). This example appears naturally in the context of gauge theory.

(c) For X a simply-connected topological space, let g−n
X = π1+n(X)⊗Z Q and use the

Whitehead product to provide the bracket. Then gX is a dg Lie algebra with zero
differential. This example appears naturally in rational homotopy theory.

We now introduce a generalization where we weaken the Jacobi rule on the brackets
in a systematic way. After providing the (rather convoluted) definition, we sketch some
motivations.

A.1.1.2 Definition. An L∞ algebra over R is a Z-graded, projective R-module g equipped with
a sequence of multilinear maps of cohomological degree 2− n

`n : g⊗R · · · ⊗R g︸ ︷︷ ︸
n times

→ g,
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with n = 1, 2, . . ., satisfying the following properties.

(1) Each bracket `n is graded-antisymmetric, so that

`n(x1, . . . , xi, xi+1, . . . , xn) = −(−1)|xi ||xi+1|`n(x1, . . . , xi+1, xi, . . . , xn)

for every n-tuple of elements and for every i between 1 and n− 1.
(2) Each bracket `n satisfies the n-Jacobi rule, so that

0 =
n

∑
k=1

(−1)k ∑
i1<···<ik

jk+1<···<jn
{i1,...,jn}={1,...,n}

(−1)ε`n−k+1(`k(xi1 , . . . , xik), xjk+1 , . . . , xjn).

Here (−1)ε denotes the sign for the permutation(
1 · · · k k + 1 · · · n
i1 · · · ik jk+1 · · · jn

)
acting on the element x1⊗ · · · ⊗ xn given by the alternating-Koszul sign rule, where the
transposition ab 7→ ba acquires sign −(−1)|a||b|.

For small values of n, we recover familiar relations. For example, the 1-Jacobi rule
says that `1 ◦ `1 = 0. In other words, `1 is a differential! Momentarily, let’s denote `1 by d
and `2 by the bracket [−,−]. The 2-Jacobi rule then says that

−[dx1, x2] + [dx2, x1] + d[x1, x2] = 0,

which encodes the graded Leibniz rule. Finally, the 3-Jacobi rule rearranges to

[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2]

= d`3(x1, x2, x3) + `3(dx1, x2, x3) + `3(dx2, x3, x1) + `3(dx3, x1, x2).

In short, g does not satisfy the usual Jacobi rule on the nose but the failure is described
by the other brackets. In particular, at the level of cohomology, the usual Jacobi rule is
satisfied.

Example: There are numerous examples of L∞ algebras throughout the book, but many are
simply dg Lie algebras spiced with analysis. We describe here a small, algebraic example
of interest in topology and elsewhere (see, for instance, [Hen08], [BC04], [BR10]). The
String Lie 2-algebra string(n) is the graded vector space so(n)⊕Rβ, where β has degree
1 — thus string(n) is concentrated in degrees 0 and 1 — equipped with two nontrivial
brackets:

`2(x, y) =
{

[x, y], x, y ∈ so(n)
0, x = β

`3(x, y, z) = µ(x, y, z)β x, y, z ∈ so(n),

where µ denotes 〈−, [−,−]〉, the canonical (up to scale) 3-cocycle on so(n) arising from
the Killing form. This L∞ algebra arises as a model for the “Lie algebra” of String(n),
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which itself appears in various guises (as a topological group, as a smooth 2-group, or as
a more sophisticated object in derived geometry). ♦

There are two important cochain complexes associated to an L∞ algebra, which gen-
eralize the two Chevalley-Eilenberg complexes we defined earlier.

A.1.1.3 Definition. For g an L∞ algebra, the Chevalley-Eilenberg complex for homology
C∗g is the dg cocommutative coalgebra

SymR(g[1]) =
∞⊕

n=0

(
(g[1])⊗n)

Sn

equipped with the coderivation d whose restriction to cogenerators dn : Symn(g[1]) → g[1] are
precisely the higher brackets `n.

Remark: The coproduct ∆ : C∗g → C∗g⊗R C∗g is given by running over the natural ways
that one can “break a monomial into two smaller monomials.” Namely,

∆(x1 · · · xn) = ∑
σ∈Sn

∑
1≤k≤n−1

(xσ(1) · · · xσ(k)⊗ (xσ(k+1) · · · xσ(n)).

A coderivation respects the coalgebra analog of the Leibniz property, and so it is deter-
mined by its behavior on cogenerators. ♦

This coalgebra C∗g conveniently encodes all the data of the L∞ algebra g. The coderiva-
tion d puts all the brackets together into one operator, and the equation d2 = 0 encodes
all the higher Jacobi relations. It also allows for a concise definition of a map between L∞
algebras.

A.1.1.4 Definition. A map of L∞ algebras F : g  h is given by a map of dg cocommutative
coalgebras F : C∗g→ C∗h.

Note that a map of L∞ algebras is not determined just by its behavior on g, which is
why we use to denote such a morphism. Unwinding the definition above, one discov-
ers that such a morphism consists of a linear map Symn(g[1]) → h for each n, satisfying
compatibility conditions ensuring that we get a map of coalgebras.

To define the other Chevalley-Eilenberg complex C∗g, we use the graded linear dual
of g,

g∨ =
⊕
n∈Z

HomR(g
n, R)[n],

which is the natural notion of dual in this context.
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A.1.1.5 Definition. For g an L∞ algebra, the Chevalley-Eilenberg complex for cohomology
C∗g is the dg commutative algebra

ŜymR(g[1]
∨) =

∞

∏
n=0

(
(g[1]∨)⊗n)

Sn

equipped with the derivation d whose Taylor coefficients dn : g[1]∨ → Symn(g[1]∨) are dual to
the higher brackets `n.

We emphasize that this dg algebra is completed with respect to the filtration by powers
of the ideal generated by g[1]∨. This filtration will play a crucial role in the setting of
deformation theory.

A.1.2. References. We highly recommend [Get09] for an elegant and efficient treat-
ment of L∞ algebras (over K) (and simplicial sets and also how these constructions fit
together with deformation theory). The book of Kontsevich and Soibelman [KS] provides
a wealth of examples, motivation, and context.

A.2. Derived deformation theory

In physics, one often studies very small perturbations of a well-understood system,
wiggling an input infinitesimally or deforming an operator by a small amount. Asking
questions about how a system behaves under small changes is ubiquitous in mathemat-
ics, too, and there is an elegant formalism for such problems in the setting of algebraic
geometry, known as deformation theory. Here we will give a very brief sketch of derived de-
formation theory, where homological ideas are mixed with classical deformation theory.

A major theme of this book is that perturbative aspects of field theory — both classical
and quantum — are expressed cleanly and naturally in the language of derived deforma-
tion theory. In particular, many constructions from physics, like the the Batalin-Vilkovisky
formalism, obtain straightforward interpretations. Moreover, derived deformation theory
suggests how to rephrase standard results in concise, algebraic terms and also suggests
how to generalize these results substantially (see, for instance, the discussion on Noether’s
theorem).

In this section, we begin with a quick overview of formal deformation theory in alge-
braic geometry. We then discuss its generalization in derived algebraic geometry. Finally,
we explain the powerful relationship between deformation theory and L∞ algebras, which
we exploit throughout the book.

A.2.1. The formal neighborhood of a point. Let S denote some category of spaces,
such as smooth manifolds or complex manifolds or schemes. The Yoneda lemma implies
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we can understand any particular space X ∈ S by understanding how other spaces Y ∈ S
map into X. That is, the functor represented by X,

hX : S op → Sets
Y 7→ S(Y, X)

,

knows everything about X as a space of type S . We call hX the functor of points of X, and
this functorial perspective on geometry will guide our work below. Although abstract at
first acquaintance, this perspective is especially useful for thinking about general features
of geometry.

Suppose we want to describe what X looks like near some point p ∈ X. Motivated
by the perspective of functor of points, we might imagine describing “X near p” by some
kind of functor. The input category ought to capture all possible “small neighborhoods of
a point” permitted in S , so that we can see how such models map into X near p. We now
make this idea precise in the setting of algebraic geometry.

Let S = SchC denote the category of schemes over C. Every such scheme X consists of
a topological space Xtop equipped with a sheaf of commutative C-algebras OX (satisfying
various conditions we will not specify). We interpret the algebra OX(U) on the open
set U as the “algebra of functions on U.” Every commutative C-algebra R determines a
scheme Spec R where the prime ideals of R provide the set of points of the topological
space (Spec R)top and where the stalk of O at a prime ideal P is precisely the localization
of R with respect to R−P. We call such a scheme Spec R an affine scheme. By definition,
every scheme admits an open cover by affine schemes.

It is a useful fact that the functor of points hX of a scheme X is determined by its
behavior on the subcategory Aff C of affine schemes. By construction, Aff C is the opposite
category to CAlgC, the category of commutative C-algebras. Putting these facts together,
we know that every scheme X provides a functor from CAlgC to Sets. Here are two
examples.

Example: Consider the polynomial q(x, y) = x2 + y2 − 1. The functor

hX : CAlgC → Sets
R 7→ {(a, b) ∈ R2 | 0 = q(a, b) = a2 + b2 − 1}

corresponds to the affine scheme Spec S for the algebra S = C[x, y]/(q). This functor
simply picks out solutions to the equation q(x, y) = 0 in the algebra R, which we might
call the “unit circle” in R2. Generalizing, we see that any system of polynomials (or ideal
in an algebra) defines a similar functor of “solutions to the system of equations.” ♦

Example: Consider the scheme SL2, viewed as the functor

SL2 : CAlgC → Sets

R 7→
{

M =

(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ R such that 1 = ad− bc

}
.
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Note that SL2(C) is precisely the set that we usually mean. One can check as well that this
functor factors through the category of groups. ♦

The notion of “point” in this category is given by Spec C, which is the locally ringed
space given by a one-point space {∗} equipped with C as its algebra of functions. A point
in the scheme X is then a map p : Spec C → X. Every point is contained in some affine
patch U ∼= Spec R ⊂ X, so it suffices to understand points in affine schemes. It is now
possible to provide an answer to the question, “What are the affine schemes that look like
small thickenings of a point?”

A.2.1.1 Definition. A commutative C-algebra A is artinian if A is finite-dimensional as a C-
vector space. A local algebra A with unique maximal ideal m is artinian if and only if there is
some integer n such that mn = 0.

Any local artinian algebra (A,m) provides a scheme Spec A whose underlying topo-
logical space is a point but whose scheme structure has “infinitesimal directions” in the
sense that every function f ∈ m is “small” because f n = 0 for some n. Let ArtC denote the
category of local artinian algebras, which we will view as the category encoding “small
neighborhoods of a point.”

Remark: Hopefully it seems reasonable to choose ArtC as a model for “small neighbor-
hoods of a point.” There are other approaches imaginable but this choice is quite useful.
In particular, the most obvious topology for schemes — the Zariski topology — is quite
coarse, so that open sets are large and hence do not reflect the idea of “zooming in near
the point.” Instead, we use schemes whose space is just a point but have interesting but
tractable algebra. ♦

A point p : Spec C→ Spec R corresponds to a map of algebras P : R→ C. Every local
artinian algebra (A,m) has a distinguished map Q : A → A/m ∼= C. Given a point p in
Spec R, we obtain a functor

hp : ArtC → Sets
(A,m) 7→ {F : R→ A | P = Q ◦ F} .

Geometrically, this condition on φ means p is the composition Spec C → Spec A
Spec F→

Spec R. The map F thus describes some way to “extend infinitesimally” away from the
point p in X. A concrete example is in order.

Example: Our favorite point in SL2 is given by the identity element 1. Let h1 denote the
associated functor of artinian algebras. We can describe the tangent space T1SL2 using it,
as follows. Consider the artinian algebra D = C[ε]/(ε2), often called the dual numbers.
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Then

h1(D) =

{
M =

(
1 + sε tε

uε 1 + vε

) ∣∣∣∣∣ s, t, u, v ∈ C and
1 = (1 + sε)(1 + vε)− tuε2 = 1 + (s + v)ε

}
∼= {N ∈ M2(C) | Tr N = 0}
= sl2(C),

where the isomorphism is given by M = 1+ εN. Thus, we have recovered the underlying
set of the Lie algebra. ♦

For any point p in a scheme X, the set hp(D) is the tangent space to p in X. By con-
sidering more complicated artinian algebras, one can study the “higher order jets” at p.
We say that hp describes the formal neighborhood of p in X. The following proposition
motivates this terminology.

A.2.1.2 Proposition. Let P : R → C be a map of algebras (i.e., we have a point p : Spec C →
Spec R). Then

hp(A) = CAlgC(R̂p, A),
where

R̂p = lim←− R/mn
p

is the completed local ring given by the inverse limit over powers of mp = ker P, the maximal ideal
given by the functions vanishing at p.

In other words, the functor hp is not represented by a local artinian algebra (unless
R is artinian), but it is represented inside the larger category CAlgC. When R is noether-
ian, the ring R̂p is given by an inverse system of local artinian algebras, so we say hp is
pro-represented. When R is a regular ring (such as a polynomial ring over C), R̂p is iso-
morphic to formal power series. This important example motivates the terminology of
formal neighborhood.

There are several properties of such a functor hp that we want to emphasize, as they
guide our generalization in the next section. First, by definition, hp(C) is simply a point,
namely the point p. Second, we can study hp in stages, by a process we call artinian
induction. Observe that every local artinian algebra (A,m) is equipped with a natural
filtration

A ⊃ m ⊃ m2 ⊃ · · · ⊃ mn = 0.
Thus, every local artinian algebra can be constructed iteratively by a sequence of small
extensions, namely a short exact sequence of vector spaces

0→ I ↪→ B
f→ A→ 0

where f : B → A is a surjective map of algebras and I is an ideal in B such that mB I = 0.
We can thus focus on understanding the maps hp( f ) : hp(B)→ hp(A), which are simpler
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to analyze. In summary, hp is completely determined by how it behaves with respect to
small extensions.

A third property is categorical in nature. Consider a pullback of local artinian algebras

B×A C

��

// B

��
C // A

and note that B×A C is local artinian as well. Then the natural map

hp(B×A C)→ hp(B)×hp(A) hp(C)

is surjective — in fact, it is an isomorphism. (This property will guide us in the next
subsection.)

As an example, we describe how to study small extensions for the model case. Let
(R,mR) be a complete local ring with residue field R/mR ∼= C and with finite-dimensional
tangent space TR = (mR/m2

R)
∨. Consider the functor hR : A 7→ CAlg(R, A), which de-

scribes the formal neighborhood of the closed point in Spec R. The following proposition
provides a tool for understanding the behavior of hR on small extensions.

A.2.1.3 Proposition. For every small extension

0→ I ↪→ B
f→ A→ 0,

there is a natural exact sequence of sets

0→ TR ⊗C I → hR(B)
f ◦−→ hR(A)

ob→ OR ⊗ I,

where exact means that a map φ ∈ hR(A) lifts to a map φ̃ ∈ hR(B) if and only if ob(φ) = 0 and
the space of liftings is an affine space for the vector space TR ⊗C I.

Here ob denotes the obstruction to lifting maps, and OR is a set where an obstruction
lives. An obstruction space OR only depends on the algebra R, not on the small extension.
One can construct an obstruction space as follows. If d = dimC TR, there is a surjection of
algebras

r : S = C[[x1, . . . , xd]]→ R

such that J = ker r satisfies J ⊂ m2
S, where mS = (x1, . . . , xd) is the maximal ideal of S. In

other words, Spec R can be embedded into the formal neighborhood of the origin in Ad,
and minimally, in some sense. Then OR is (J/mS J)∨. For a proof of the proposition, see
Theorem 6.1.19 of [FGI+05].

This proposition hints that something homotopical lurks behind the scenes, and that
the exact sequence of sets is the truncation of a longer sequence. For a discussion of these
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ideas and the modern approach to deformation theory, we highly recommend the 2010
ICM talk of Lurie [Lur10].

A.2.1.1. References. The textbook of Eisenbud and Harris [EH00] is a lovely introduc-
tion to the theory of schemes, full of examples and motivation. There is an extensive
discussion of the functor of points approach to geometry, carefully compared to the lo-
cally ringed space approach. For an introduction to deformation theory, we recommend
the article of Fantechi and Göttsche in [FGI+05]. Both texts provide extensive references
to the literature.

A.2.2. Formal moduli spaces. The functorial perspective on algebraic geometry sug-
gests natural generalizations of the notion of a scheme by changing the source and target
categories. For instance, stacks arise as functors from CAlgC to the category of groupoids,
allowing one to capture the idea of a space “with internal symmetries.” It is fruitful to
generalize even further, by enhancing the source category from commutative algebras to
dg commutative algebras (or simplicial commutative algebras) and by enhancing the tar-
get category from sets to simplicial sets. (Of course, one needs to simultaneously adopt
a more sophisticated version of category theory, namely ∞-category theory.) This gener-
alization is the subject of derived algebraic geometry, and much of its power arises from
the fact that it conceptually integrates geometry, commutative algebra, and homotopical
algebra. As we try to show in this book, the viewpoint of derived geometry provides
conceptual interpretations of constructions like Batalin-Vilkovisky quantization.

We now outline the derived geometry version of studying the formal neighborhood of
a point. Our aim to pick out a class of functors that capture our notion of a formal derived
neighborhood.

A.2.2.1 Definition. An artinian dg algebra A is a dg commutative algebra over C such that

(1) each component Ak is finite-dimensional, dimC Ak = 0 for k << 0 and for k > 0, and
(2) A has a unique maximal ideal m, closed under the differential, and A/m = C.

Let dgArtC denote the category of artinian algebras, where morphisms are simply maps of dg
commutative algebras.

Note that, as we only want to work with local rings, we simply included it as part
of the definition. Note as well that we require A to be concentrated in nonpositive de-
grees. (This second condition is related to the Dold-Kan correspondence: we want A to
correspond to a simplicial commutative algebra.)

We now provide an abstract characterization of a functor that behaves like the formal
neighborhood of a point, motivated by our earlier discussion of functors hp.



A.2. DERIVED DEFORMATION THEORY 243

A.2.2.2 Definition. A formal moduli problem is a functor

F : dgArtC → sSet

such that

(1) F(C) is a contractible Kan complex,
(2) F sends a surjection of dg artinian algebras to a fibration of simplicial sets, and
(3) for every pullback diagram in dgArt

B×A C //

��

B

��
C // A

the map F(B×A C)→ F(B)×F(A) F(C) is a weak homotopy equivalence.

Note that since surjections go to fibrations, the strict pullback F(B)×F(A) F(C) agrees
with the homotopy pullback F(B)×h

F(A) F(C).

We now describe a large class of examples. Let R be a commutative dg algebra over
C whose underlying graded algebra is ŜymV, where V is a Z-graded vector space, and
whose differential dR is a degree 1 derivation. It has a unique maximal ideal generated by
V. Let hR denote the functor into simplicial sets whose n-simplices are

hR(A)n = { f : R→ A⊗Ω∗(4n) | f a map of unital dg commutative algebras}
and whose structure maps arise from those between the de Rham complexes of simplices.
Then hR is a formal moduli problem.

A.2.2.1. References. We are modeling our approach on Lurie’s, as explained in his ICM
talk [Lur10] and his paper on deformation theory [Lur]. For a discussion of these ideas in
our context of field theory, see [?].

A.2.3. The role of L∞ algebras in deformation theory. There is another algebraic
source of formal moduli functors — L∞ algebras — and, perhaps surprisingly, formal
moduli functors arising in geometry often manifest themselves in this form. We begin
by introducing the Maurer-Cartan equation for an L∞ algebra g and explaining how it
provides a formal moduli functor. This construction is at the heart of our approach to classical
field theory. We then describe several examples from geometry and algebra.

A.2.3.1 Definition. Let g be an L∞ algebra. The Maurer-Cartan equation (or MC equation) is
∞

∑
n=1

1
n!
`n(α

⊗n) = 0,

where α denotes a degree 1 element of g.
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Note that when we consider the dg Lie algebra Ω∗(M)⊗ g, with M a smooth manifold
and g an ordinary Lie algebra, the MC equation becomes the equation

dα +
1
2
[α, α] = 0.

A g-connection α ∈ Ω1 ⊗ g on the trivial principal G-bundle on M is flat if and only if it
satisfies the MC equation. (This is the source of the name Maurer-Cartan.)

There are two other perspectives on the MC equation. First, observe that a map of
commutative dg algebras α : C∗g → C is determined by its behavior on the generators
g∨[−1] of the algebra C∗g. Hence α is a linear functional of degree 0 on g∨[−1] — or,
equivalently, a degree 1 element α of g — that commutes with differentials. This condition
α ◦ d = 0 is precisely the MC equation for α. The second perspective uses the coalgebra
C∗g, rather than the algebra C∗g. A solution to the MC equation α is equivalent to giving
a map of cocommutative dg coalgebras α̃ : C→ C∗g.

Now observe that L∞ algebras behave nicely under base change: if g is an L∞ algebra
over C and A is a commutative dg algebra over C, then g⊗ A is an L∞ algebra (over A
and, of course, C). Solutions to the MC equation go along for the ride as well. For instance,
a solution α to the MC equation of g⊗ A is equivalent to both a map of commutative dg
algebras α : C∗g → A and a map of cocommutative dg coalgebras α̃ : A∨ → C∗g. Again,
we simply unravel the conditions of such a map restricted to (co)generators. As maps
of algebras compose, solutions play nicely with base change. Thus, we can construct a
functor out of the MC solutions.

A.2.3.2 Definition. For an L∞ algebra g, its Maurer-Cartan functor

MCg : dgArtC → sSet

sends (A,m) to the simplicial set whose n-simplices are solutions to the MC equation in g⊗m⊗
Ω∗(4n).

We remark that tensoring with the nilpotent ideal m makes g⊗ m is nilpotent. This
condition then ensures that the simplicial set MCg(A) is a Kan complex [Hin01] [Get09].
In fact, their work shows the following.

A.2.3.3 Theorem. The Maurer-Cartan functor MCg is a formal moduli problem.

In fact, every formal moduli problem is represented — up to a natural notion of weak
equivalence — by the MC functor of an L∞ algebra [Lur].

A.2.3.1. References. For a clear, systematic introduction with an expository emphasis,
we highly recommend Manetti’s lecture [Man09], which carefully explains how dg Lie
algebras relate to deformation theory and how to use them in algebraic geometry. The
unpublished book [KS] contains a wealth of ideas and examples; it also connects these
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ideas to many other facets of mathematics. The article of Hinich [Hin01] is the original
published treatment of derived deformation theory, and it provides one approach to nec-
essary higher category theory. For the relation with L∞ algebras, we recommend [Get09],
which contains elegant arguments for many of the ingredients, too. Finally, see Lurie’s
[Lur] for a proof that every formal moduli functor is described by a dg Lie algebra.





APPENDIX B

Functions on spaces of sections

Our focus throughout the book is on the “observables of a field theory,” where for us
the fields of a field theory are sections of a vector bundle and the observables are polyno-
mial (or power series) functions on these fields. In this appendix, we will use the setting
introduced in appendix ?? to give a precise meaning to this notion of observable.

B.1. Classes of functions on the space of sections of a vector bundle

Let M be a manifold and E a graded vector bundle on M. Let U ⊂ M be an open
subset. In this section we will introduce some notation for various classes of functionals
on sections E (U) of E on U. These spaces of functionals will all be differentiable cochain
complexes (or pro-cochain complexes) as described in appendix ??. (In this appendix,
however, the differential will always be trivial, so that it is natural to think of these spaces
of functionals as differentiable pro-graded vector spaces.)

Recall the following notations:

• E (M) denotes the vector space of smooth sections of E over M,
• Ec(M) denotes the vector space of compactly supported smooth sections of E

over M,
• E (M) denotes the vector space of distributional sections of E over M, and
• E c(M) denotes the vector space of compactly supported distributional sections

of E over M.

We can view these spaces as living in LCTVS, BVS, CVS, or DVS, as suits us, thanks
to the discussion in appendix ??. In LCTVS, there is a standard isomorphism between
the continuous linear dual E (M)∗, equipped with the strong topology, and E

!
c(M), the

compactly supported distributional sections of the bundle E! = E∨ ⊗DensM. Likewise,
there is an isomorphism between Ec(M)∗ and E

!
(M).

B.1.1. Functions. Given an ordinary vector space V, the symmetric algebra Sym V∗
on the dual space V∗ provides a natural class of functions on V. Similarly, the completed
symmetric algebra Ŝym V∗ describes the formal power series centered at the origin, which

247
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is interpreted as functions on the formal neighborhood of the origin in V. We wish to
describe the analogs of these constructions when the vector space is E (U), and hence we
need to be careful in our choice of tensor products and ambient category. In the end, we
will show that two natural approaches coincide and thus provide our definition.

From the point of view of topological vector spaces, a natural approach is use the
completed projective tensor product ⊗̂π and follow the general recipe for constructing
symmetric algebras. Because we will consider other approaches as well, we will call this
construction the π-symmetric powers and define it as

Symn
π E !

c (U) =
(
E !

c (U)⊗̂πn
)

Sn
,

Symn
π E

!
c(U) =

(
E

!
c(U)⊗̂πn

)
Sn

,

where the subscript Sn denotes the coinvariants with respect to the action of this symmet-
ric group. Then we define the uncompleted π-symmetric algebra as

Symπ E !
c (U) =

∞⊕
n=0

Symn
π E !

c (U)

and the completed π-symmetric algebra

ŜymπE !
c (U) =

∞

∏
n=0

Symn
π E !

c (U).

Using the same formulas, one defines Symπ E
!
c(U) and ŜymπE

!
c(U).

If one views E !
c (U) and E

!
c(U) as convenient vector spaces, the natural choice is to

work with the tensor product ⊗̂β and then to follow the standard procedure for con-
structing symmetric algebras. In short, we define the uncompleted β-symmetric algebra
as

Symβ E !
c (U) =

∞⊕
n=0

(
E !

c (U)⊗̂βn
)

Sn

and the completed β-symmetric algebra

ŜymβE
!

c (U) =
∞

∏
n=0

(
E

!
c(U)⊗̂βn

)
Sn

.

Using the same formulas, one defines Symβ E
!
c(U) and ŜymβE

!
c(U).

Thankfully, these two constructions provide the same differentiable vector spaces, via
proposition ??.
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B.1.1.1 Lemma. As graded differentiable vector spaces, there are isomorphisms

Symπ E !
c (U) ∼= Symβ E !

c (U),

Symπ E
!
c(U) ∼= Symβ E

!
c(U),

ŜymπE !
c (U) ∼= ŜymβE

!
c (U),

ŜymπE
!
c(U) ∼= ŜymβE

!
c(U).

In light of this lemma, we often write O(E (U)) for ŜymπE
!
c(U), as it is naturally in-

terpreted as the algebra of formal power series on E (U). (This notation emphasizes the
role of the construction rather than its inner workings.) Similarly, we write O(E (U)) for
ŜymπE !

c (U) and so on for O(Ec(U)) and O(E c(U)).

These completed spaces of functionals are all products of the differentiable vector
spaces of symmetric powers, and so they are themselves differentiable vector spaces. We
will equip all of these spaces of functionals with the structure of a differentiable pro-vector
space, induced by the filtration

FiO(E (U)) = ∏
n≥i

Symi E
!
c(U)

(and similarly for O(Ec(U)), O(E (U)) and O(E c(U))).

The natural product O(E (U)) is compatible with the differentiable structure, mak-
ing O(E (U)) into a commutative algebra in the multicategory of differentiable graded
pro-vector spaces. The same holds for the spaces of functionals O(Ec(U)), O(E (U)) and
O(E c(U)).

B.1.2. One-forms. Recall that for V is a vector space, we view the formal neighbor-
hood of the origin as having the ring of functions O(V) = Ŝym(V∨). Then we likewise
define the space of one-forms on this formal scheme as

Ω1(V) = O(V)⊗V∨.

There is a universal derivation, called the exterior derivative map,

d : O(V)→ Ω1(V).

In components the exterior derivative is just the composition

Symn+1 V∨ → (V∨)⊗n+1 → Symn(V∨)⊗V∨,

where the maps are the inclusion followed by the natural projection, up to an overall
combinatorial constant. (As a concrete example, note that d(xy) = ydx + xdy can be
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computed by taking the tensor representative (x⊗ y+ y⊗ x)/2 for xy and then projecting
off the last factor.)

This construction extends naturally to our context. We define

Ω1(E (U)) = O(E (U))⊗̂βE
!
c(U),

where we take the associated differentiable vector space. In concrete terms,

Ω1(E (U)) = ∏
n

Symn(E
!
c(U))⊗̂βE

!
c(U).

In this way, Ω1(E (U)) becomes a differentiable pro-cochain complex, where the filtration
is defined by

FiΩ1(E (U)) = ∏
n≥i−1

Symn(E
!
c(U))⊗̂βE

!
c(U).

Further, Ω1(E (U)) is a module for the commutative algebra O(E (U)), where the module
structure is defined in the multicategory of differentiable pro-vector spaces.

In a similar way, define the exterior derivative

d : O(E (U))→ Ω1(E (U))

by saying that on components it is given by the same formula as in the finite-dimensional
case.

B.1.3. Other classes of sections of a vector bundle. Before we introduce our next
class of functionals — those with proper support — we need to introduce some further
notation concerning classes of sections of a vector bundle.

Let f : M→ N be a smooth fibration between two manifolds. Let E be a vector bundle
on M. We say a section s ∈ Γ(M, E) has compact support over f if the map

f : Supp(s)→ N

is proper. We let Γc/ f (M, E) denote the space of sections with compact support over f . It is
a differentiable vector space: if X is an auxiliary manifold, a smooth map X → Γc/ f (M, E)
is a section of the bundle π∗ME on X×M that has compact support relative to the map

M× X → N × X.

(It is straightforward to write down a flat connection on C∞(X, Γc/ f (M, E)), using argu-
ments of the type described in section ?? of appendix ??.)

Next, we need to consider spaces of the form E (M)⊗̂βF (N), where M and N are
manifolds and E, F are vector bundles on the manifolds M, N, respectively. We want a
more geometric interpretation of this tensor product.
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We will view E (M)⊗̂βF (N) as a subspace

E (M)⊗̂βF (N) ⊂ E (M)⊗̂βF (N).

It consists of those elements D with the property that, if φ ∈ E !
c (M), then map

D(φ) : F !
c(N) → R

ψ 7→ D(φ⊗ ψ)

comes from an element of F (N). Alternatively, E (M)⊗̂βF (N) is the space of continuous
linear maps from E !

c (M) to F (N).

We can similarly define E c(M)⊗̂βF (N) as the subspace of those elements of E (M)⊗̂βF (N)
that have compact support relative to the projection M× N → N.

These spaces form differentiable vector spaces in a natural way: a smooth map from
an auxiliary manifold X to E (M)⊗̂βF (N) is an element of E (N)⊗̂βF (N)⊗̂βC∞(X). Sim-
ilarly, a smooth map to E c(M)⊗̂βF (N) is an element of E (M)⊗̂βF (N)⊗̂βC∞(X) whose
support is compact relative to the map M× N × X → N × X.

B.1.4. Functions with proper support. Recall that

Ω1(Ec(U)) = O(Ec(U))⊗̂βE
!
(U).

We can thus define a subspace

O(E (U))⊗̂βE
!
(U) ⊂ Ω1(Ec(U)).

The Taylor components of elements of this subspace are in the space

Symn(E
!
c(U))⊗̂βE

!
(U),

which in concrete terms is the Sn coinvariants of

E
!
c(U)⊗̂βn⊗̂βE

!
(U).

B.1.4.1 Definition. A function Φ ∈ O(Ec(U)) has proper support if

dΦ ∈ O(E (U))⊗̂βE
!
(U) ⊂ O(Ec(U))⊗̂βE

!
(U).

The reason for the terminology is as follows. Let Φ ∈ O(Ec(U)) and let

Φn ∈ Hom(Ec(U)⊗̂βn, R)

be the nth term in the Taylor expansion of Φ. Then Φ has proper support if and only if,
for all n, the composition with any projection map

Supp(Φn) ⊂ Un → Un−1

is proper.
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We will let
OP(Ec(U)) ⊂ O(Ec(U))

be the subspace of functions with proper support. Note that functions with proper sup-
port are not a subalgebra.

Because OP(Ec(U)) fits into a fiber square

OP(Ec(U)) → O(E (U))⊗̂βEc(U)∨

↓ ↓
O(Ec(U)) → O(Ec(U))⊗̂βEc(U)∨

it has a natural structure of a differentiable pro-vector space.

B.1.5. Functions with smooth first derivative.

B.1.5.1 Definition. A function Φ ∈ O(Ec(U)) has smooth first derivative if dΦ, which is a
priori an element of

Ω1(Ec(U)) = O(Ec(U))⊗̂βE
!
(U),

is an element of the subspace
O(Ec(U))⊗̂βE

!(U).

In other words, the 1-form dΦ can be evaluated on a distributional tangent vectors
from E , and not just smooth tangent vectors.

Note that we can identify, concretely, O(Ec(U))⊗̂βE
!(U) with the space

∏
n

Symn E
!
(U)⊗̂βE

!(U)

and
Symn E

!
(U)⊗̂βE

!(U) ⊂ E
!
(U)⊗̂βn⊗̂βE

!(U).

(Spaces of the form E (U)⊗̂βE (U) were described concretely above.)

Thus O(Ec(U))⊗̂βE
!(U) is a differentiable pro-vector space. It follows that the space

of functionals with smooth first derivative is a differentiable pro-vector space, since it is
defined by a fiber diagram of such objects.

An even more concrete description of the space O sm(Ec(U)) of functionals with smooth
first derivative is as follows.

B.1.5.2 Lemma. A functional Φ ∈ O(Ec(U)) has smooth first derivative if each of its Taylor
components

DnΦ ∈ Symn E
!
(U) ⊂ E

!
(U)⊗̂βn
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lies in the intersection of all the subspaces

E
!
(U)⊗̂βk⊗̂βE

!(U)⊗̂βE
!
(U)⊗̂βn−k−1

for 0 ≤ k ≤ n− 1.

PROOF. The proof is a simple calculation. �

Note that the space of functions with smooth first derivative is a subalgebra of O(Ec(U)).
We will denote this subalgebra by O sm(Ec(U)). Again, the space of functions with smooth
first derivative is a differentiable pro-vector space, as it is defined as a fiber product.

Similarly, we can define the space of functions on E (U) with smooth first deriva-
tive, O sm(E (U)) as those functions whose exterior derivative lies in O(E (U))⊗̂βE

!
c (U) ⊂

Ω1(E (U)).

B.1.6. Functions with smooth first derivative and proper support. We are particu-
larly interested in those functions which have both smooth first derivative and proper
support. We will refer to this subspace as OP,sm(Ec(U)). The differentiable structure on
OP,sm(Ec(U)) is, again, given by viewing it as defined by the fiber diagram

OP,sm(Ec(U)) → O(E (U))⊗̂βE
!(U)

↓ ↓
O(Ec(U)) → O(Ec(U))⊗̂βE

!
(U).

We have inclusions

O sm(E (U)) ⊂ OP,sm(Ec(U)) ⊂ O sm(Ec(U)),

where each inclusion has dense image.

B.2. Derivations

As before, let M be a manifold, E a graded vector bundle on M, and U an open subset
of M. In this section we will define derivations of algebras of functions on E (U).

To start with, recall that for V a finite dimensional vector space, which we treat as a
formal scheme, the algebra of function is O(V) = ∏ Symn V∨, the formal power series
on V. We then identify the space of continuous derivations of O(V) with O(V)⊗ V. We
view these derivations as the space of vector fields on V and use the notation Vect(V).

In a similar way, we define the space of vector fields Vect(E (U)) of vector fields on
E (U) as

Vect(E (U)) = O(E (U))⊗̂βE (U) = ∏
n

(
Symn(E

!
c(U))⊗̂βE (U)

)
.
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We have already seen (section B.1) how to define the structure of differentiable pro-vector
space on spaces of this nature.

In this section we will show the following.

B.2.0.1 Proposition. Vect(E (U)) has a natural structure of Lie algebra in the multicategory of
differentiable pro-vector spaces. Further, O(E (U)) has an action of the Lie algebra Vect(E (U))
by derivations, where the structure map Vect(E (U))×O(E (U))→ O(E (U)) is smooth.

PROOF. To start with, let’s look at the case of a finite-dimensional vector space V, to
get an explicit formula for the Lie bracket on Vect(V), and the action of Vect(V) on O(V).
Then, we will see that these formulae make sense when V = E (U).

Let X ∈ Vect(V), and let us consider the Taylor components DnX, which are multilin-
ear maps

V × · · · ×V → V.
Our conventions are such that

Dn(X)(v1, . . . , vn) =

(
∂

∂v1
. . .

∂

∂vn
X
)
(0) ∈ V

Here, we are differentiating vector fields on V using the trivialization of the tangent bun-
dle to this formal scheme arising from the linear structure.

Thus, we can view DnX as in the endomorphism operad of the vector space V.

If A : V×n → V and B : V×m → V, let us define

A ◦i B(v1, . . . , vn+m−1) = A(v1, . . . , vi−1, B(vi, . . . , vi+m−1), vi+m, . . . , vn+m−1).

If A, B are symmetric (under Sn and Sm, respectively), then define

A ◦ B =
n

∑
i=1

A ◦i B.

Then, if X, Y are vector fields, the Taylor components of [X, Y] satisfy

Dn([X, Y]) = ∑
k+l=n+1

ck,l (DkX ◦ DlY− DlY ◦ DkX)

where ck,l are combinatorial constants whose values are irrelevant for our purposes.

Similarly, if f ∈ O(V), the Taylor components of f are multilinear maps

Dn f : V×n → C.

In a similar way, if X is a vector field, we have

Dn(X f ) = ∑
k+l=n+1

c′k,l Dk(X) ◦ Dk( f ).
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Thus, we see that in order to define the Lie bracket on Vect(E (U)), we need to give
maps of differentiable vector spaces

◦i : Hom(E (U)⊗̂βn, E (U))×Hom(E (U)⊗̂βm, E (U))→ Hom(E (U)⊗̂β(n+m−1), E (U))

where here Hom indicates the space of continuous linear maps, treated as a differentiable
vector space. Similarly, to define the action of Vect(E (U)) on O(E (U)), we need to define
a composition map

◦i : Hom(E (U)⊗̂βn, E (U))×Hom(E (U)⊗̂βm)→ Hom(E (U)⊗̂βn+m−1).

We will treat the first case; the second is similar.

Now, if X is an auxiliary manifold, a smooth map

X → Hom(E (U)⊗̂βm, E (U))

is the same as a continuous multilinear map

E (U)×m → E (U)⊗̂βC∞(X).

Here, “continuous” means for the product topology.

This is the same thing as a continuous C∞(X)-multilinear map

Φ : (E (U)⊗̂βC∞(X))×m → E (U)⊗̂βC∞(X).

If
Ψ : (E (U)⊗̂βC∞(X))×n → E (U)⊗̂βC∞(X).

is another such map, then it is easy to define Φ ◦i Ψ by the usual formula:

Φ ◦i Ψ(v1, . . . , vn+m−1) = Φ(v1, . . . vi−1, Ψi(vi, . . . , vm+i−1), . . . , vn+m−1)

if vi ∈ E (U)⊗̂βC∞(X). This map is C∞(X) linear. �
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