Toric varieties, modular forms, and *L*-functions

Lev A. Borisov and Paul E. Gunnells Department of Mathematics Columbia University

April 15, 2000

Results

Let $\ell \geq 1$, $\Gamma_1(\ell) \subset SL_2(\mathbb{Z})$ be the congruence subgroup of matrices that are upper-triangular and unipotent mod ℓ , and let $\mathscr{M}_*(\ell) = \mathscr{M}_*(\Gamma_1(\ell); \mathbb{C})$ be the graded ring of holomorphic modular forms on $\Gamma_1(\ell)$. For weight 2, let $\mathscr{M}_2(\ell) = \mathscr{S}_2(\ell) \oplus \mathscr{E}_2(\ell)$ be the splitting into cusp forms and Eisenstein series

Using the geometry of compact toric varieties we construct a subring $\mathscr{T}_*(\ell) \subset \mathscr{M}_*(\ell)$. We show that $\mathscr{T}_*(\ell)$ is a natural subring, in that it's closed under many classical operations on modular forms:

- Hecke operators
- Fricke involution
- Atkin-Lehner lifting

Moreover, we can characterize $\mathscr{T}_2(\ell)$:

 $\mathscr{T}_2(\ell) = \{\mathbb{C}\text{-span of cuspidal eigenforms } f$ with $L(1, f) \neq 0$ (or lifts of such)} $\oplus \{\text{some Eisenstein series}\}.$

Remarks.

- 1. Principal motivation was Borisov-Libgober's computation of the Witten genus for complete toric varieties with mild singularities. This produces modular forms on $\Gamma_0(2)$.
- 2. $\mathscr{T}_*(\ell)$ is related to Hirzebruch elliptic genera of level ℓ .
- 3. The construction of $\mathscr{T}_*(\ell)$ is elementary from a number-theoretic point of view. In particular, $\mathscr{T}_2(\ell)$ is constructed without using heavy machinery like the Shimura correspondence. Theta functions do appear (in particular ϑ_{11}), but no quaternion algebras, Brandt matrices, etc.

Toric varieties and fans

Let $N \simeq \mathbb{Z}^d$ be a lattice, and let $\hat{N} = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ be the dual lattice. We denote the pairing by a dot: $(n, \hat{n}) \mapsto n \cdot \hat{n}$. Let $N_{\mathbb{R}} = N \otimes \mathbb{R}$.

Definition. $C \subset N_{\mathbb{R}}$ is a rational polyhedral cone if C is the convex hull of finitely many N-rational rays, and contains no line. The dual cone $\hat{C} \subset \hat{N}_{\mathbb{R}}$ is the set of linear forms nonnegative on all of C.

Definition. A complete fan Σ is a set of rational polyhedral cones satisfying:

- If $C \in \Sigma$, then any face of C is in Σ .
- If $C, C' \in \Sigma$, then $C \cap C'$ is a face of each.

•
$$\bigcup_{C \in \Sigma} C = N_{\mathbb{R}}.$$

Using a fan Σ we can construct a toric variety X_{Σ} :

$$\begin{split} \{ \mathsf{Cones} \} &\implies \{ \mathsf{f.g.} \ \mathbb{C}\text{-algebras} \}, \\ C &\longmapsto \ \mathbb{C}[\hat{C} \cap \hat{N}], \end{split}$$

and we set $U_C = \operatorname{Spec} \mathbb{C}[\hat{C} \cap \hat{N}]$. If $C'' \leftrightarrow C \hookrightarrow C'$ then $U_{C''} \leftrightarrow U_C \hookrightarrow U_{C'}$. So the combinatorics of Σ tells us how to glue together the U_C 's to get a complete variety X_{Σ} .

 X_{Σ} has a $T = (\mathbb{C}^{\times})^d$ action, and 1-cones correspond to T-stable divisors. If X_{Σ} is nonsingular, then the classes of these divisors generate the cohomology ring.

Example.

- (Complete fans) \mathbb{P}^n , $\prod \mathbb{P}^{n_i}$, . . .
- (Incomplete fans) \mathbb{C}^n , $\operatorname{Spec}\left(\mathbb{C}[x,y,z]/(xy-z^2)\right)$,

Degree functions and modular forms

Definition. A function deg: $N \to \mathbb{C}$ is a *degree* function if it's piecewise-linear and linear on the cones of some fan Σ .

Definition. Let deg be a degree function. We define $f = f_{N, deg} \colon \mathfrak{H} \to \mathbb{C}$ by

$$f(\tau) := \sum_{\hat{n} \in \hat{N}} \sum_{C \in \Sigma} (-1)^{\operatorname{codim}C} \sum_{n \in C \cap N} q^{n \cdot \hat{n}} e^{2\pi \operatorname{ideg}(n)}.$$

Theorem. [B–G] Let $\ell > 1$ be an integer, and let deg: $N \to (1/\ell)\mathbb{Z}$ be a degree function with respect to a fan Σ . Suppose deg $(x) \notin \mathbb{Z}$ if x is the primitive generator of any 1-cone of Σ . Then $f_{N, \text{deg}} \in \mathcal{M}_d(\ell)$.

Example. $X = \mathbb{P}^2$, $\deg(x) = 1/2$ for all primitive generators of 1-cones. Then

$$f = \sum_{a,b \in \mathbb{Z}} \frac{2}{(1+q^a)(1+q^b)(1+q^{-a-b})} \in \mathscr{M}_2(2).$$

To prove the theorem there are several steps:

- First we must show that f_{N,deg} is well-defined as a power series in q, i.e. that only finitely many terms will contribute to a given power of q. This can be done by reinterpreting f in terms of a construction in homological algebra.
- Next we need to show modularity. Rather than deal with the definition of f directly, we use a different expression that's more convenient. We construct a certain infinite-dimensional q-graded vector bundle W over X. By Hirzebruch-Riemann-Roch, we know that $\chi(W) = \int_X ch(W)Td(X)$. The right-hand side is computed to be

$$\int_{X} \prod_{i} \frac{(D_{i}/2\pi i)\vartheta(D_{i}/2\pi i - \alpha_{i}, \tau)\vartheta'(0, \tau)}{\vartheta(D_{i}/2\pi i, \tau)\vartheta(-\alpha_{i}, \tau)}$$

where the D_i are the classes of the T-stable divisors

in the cohomology ring of X, and where

$$\vartheta(z,\tau) = \vartheta_{11}(z,\tau) = \frac{1}{i} \sum_{n \in \mathbb{Z}} (-1)^n \mathrm{e}^{\pi \mathrm{i}\tau (n+\frac{1}{2})^2} \mathrm{e}^{\pi \mathrm{i}z(2n+1)}$$

is the theta function with characteristic (1/2, 1/2). The expression in the integral is interpreted using the Jacobi triple product formula for ϑ .

The left-hand side can be computed using Cech cohomology, and we get the original expression for f.

• We show boundedness at the cusps later, after we identify some distinguished forms in $\mathscr{T}_*(\ell)$.

Hecke action

Hecke operators act on forms in $\mathscr{T}_*(\ell)$ by taking sublattices of the lattice N. For example, let p be a prime with $(p, \ell) = 1$, and let $f \in \mathscr{T}_d(\ell)$. Then

$$f_{N,\text{deg}} \mid T_p = \sum_{S} f_{S,p\text{deg}} + \frac{p - p^{d-1}}{p - 1} f_{N,\text{deg}},$$

where the sum is taken over lattices S satisfying $N \subset S \subset \frac{1}{n}N$ and $[S:N] = p^{d-1}$.

Similar expressions can be obtained for the operators U_p when $(p, \ell) > 1$, and the Fricke involution.

Generators for $\mathscr{T}_*(\ell)$

The multiplication

$$f_{N,\deg}f_{N',\deg'} = f_{N\oplus N',\deg\oplus\deg'}$$

puts a ring structure on $\mathscr{T}_*(\ell)$, and we have the following:

Theorem. [B–G] Let $\ell > 5$. Then $\mathscr{T}_*(\ell)$ is generated as a graded ring by the weight one Eisenstein series $s_a(q)$, where $a = 1, \ldots, \ell - 1$, and

$$s_a(q) = \frac{\mathrm{e}^{2\pi \mathrm{i}a/\ell} + 1}{2(\mathrm{e}^{2\pi \mathrm{i}a/\ell} - 1)} - \sum_d q^d \sum_{k|d} (\mathrm{e}^{2\pi \mathrm{i}ka/\ell} - \mathrm{e}^{-2\pi \mathrm{i}ka/\ell}).$$

Note that s_a only depends on a modulo ℓ .

For $\ell \leq 5$ the result is mildly more complicated. The Eisenstein series s_a comes from the toric variety \mathbb{P}^1 : simply put $\deg(1) = \deg(-1) = a/\ell$ in the unique complete fan in \mathbb{R} .

Nonvanishing of *L*-functions

We want to prove that $\mathscr{T}_2(\ell) \cap \mathscr{S}_2(\ell)$ consists of exactly the span of the cuspidal eigenforms with nonvanishing *L*-function at the center of the critical strip. To do this we use Manin symbols.

Let $\ell > 1$ be an integer, and let $E_{\ell} \subset (\mathbb{Z}/\ell\mathbb{Z})^2$ be the subset of pairs (u, v) such that $\mathbb{Z}u + \mathbb{Z}v = \mathbb{Z}/\ell\mathbb{Z}$. The space of *Manin symbols* M is the \mathbb{C} -vector space generated by the symbols $(u, v) \in E_{\ell}$ modulo the relations:

- 1. (u, v) + (-v, u) = 0.
- 2. (u, v) + (v, -u v) + (-u v, v) = 0.

We have subspaces $M_{\pm} \subset M$ corresponding to the eigenspaces of the involution $(u, v) \mapsto (-u, v)$, and we have symmetrization maps $(,)_{\pm}: M \to M_{\pm}$ given by $(u, v)_{\pm} := ((u, v) \pm (-u, v))/2.$

The pairing

Manin symbols correspond to paths on the modular curve $X_1(\ell)$. Given (u, v), choose cusps $\alpha = a/u$ and $\beta = b/v$ such that av - bu = 1. Then we get a path on $X_1(\ell)$ by projecting the geodesic between α and β on \mathfrak{H}^* .

We get a pairing

$$M \times \mathscr{S}_2(\ell) \longrightarrow \mathbb{C}$$

by integration. This pairing is nondegenerate when restricted to the plus (resp. minus) cuspidal Manin symbols S_+ (resp. S_-). These are the symbols that induce cycles on the modular curve, not just cycles mod the cusps.

Note that integration gives a map $\mathscr{S}_2(\ell) \to M_+^*$.

From M_{-} to $\mathscr{S}_{2}(\ell)$ via $\mathscr{T}_{2}(\ell)$

The Eisenstein series s_a satisfy certain relations:

•
$$s_{-a} = -s_a$$

• If $a + b + c = 0 \mod \ell$, then $s_a s_b + s_b s_c + s_c s_a$ is an Eisenstein series.

So we can define a map

$$\mu: M_{-} \longrightarrow \mathscr{M}_{2}(\ell) / \mathscr{E}_{2}(\ell) \simeq \mathscr{S}_{2}(\ell)$$

by $(a, b) \mapsto s_a s_b \mod \mathscr{E}_2(\ell)$. (Actually we compose this with the Fricke involution, but this is not important for this talk.)

A projection map

To get the nonvanishing result, we construct a linear operator

$$\rho:\mathscr{S}_2(\ell)\longrightarrow\mathscr{S}_2(\ell)$$

that kills cuspforms with L(1, f) = 0. Then we show that μ factors ρ .

The definition of ρ is

$$\rho(f) = \sum_{n=1}^{\infty} \left(\int_0^{i\infty} (f | T_n)(s) ds \right) q^n,$$

where T_n is the *n*th Hecke operator. By a result of Merel, this can be written as

$$-\sum_{n>0} q^n \sum_{ad-bc=n, a>b \ge 0, d>c \ge 0} \varphi((c,d)_+),$$

where $\varphi \in M_+^*$ corresponds to f.

14

Factoring ρ

The final ingredient is a map $\pi: M_+^* \to M_$ constructed using the intersection pairing. We omit the definition (a similar map was recently studied by Merel). The result is the following:

Theorem. The composition of the maps in the diagram

$$\mathscr{S}(l) \xrightarrow{\int} M_{+}^{*} \xrightarrow{\pi} M_{-} \xrightarrow{\mu} \mathscr{M}(l) / \mathscr{E}(l) \xrightarrow{\sim} \mathscr{S}(l)$$

is -12ρ .

We prove this theorem by explicitly computing with the Fourier expansions of s_a 's, and comparing it to the expression for ρ in terms of the Manin symbols.

In progress

- We're studying $\mathscr{T}_*(\ell)$ in higher weight. Our conjecture is that modulo Eisenstein series $\mathscr{T}_*(\ell) = \mathscr{M}_*(\ell)$ for sufficiently high weight (in fact for weights ≥ 3).
- In joint work with Sorin Popescu, we're studying (for ℓ prime) the map

$$X_1(\ell) \longrightarrow \mathbb{P}(\mathbb{C}[s_a \mid a = 1, \dots, \ell - 1]).$$

We hope the geometry of this map can give a bound on the size of $\mathscr{T}_2(\ell)$.