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Let G = Sp4(R) be the Lie group of 4 × 4 symplectic matrices and let K =
U(2) be a maximal compact subgroup. The symmetric space H2 = G/K can be
identified with the Siegel upper halfspace of degree 2 (the space of 2×2 symmetric
complex matrices with positive-definite imaginary part). Let Γ ⊂ Sp4(Z) be a level
N congruence subgroup. The locally symmetric space Γ\H2 is a Siegel modular
threefold, and is a moduli space of abelian surfaces with level structure related to
Γ.

Our main goal is explicitly computing the cohomology spaces H∗(Γ\H2,C), or
more generally H∗(Γ\H2,M), where M ranges over certain complex local sys-
tems on the threefold. We are especially interested in H3(Γ\H2,M), which is
known to be computable in terms of certain (vector-valued) Siegel modular forms.
Furthermore, we want to understand H3 not just as a vector space, but as a
Hecke module. More precisely, for each prime p - N there are two Hecke operators
Tp,1, Tp,2 acting on the cohomology, and we want to understand the decomposition
into eigenspaces. Such computations are essential to understand the arithmetic
nature of the cohomology. Our eventual application will be to test conjectures of
Harder, which uses the critical values of certain L-functions to predict congruences
between vector-valued Siegel modular forms and elliptic modular forms. For more
details about Siegel modular forms, their relations with cohomology, the Hecke
operators, and Harder’s conjectures, we refer to [8, 13].

Before describing our techniques, we give a selected overview of prior related
work. Poor–Yuen [12], in their computational investigation of Brumer–Kramer’s
paramodular conjecture—which predicts that the L-functions of certain abelian
surfaces should agree with the spinor L-functions of certain Siegel modular forms
of paramodular type—computed weight 2 and 3 Siegel paramodular forms of prime
levels < 600 along with the Hecke operators. We remark that the weight 2 forms
are not cohomological, in that they cannot appear in the cohomology of the Siegel
modular variety. Their techniques use theta series and the product structure
on Siegel modular forms in an essential way. Cunningham–Dembélé [3] use the
technique of algebraic modular forms. In particular they take a real quadratic field
F , a quaternion algebra B/F ramified only at the two real places, and then use the
Jacquet–Langlands correspondence to pass from automorphic forms on the group
of unitary similitudes GU2(B) to the forms on the group of symplectic similitudes
GSp4(F ). Finally, Faber–van der Geer [5, 6] treated the case of full level (N = 1)
by using the moduli space interpretation of Sp4(Z)\H2. In particular they made
lists of Fq-isomorphism classes of genus two curves with their automorphisms, and
used this data to compute the traces of the Hecke operators on the cohomology of
the Siegel modular threefold. This enabled them to provide convincing evidence
for Harder’s conjectures in many cases [13].
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We now turn to our techniques. Our work uses tools similar to those found in
modular symbols calculations [2, 11]. In particular, (i) we compute cohomology
using an explicit finite cell complex that comes from considering an infinite cell
complex with Γ-action; and (ii) the Hecke operators do not act on the cells of the
complex, but we have an algorithm that allows us to write the Hecke image of any
cycle in terms of cycles supported on the complex.

First we consider the complex. We use the reduction theory for Sp4(R) due
to McConnell–MacPherson [10]. This constructs a Sp4(Z)-equivariant cell de-
composition of the symmetric space H2 using Voronoi’s explicit reduction for
positive-definite real quadratic forms. The data indexing the cells, which are
lists of primitive integral vectors in Z4, can be found in [9, 10]. We remark that
the top-dimensional cells in this complex are not fundamental domains for the
action of Sp4(Z) on H2, but are not far from it: the action of Sp4(Z) on the cells
has only finite stabilizers, and one can use the knowledge of the boundary maps
and the stabilizers to compute the cohomology of Γ\H2 with coefficients in the
local systems M. Moreover, the stabilizer subgroups themselves can easily be
computed from the data in [9, 10]. The picture the reader should keep in mind is
the Farey tessellation in the elliptic modular case. The upper half plane H1 can
be Γ′ = SL2(Z)-equivariantly tessellated by the Γ′ orbit of the ideal triangle ∆
with vertices at 0, 1,∞. The triangle ∆ is not a fundamental domain for Γ′, but
a subdivision of ∆ into three smaller triangles is.

Next we consider the Hecke operators. For simplicity we discuss how the al-
gorithm computes on H4, which is considerably simpler than H3. We also dis-
cussing only the case of trivial coefficients, so that we can focus on the geometry
of the problem. This is the direct analogue of the classical modular symbols case
for SL2(Z); our techniques now are already significantly different from the usual
modular symbol algorithm (continued fractions), which was worked out for the
symplectic group in [7].

Let x0 ∈ H2 be the basepoint corresponding to the maximal compact subgroup
K, and let T be the standard maximal torus in Sp4(R). The orbit T · x0 is
a 2-dimensional subset in H2, and by duality represents a cohomology class in
H4(Γ\H2;C). Under a Hecke operator, the orbit T · x0 is taken to a finite set of
orbits {Ti ·yi}, where each Ti is now a rational conjugate of T and yi is some other
point in H2. We must find a homology between each of these new subsets and
cycles supported on Sp4(Z)-translates of T · x0, because it is these translates that
form the 2-cells of our cell complex.

To do this, we work in a certain Satake (partial) compactification H∗2 of H2 [1].
This enlarges H2 by adjoining copies of the upper half plane H1 and points at
infinity, much in the same way that the upper half plane is enlarged by adding
cusps. Indeed, the construction is hereditary, in that the single points we add to
H2 are actually the cusps of the upper half planes we add at infinity. The cell
decomposition of H2 extends to H∗2, and on the boundary components one sees
the Farey tessellation. Let O be a Hecke image Ti · yi and let Ō be its closure in
H∗2. Then the “edges” ∂O := Ō r O appear in certain boundary components as
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ideal geodesics going from cusp to cusp, and cutting across the edges of the Farey
tessellation. As a first step in finding a cellular representative for the class of Ō,
we “fix” the edges of ∂O: we apply the classical modular symbol algorithm for
SL2(Z) to first write the boundary ∂O as a 1-cycle η =

∑
niγi, where the γi are

edges in the boundary tessellation.
Next we must fill in the 1-cycle: we must find a 2-chain ξ supported on the

cells of our complex such that ∂ξ = η. Such a 2-chain is exactly our representative
for the class of our Hecke image. To do this, we simply take a large set of top-
dimensional cells C1, . . . , Ck that covers Ō and the support of η. We then attempt
to solve the equation (∗) ∂ξ = η with a 2-cycle supported on the 2-faces of the Ci.

Any such solution is exactly what we need, as it gives a representative for the
class of our Hecke image supported on the complex. Moreover, we are guaranteed
to succeed: if we have sufficiently many Ci, we know that a solution exists. Note
that there is no complicated geometry needed to find ξ as in [7]; it is simply a
problem in numerical linear algebra. We take many Ci and try to solve (∗); if we
are unsuccessful, we add more top cells and try again. Eventually we will succeed.

We remark that for practical computations it is not enough to simply solve (∗).
We need to find a solution to (∗) supported on as few 2-cells as possible. This can
be done using a tool from applied mathematics, namely compressed sensing. Com-
pressed sensing is a signal processing technique for acquiring and reconstructing
a signal by finding solutions to underdetermined linear systems. The underly-
ing problem of finding sparse solutions of linear systems is called basis pursuit ;
in our application we solve this problem using the approximate message passing
algorithm proposed in [4].
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