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Abstract. We construct multiple Dirichlet series in several complex variables
whose coefficients involve quadratic residue symbols. The series are shown to have
an analytic continuation and satisfy a group of functional equations isomorphic to a
Weyl group. This is joint work with Gautam Chinta; for full details we refer to [2].

1. Multiple Dirichlet series

We begin with an overview of multiple Dirichlet series, with some hints as to what
this talk is about. We will be intentionally vague.

A (usual, single-variable) Dirichlet series is a sum of the form

(1.1) Z(s) =
∑

m

a(m)

ms
,

where s is a complex variable, and each a(m) is a complex number. The ms can range
over the positive integers, or perhaps some interesting subset of the positive integers.
Or sometimes the ms range over integral ideals in a number field, perhaps prime to
some fixed ideal; in this case we replace m−s with |N(m)|−s in (1.1). Or maybe the
ms range over a subset of the integers in a number field, in which case we probably
want to mod out by the action of a unit group, . . . There is basically no end to what
number theorists are willing to consider in the basic framework of (1.1).

Typically (but not always) the a(m)s come from some arithmetic situation. One
hopes to gain insight into their arithmetic nature by packaging them together into a
complex-valued function Z, and then studying properties of the latter. This is an old
idea with lots of applications.

If one is really lucky, then Z will have lots of nice properties. For instance Z should
converge as long as the real part of s is big enough. One hopes that Z extends to be
a meromorphic function on the whole complex plane. After multiplying by a simple
function of s (Gamma factors), one hopes that Z satisfies a functional equation of
the shape

(1.2) s→ 1− s.

These features can’t always be realized, even when the coefficients in (1.1) come from
nice arithmetic objects (e.g. partial zeta functions don’t satisfy a functional equation).
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But there are plenty of times when they can be, and if they can then Z(s) is certainly
telling us something interesting about the a(m)s.

At this level of imprecision, it’s clear what a multiple Dirichlet series should be.
We should have a sum of the shape

(1.3) Z(s1, . . . , sr) =
∑

m1,...,mr

a(m1, . . . ,mr)

ms1
1 · · ·msr

r

, a(m1, . . . ,mr) ∈ C.

We hope that (1.3) has good analytic properties, for example convergence if the real
part of the vector (s1, . . . , sr) lies in some positive r-cone. We also want functional
equations, not just involutions like si → 1 − si, but a whole group of functional
equations intermixing all the variables. For example, one of the two variable series
Z(s, w) that we’ll consider has two basic involutions of its variables:

(1.4) σ1 : (s, w)→ (1− s, s+ w − 1/2), σ2 : (s, w)→ (s+ w − 1/2, 1− w).

It’s not hard to see that the subgroup of the affine transformations of C2 generated by
σ1, σ2 is isomorphic to the symmetric group S3, with these generators satisfying the
standard relation (σ1σ2)

3 = 1. Moreover (1/2, 1/2) is the unique fixed point. Figure
1 shows that the action is the same as the usual reflection representation of S3 on
a 2-dimensional vector space; the point (s, w) = (1/2, 1/2) is at the center. In the
figure, we represent elements of S3 as words in σ1, σ2, showing only the ordered list
of subscripts to save space. Thus 121 is the longest word σ1σ2σ1; e is the identity. A
word w over a region R means that R = wC, where C is the red cone in the upper
right of the figure.

2. Why study them?

One reason to study multiple Dirichlet series is that Passing to more variables
can shed light on the single variable case. We illustrate with an example. Let d be
a positive squarefree integer, and consider the Dirichlet L-function attached to the
quadratic extension Q(

√
d) of Q. If we write the quadratic character for this extension

as χd, then we’re considering the L-series

L(s, χd) =
∑

m>0

χd(m)

ms
.

For instance,

L(s, χ3) = 1− 1

2s
+

1

4s
− 1

5s
− 1

7s
− 1

8s
+

1

10s
+ . . .

Now suppose we want to study the central values L(1/2, χd) as a function of d.
One approach is to package all the L-series into a bigger function by introducing a
new variable w:

(2.1) Z∗(s, w) =
∑

d

L(s, χd)

dw
, s, w ∈ C.



QUADRATIC WEYL MULTIPLE DIRICHLET SERIES 3

PSfrag replacements

s = w

s = 1/2

w = 1/2

s+ w = 1

s+ 2w = 3/2

2s+ w = 3/2

e
1

2

12

21
121

Figure 1.

Here we might take d to run over all discriminants of real quadratic fields. Of course
it’s not clear that this is a nice object, but Siegel [7] and Goldfeld and Hoffstein [6]
showed that it is. More precisely, Goldfeld and Hoffstein proved

• Z∗(1/2, w) is absolutely convergent if <w > 1.
• As a function of w, Z∗(1/2, w) extends past <w = 1 with a double pole at
w = 1.

From this they concluded1
∑

0<d<X

L(1/2, χd) ∼ CX logX, X >> 0,

where C is the constant2

C =
3

16

∏

p6=2

(1− 2p−2 + p−3) ' 0.1284748 . . . ,

and the summation runs over real discriminants. This can be interpreted as the
truth of the “Lindelöf hypothesis in the d aspect on average” for this family of L-
functions;3 one can see how a multiple Dirichlet series helped to obtain this result;

1Similar asymptotics, for sums over slightly different sets of d, were achieved earlier by
Takhtadzjan–Vinogradov (1980) and Jutila (1981).
2The product converges very slowly. The floating point approximation is our guess, which was

computed using 41000 primes past p = 2.
3The Lindelöf hypothesis for the Riemann zeta function asserts that for any ε > 0 there exists a

constant Cε such that |ζ(1/2 + it)| < Cε|t|ε. The Lindelöf hypothesis in the d aspect for Dirichlet
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for further details we refer to [4]. In the literature one can find more examples of
multiple Dirichlet series being used to compute mean value/nonvanishing results for
other families of L-functions.

Now let’s play with (2.1) a bit. We work heuristically in a perfect world, in which
all pesky details can be ignored. In this perfect world

• quadratic reciprocity has no signs:
(

d
m

)

=
(

m
d

)

;
• all integers are pairwise relatively prime; and
• all positive integers are discriminants of real quadratic fields.

If we insert the definition of L(s, χd) in (2.1), using our idealized assumption χd(m) =
(

d
m

)

, we find

(2.2) Z∗(s, w) =
∑

d,m

(

d

m

)

m−sd−w.

In our perfect world, (2.2) is completely symmetric in m and d. We already have a
functional equation s → 1 − s, which comes from the original family of L-functions
L(s, χd); interchanging the order of summation and collecting the sums over ds into
Dirichlet L-functions, we get a functional equation of the form w → 1 − w. So we
might hope heuristically to cook up something like (2.2) with good analytic properties
in both s and w.

Of course all this is nonsense. Nevertheless it can be fixed. In fact Siegel essentially
studied Z∗ in 1956 [7], and the resulting series is an example of our main construction.
We define

(2.3) Z(s, w) =
∑∑

d,m≥1
d,m odd

χd(m̂)

msdw
a(d,m),

where m̂ denotes the part of m relatively prime to the squarefree part of d and as
before χd is the quadratic character associated to the extension Q(

√
d) of Q. The

multiplicative factor a(d,m) is defined by

a(d,m) =
∏

p prime
pk||d, pl||m

a(pk, pl),

and

(2.4) a(pk, pl) =

{

min(pk/2, pl/2) if min(k, l) is even,
0 otherwise.

The function a is shown in Figure 2. With this definition, Z(s, w) satisfies the func-
tional equations in (1.4).

L-functions asserts that for any ε > 0 there exists a constant Cε such that |L(1/2), χd| < Cε|d|ε as
d→ ∞, where χd is some Dirichlet character mod d for each d.
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Figure 2. The function a(pk, pl)

3. Quadratic Weyl multiple Dirichlet series

We are now ready to define our multiple Dirichlet series. They will be generaliza-
tions of Siegel’s series (2.3), in that they will involve quadratic characters, and among
the examples will be r-variable series with group of functional equations isomorphic
to Sr+1. For full details, see [2].

Let K be a number field with ring of integers O. Let S = Sf ∪S∞ be a set of places
with S∞ all archimedian places and Sf large enough so that the ring of S-integers
OSf

has class number 1. Let I (S) be the group of integral ideals prime to Sf , and
let J (S) be the group of fractional ideals coprime with Sf .

There is a quadratic residue symbol
(

∗
∗

)

: J (S)×J (S)→ {−1, 0, 1}. Essentially
it’s set up so that

(

a
∗

)

gives the character attached to the abelian extension K(
√
a),

but there are some technicalities that we will ignore for this talk. The full details of
this symbol were worked through by Fisher–Friedberg [5].

Let Φ be an irreducible, reduced root system of rank r. We choose a subset of
positive roots Φ+ and a subset of simple roots α1, . . . , αr. We will assume Φ is simply-
laced, although we did this in [2] mainly for convenience. If one is interested in other
root systems there is no loss of generality because we are working with quadratic
characters: our main construction will give series for non-simply-laced root systems
by setting certain variables equal to one another in a simply-laced construction.

Let s = (s1, . . . , sr) be a vector of r complex variables, indexed by the simple roots
in Φ, that is by the nodes of the Dynkin diagram for Φ. Let I = (I1, . . . , Ir) be a
tuple of ideals from I (S), and let Ψ = (ψ1, . . . , ψr) be a collection of r idèle class
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characters unramified outside of S. We denote by Ψ(I) the product
∏

i

ψi(Ii).

Now we come to our main construction. We provisionally define

(3.1) ZS(s,Ψ) =
∑

I∈I (S)r

Ψ(I)H(I)
∏

j |Ij|sj
,

where H : I (S)r → Z is a function we will specify later. In fact correctly defining
H is the main part of the whole story; for type A2 and K = Q, this is essentially the
function a shown in Figure 2. The functionH will be constructed so that ZS(s,Ψ) will
satisfy r functional equations σ1, . . . , σr, taking s = (s1, . . . , sr) to σj0s = (s′1, . . . , s

′
r),

where

(3.2) s′j =







sj + sj0 − 1/2 if j and j0 are adjacent,
1− sj0 if j = j0, and
sj otherwise.

Here adjacent means that the variables correspond to adjacent nodes of the Dynkin
diagram for Φ. It is easy to check that these involutions generate a group isomorphic
to the Weyl group of Φ. Note that H is the only part of the definition reflecting the
structure of Φ; without it (3.1) has nothing to do with Φ, except that the number of
variables is the same as the rank of Φ.

What properties should H have? First, it should satisfy a twisted multiplicativity
condition: given ideals Ij, I

′
j ∈ I (S) with (I1I2 · · · Ir, I ′1I ′2 · · · I ′r) = 1 we’ll have

(3.3)
H(I1I

′
1, . . . , IrI

′
r)

H(I1, . . . , Ir)H(I ′1, . . . , I
′
r)

=
∏

i,j adj.
i<j

(

Ii
I ′j

)(

I ′i
Ij

)

Note that if H were actually multiplicative, then the right of (3.3) would be 1. Instead
it is a product of symbols reflecting the structure of Φ. Twisted multiplicativity is a
nice property, but it means that ZS won’t have an Euler product.

Next, the twisted multiplicativity means that to compute H we only have to know
how to do it on tuples of the form (P k1 , . . . , P kr), where P is a fixed prime ideal, and
where the ki are nonnegative integers. But H can’t be just anything on such tuples;
otherwise we won’t get the functional equations.

So how do we build H? Our main result is the following: let x = (x1, . . . , xr) be
a vector of variables and let F be the function field C(x). Then there is a rational
function f(x) such that

(3.4) f(x) =
∑

k1,...,kr≥0

H(P k1 , . . . , P kr)xk11 · · · xkr

r .
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For example, the function f for Siegel’s series is

(3.5) f(x, y) =
1 + x+ y − xy2 − x2y − x2y2

(1− x2)(1− y2)(1− px2y2)
.

It is a pleasant exercise to check that (3.5) agrees with (2.4). In the next section, we
explain how to construct the function f attached to Φ, which completes the definition
of (3.1).

4. A Weyl group action

There is an obvious similarity between (3.5) and the Weyl character formula.
The Weyl formula expresses the character of a representation as a ratio of two W -
alternating polynomials; the denominator can also be written as a monomial times
a product of linear factors over the positive roots. These features are clearly visible
in (3.5). For instance, the demonominator clearly corresponds to a product over the
positive roots. The numerator is a sum of 6 terms; each can be seen to correspond to
a vertex of a weight polygon.

In fact our construction of f(x) is by forming a certain average over the Weyl
group and dividing by a standard denominator ∆(x). The difference is that we
average rational functions (not monomials), and the final expression ends up having
a slightly different denominator than ∆(x) (although the final denominator is still
given by a product over the positive roots). There is a tantalizing similarity between
our construction and the Weyl formula, but the exact relationship remains elusive.

Let us now describe the construction of f(x). We begin by defining an action of
the Weyl group W on the field C(x). This action is cooked up so that when H is
given by (3.3) and (3.4), then ZS(s,Ψ) will satisfy the correct group of functional
equations if and only if f(x) is invariant under the action of W .

We define the W -action in stages. Let q be an indeterminate; we formally add√
q and its inverse to C(x) (eventually q will be a prime power, but we keep it as a

variable for now). First, for x = (x1, x2, . . . , xr) define σix = x′, where

(4.1) x′j =







xixj
√
q if i and j are adjacent,

1/(qxj) if i = j, and
xj otherwise.

It is easy to see that

(4.2)
σ2i x = x for all i,
σiσjσix = σjσiσjx if i and j are adjacent,
σiσjx = σjσix otherwise.

Next, define εix = x′, where

(4.3) x′j =

{

−xj if i and j are adjacent,
xj otherwise.
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For f ∈ F define

(4.4) f+i (x) =
f(x) + f(εix)

2
and f−i (x) =

f(x)− f(εix)

2
.

Hence f+i (x) is the “even part of f in the variables adjacent to xi,” and similarly for
f−i (x). Finally we can define the action of W on F for a generator σi ∈ W :

(4.5) (f |σi)(x) = −
1− qxi

qxi(1− xi)
f+i (σix) +

1

xi
√
q
f−i (σix)

This extends to an action of W on F (not obvious, but can be proved by direct
computation).

We need one more ingredient to define f . Let Λ be the root lattice (the lattice
generated by the simple roots). For any α ∈ Λ, let xα be the Laurent monomial
xd11 · · · xdr

r , where α = d1α1 + · · · + drαr , and let d(α) =
∑

di be the height of α.
Then we define ∆(x) to be the polynomial

∆(x) =
∏

α∈Φ+

(1− qd(α)x2α),

and let
j(w,x) = ∆(x)/∆(wx).

One can check that j satisfies the one-cocycle relation

(4.6) j(ww′,x) = j(w,w′x)j(w′,x).

We are now ready to construct the rational function f(x). Define

(4.7) f0(x) =
∑

w∈W

j(w,x)(1|w)(x),

and put

(4.8) f(x) = f0(x)∆(x)−1.

Here is our main theorem:

Theorem 4.1. [2] If P ∈ I (S) is a prime with norm q, define H(P k1 , . . . , P kr)
via (3.4), where f(x) is given in (4.8). Extend H to a function on I (S)r using the
twisted multiplicativity (3.3). Then we have the following:

• The function ZS(s,Ψ) has an analytic continuation to Cr.
• The collection of these functions as Ψ ranges over r-tuples of quadratic idèle
class characters unramified outside of S satisfies a group of functional equa-
tions isomorphic to W . These functional equations can be expressed in terms
of a certain scattering matrix. (The exact statement is somewhat complicated;
we refer to [2, Theorems 5.4–5.5] for the full statement.) The action on the
variables is given by (3.2).

• Finally, ZS(s,Ψ) is analytic outside the hyperplanes (ws)j = 1, for w ∈ W, 1 ≤
j ≤ r. Here (ws)j denotes the jth component of ws.
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5. Open problems and complements

• The series Z described above are one of an infinite set of similary defined
series; the general series includes the choice of a dominant weight θ. For
Z the weight is ρ, the sum of the fundamental weights; the general series are
called twisted Weyl group multiple Dirichlet series. Our construction also gives
rise to twisted series, if one modifies the Weyl group action to incorporate this
weight.

One can show that in the untwisted case f(x) and hence the function H is
uniquely determined by the functional equations, but that f(x) is not uniquely
determined in general. In general the space of possible solutions is one less
than he number of regular dominant weights in the multiplicity diagram for
θ [3].

• If one defines

D(x) =
∏

α∈Φ+

(1− qd(α)−1x2α),

then it turns out that f(x)D(x) is actually a polynomial N(x) in the xi [3].
(D(x) is the denominator appearing in (3.5).) The same is true if one consid-
ers twisted series. Moreover, for type A and all dominant weights θ, Brubaker,
Bump, Friedberg, and Hoffstein have given a conjectural description for a P -
part polynomial in terms of Gelfand–Tsetlin patterns [1].4 They conjecture
that the resulting multiple Dirichlet series coincides with a Whittaker coef-
ficient of an Eisenstein series for the minimal parabolic subgroup of a 2-fold
cover of GLn. We conjecture that their P -part polynomial coincides with
ours [3].
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