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PAUL E. GUNNELLS

1. Introduction

These are the notes from the TWIGS1 talk on modular forms. Most of the material
can be found in several places, namely [2,4,5] (in fact experts will be able to dissect
these notes into pieces contained in loc.cit.). To learn more about Ramanujan graphs,
one can consult [1, 3]. A copy of [5] is available from me by request.

2. Basic definitions

2.1. Let H be the upper halfplane, that is the set of complex numbers with positive
imaginary part, and let k ≥ 2 be a positive integer. Let Γ be the group SL2(Z) of
2×2 integral matrices with determinant 1. The group Γ acts on H by fractional linear
transformations : the element γ = ( a b

c d ) takes τ ∈ H to γ(τ) := (aτ + b)/(cτ + d).
Let f : H → C be a holomorphic function. Then f is called a weight k modular

form if f satisfies

• f(γ(τ)) = (cτ + d)kf(τ) for all γ ∈ Γ, and
• f is “holomorphic at infinity.”

To explain what the second condition means, we need more notation. Let q = e2πiτ .
The function τ 7→ e2πiτ takes H onto the punctured open unit disc

D =
{
q ∈ C

∣∣ |q| < 1, q 6= 0
}
.

Since f(τ + 1) = f(τ) (take γ = ( 1 1
0 1 )), we can actually write f as a function of q.

Since f is holomorphic on H, it’s also holomorphic on D, and has a Laurent expansion
around q = 0 of the form

(1) f(q) =
∞∑

k=−N

akq
k, N ≥ 0, ak ∈ C.

Then “holomorphic at infinity” means that f extends to be holomorphic at q = 0.
This the case if and only if ak = 0 for all k < 0.

We denote the space of weight k modular forms by Mk. This is a C vector space,
a priori of infinite dimension. We say f is a cuspform if a0 = 0, and let Sk ⊂ Mk be
the subspace of all cuspforms.

Date: December 12, 2003.
1“The What is Graduate Seminar”, initiated by F. Hajir. We thank him for inviting us to speak.
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2.2. Now this is a very strange collection of notions; who could possibly care about
them? Why are modular forms interesting? One answer to these questions lies in (1),
which is called the q-expansion of f . (Note that it is just the Fourier expansion of
f using the periodic functions e2πinτ .) It turns out that the ak are usually extremely
interesting numbers; in modular forms arising in nature they are usually algebraic
numbers, or even (good old-fashioned) integers. The typical application is that one
has a problem producing a sequence ak, and (if one is lucky) one can show that these
numbers are the coefficients of the q-expansion of a modular form. This implies many
nice features of the ak, and gives an analytic object “packaging” them together.

We can even elaborate a bit. It turns out that the space Mk is actually a finite
dimensional vector space over C, and in fact its dimension grows rather slowly as a
function of k. Quite often one has disparate circumstances giving rise to a collection
of modular forms f1, . . . , fn, all of the same weight k. Since they all must live in Mk, if
n is larger than dimC(Mk), we immediately get a relation satisfied by the coefficients
of the q-expansions of the fi. These relations are usually highly nontrivial when
considered in the original problem domains giving rise to the fi.

3. Examples

We only give two examples here. Many more can be found in the references.

3.1. Eisenstein series. Let k ≥ 4, and define

Gk(τ) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

(mτ + n)−k.

It’s not hard to check that Gk is a weight k modular form (you’ll need to use that
the series converges absolutely to verify Gk(γ(τ)) = Gk(τ)). Note that Gk vanishes
identically if k is odd. One can compute the q-expansion and can show that

Ek(τ) :=
1

2ζ(k)
Gk(τ) = 1 + γk

∑
n≥1

σk−1(n)qn,

where

• ζ(s) is the Riemann zeta function (e.g., ζ(4) = π4/90, ζ(6) = π6/945, . . . ),
• γk is a certain explicitly computable rational number (e.g., γ4 = 240, γ6 =
−504, . . . ), and

• σk−1(n) is the sum of the (k− 1)st powers of the divisors of n (e.g., σk−1(p) =
pk−1 + 1 if p is prime).

The modular form Ek is called the weight k Eisenstein series. It is not a cuspform.
The Eisenstein series are the basic building blocks of all modular forms in a certain
sense: a basic theorem is that any modular form f can be written as a polynomial in
E4 and E6. So for example, the space M8 is one-dimensional and is spanned by E8.
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The modular form E2
4 also has weight 8 and constant term 1, so it must be equal to

E8. This implies

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(n)σ3(n−m),

a curious identity.

3.2. The discriminant function. Define ∆(q) by

(2) ∆(q) =
1

1728
(E3

4 − E2
6).

This is a cuspform of weight 12; we divide by 1728 to make ∆ have leading term q.
The coefficients of the q-expansion of ∆ are the values of Ramanujan’s τ -function:

∆(q) =
∑
n≥1

τ(n)qn.

Jacobi proved

(3) ∆(q) = q
∏
n≥1

(1− qn)24.

Using this (or (2)) one can compute some small examples:

(4) ∆(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7

+ 84480q8 − 113643q9 − 115920q10 + 534612q11 − 370944q12

− 577738q13 + 401856q14 + 1217160q15 + 987136q16 − · · ·

Note that τ(n) ∈ Z for all n. This is clear from (3), and from (2) after a little thought.
You might notice some other facts about τ from (4): for example τ(2)τ(3) = τ(6). If
you are really smart, like Ramanujan was, you may notice even more properties.2

4. Applications of modular forms

The “standard” application of modular forms is to studying the arithmetic of
elliptic curves (or more generally, certain types of motives; cf. the TWIGS by Hajir
and Weston). This is undoubtedly important and beautiful, and is covered by many
references (a good one is [2]). However, here we shall discuss other applications. The
first is classical, and the second is quite recent.

2Hint: look at τ(2), τ(4), τ(8), and τ(16).
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4.1. Theta functions. Let L ⊂ Rn be a lattice, that is a discrete subgroup such
that the quotient Rn/L is a torus. We make some assumptions about L:

• We assume that L is even, which means x · x ∈ 2Z for all x ∈ L (here the dot
is the usual scalar product on Rn).

• We assume that L is unimodular. This is equivalent to requiring that the
n× n matrix li · lj is integral and has determinant one, where l1, . . . , ln is any
basis for L.

These conditions imply that 8 divides n.
Define a function

rL : Z −→ Z
by

rL(N) = #
{
x ∈ L

∣∣ (x · x)/2 = N
}
.

Then we have the following fact: the q-expansion

fL(q) :=
∑
m≥0

rL(m)qm

gives a modular form of weight n/2. Since rL(0) = 1, this is not a cuspform.
The first nontrivial case is n = 8. It is known that there is only one even unimodular

lattice, namely the root lattice of type E8. We denote this lattice by L8 so that we
don’t confuse it with the Eisenstein series E8. Thus fL8 is a weight 4 modular form
with constant term one, which means it’s equal to E4. This gives the remarkable fact
that

rL8(N) = 240σ3(N),

which is not that easy to establish directly even in the simplest case (N = 2).
The next nontrivial case is n = 16. There are two even unimodular lattices here,

L = L8 ⊕ L8 and a new lattice L′ = L16. The space M8 is one-dimensional, spanned
by E8, so we have

rL(N) = rL′(N) = 480σ7(N).

This coincidence leads to the following remarkable fact. A famous problem in dif-
ferential geometry is Can you hear the shape of a manifold? Precisely, the question
means Does the spectrum of the Laplacian on a Riemannian manifold uniquely de-
termine it, up to isometry?. The answer, as observed by Milnor, is no. One can take
the two flat tori R16/L and R16/L′. The equality of the functions rL and rL′ means
that these two tori have the same spectrum, and they are non-isometric.

4.2. Ramanujan graphs. A graph G is a collection of vertices and edges; we won’t
be more precise here and will instead appeal to the reader’s intuition and good faith.
A graph is k-regular if every vertex meets k edges. We will only be concerned with
connected k-regular graphs with no loops or multiple edges.
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Graphs have many applications in computer science and engineering. For example,
one can model a telecommunications network using a graph. Hence it is desirable to
have explicit constructions of families of graphs with nice properties.

It turns out that many properties of a graph G are governed by its spectrum. To
say what this means, let A = AG be the adjacency matrix of G. This is the 0 − 1
matrix with Aij equal to 1 if and only if vertex i is connected by an edge to vertex j.
Then the spectrum of G is simply the set of eigenvalues of A. It is known that any
eigenvalue λ satisfies |λ| ≤ k; those with |λ| = k are called trivial. We let λ(G) be the
maximum over the absolute values of the nontrivial eigenvalues of AG. Then if λ(G)
is small (i.e. the spectral gap between λ(G) and k is large), the graph will be “good.”
For example, a network design based on such a graph will have efficient “propagation”
of transmissions in a certain sense. This leads to the problem Construct a family of
k-regular graphs Gn with the number of vertices of Gn going to ∞ as n → ∞, and
such that the spectral gap is as large as possible.

This problem was solved by Lubotzky, Philips, and Sarnak for k = p+1, where p is
an odd prime, using modular forms [1,3]. The families of graphs they construct have
extremal properties for λ(G) and are called Ramanujan graphs. The connection with
modular forms is that if one wishes to bound λ(G), which is an algebraic integer, one
should try to make λ(G) lie in a ready-made collection of algebraic integers satisfying
a nontrivial bound. This latter collection is the set of coefficients of q-expansions of
certain modular forms (“certain” means satisfying additional conditions than what
we have considered here, and that we cannot explain for lack of time). In fact thanks
to a theorem of Deligne we know that for these modular forms of weight w one has

|a(p)| ≤ 2p(w−1)/2.

This was conjectured in 1916 by Ramanujan for the τ -function, which is the origin of
the name Ramanjan graphs ; Deligne’s proof uses vast technical machinery that could
fill many semesters of TWIGS talks.

It is know known how to explicitly construct families of k-regular Ramanujan
graphs for k = pα + 1, where α is a positive integer. The first k not of this form is
k = 7. Does such a family exist?
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