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Abstract. The classical GUE matrix model of N×N Hermitian matrices equipped with
the Gaussian measure can be used to count the orientable topological surfaces by genus
obtained through gluing the edges of a polygon. We introduce a variation of the GUE
matrix model that that enumerates certain edge-ramified CW complexes obtained from
polygon gluings. We do this by replacing the Gaussian measure with a formal analogue
related to generating functions that enumerate uniform hypergraphs. Our main results
are three different ways to compute expectations of traces of powers. In particular, we
show that our matrix model has a topological expansion.

1. Introduction

1.1. We begin by recalling the classical Gaussian Unitary Ensemble (GUE) matrix model
and its connection to counting orientable maps. Let V be the N2-dimensional real vector
space of N × N complex Hermitian matrices equipped with Lebesgue measure. For any
polynomial function f : V → R, define

(1)
〈

f
〉

0
=

∫

V
f(X) exp(−TrX2/2) dX,

where Tr(X) =
∑

iXii is the sum of the diagonal entries, and put

(2)
〈

f
〉

=
〈

f
〉

0
/
〈

1
〉

0
.

Let k ≥ 0 be an integer, and consider (2) evaluated on the polynomial given by taking the
trace of the kth power:

(3) P (N) =
〈

TrXk
〉

.

For k odd (3) clearly vanishes for all n. On the other hand, for k = 2r even and N fixed, it
turns out that P (N) is an integer, and as a function of N is a polynomial of degree r + 1
with integral coefficients.

Furthermore, the polynomial P (N) has the following remarkable combinatorial inter-
pretation. Let Π be a polygon with 2r sides. Any (oriented) pairing s of the sides of Π
determines a closed orientable map Ms with one face. This means Ms is a closed orientable
topological surface with an embedded graph (the images of the edges and vertices of Π),
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such that the complement of the embedded graph is a 2-cell. Let v(Ms) be the number of
vertices in this graph. Then we have

(4) P (N) =
∑

s

Nv(Ms),

where the sum is taken over all pairings of the edges of Π such that the resulting surface
Ms is orientable. For example, writing Pk(N) for (3), we have

P4(N) = 2N3 +N, P6(N) = 5N4 + 10N2, P8(N) = 14N5 + 70N3 + 21N.

The three pairings yielding P4(N) are shown in Figure 1. For more information about the
connection between matrix models and maps, we refer to Harer–Zagier [8], Etingof [2, §4],
Lando–Zvonkin [11], and Eynard [5].

N3N3N1

Figure 1. Computing P4(N) = 2N3 +N . The leftmost surface is a torus
with embedded graph having one vertex. The next two are the 2-sphere
with embedded graph having three vertices.

1.2. When one encounters these ideas for the first time, it seems surprising that the
integral (3) should have anything to do with enumerating maps. There are two basic
features that make this happen:

• First, the moments of the Gaussian measure

dµ2(x) = (2π)−1/2e−x2/2 dx

on R have a combinatorial interpretation. The kth moment

(5)
〈

xk
〉

2
:=

∫

R

xk dµ2(x)

counts the number of ways to partition the finite set [[k]] := {1, . . . , k} into disjoint
pairs. In particular (5) vanishes if k is odd, and otherwise equals the number

W2(k) = (k − 1)!! = k!/(2k/2(k/2)!). For example
〈

x2
〉

2
= 1,

〈

x4
〉

2
= 3,

〈

x6
〉

2
= 15.

This is the content of Wick’s theorem, which plays a important role in the per-
turbative expansions of quantum field theory. From a combinatorial perspective,
this interpretation of these moments leads to generating functions that enumerate
graphs. More details are given in §2.1.
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• Next, the polynomial TrXk has a combinatorial interpretation in terms of k-gons.
Let Xu,v be the variable in the (u, v)th entry of X. The monomials contributing
to the trace polynomial have the form

(6) Xu1,u2Xu2,u3 · · ·Xuk,u1 ,

where the subscripts can be freely taken from 1 to N . The monomial (6) can be
represented by a labeled k-gon Π with a distinguished vertex. Each vertex gets a
subscript in cyclic order, with the distinguished vertex getting u1. The variable
Xui,ui+1 then corresponds to the ith edge in cyclic order (Figure 2).

With these facts in hand, the connection becomes more plausible. The variables in the
monomial (6) correspond to edges of Π, and Wick’s theorem implies that this monomial
gives a nonzero expectation after appropriately pairing the edges. Carefully putting every-
thing together one obtains the result (4).

u1

u2

u3

u4

u5

u6

X12 X23

X34

X45X56

X61

Figure 2. A polygon and variables. We have abbreviated Xui,uj
by Xij .

1.3. The goal of this paper is to modify this basic model by replacing the Gaussian
measure with a formal measure with combinatorially different moments. Choose a positive
integer m. Then instead of counting the pairings of the finite set [[k]], the new moments
count the number W2m(k) of partitions of [[k]] into disjoint subsets of order 2m. Just as
the Gaussian enables one to write generating functions enumerating graphs, these new
“measures” lead to generating functions enumerating hypergraphs.

The main object of study is the analogue of (3). We define a linear form
〈

·
〉

2m
on

polynomial functions f : V → C, and put

(7) P (N) =
〈

TrXk
〉

2m
,

where X is an N ×N Hermitian matrix of variables. Our main results give different ways
to understand (7) as a function of N . The first result (Theorem 3.6) shows that P (N)
vanishes unless k = 2mr for some r, and when nonvanishing gives a explicit expression for
(7) — which we write as P2m,r(N) — in terms of walks on directed graphs. In particular
Theorem 3.6 shows that P2m,r(N) is a rational polynomial in N with coefficients having
denominator at worst a power of 2.
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The conclusion of Theorem 3.6 is quite different from (4), which expresses (3) in terms
of orientable maps. The result (4) should be considered much more interesting, since it
is the first step in many nontrivial applications of the GUE, such as computing the Euler
characteristic of the mapping class group [8] and the topological recursion [3, 4]. Thus, in
addition to Theorem 3.6, we provide two ways to view (7) geometrically.

First, in Theorem 4.7, we show that (7) can be written as a sum

P2m,r(N) =
∑

s

as(N),

where s is taken over all paritions of {1, . . . , 2mr} into blocks of order 2m, and the poly-
nomials as(N) ∈ Z[N ] arise from counting points on certain subspace arrangements over a
finite field. In the classical case m = 1 these arrangements always consist of one subspace,
which gives another interpretation of the monomials in (4). For m > 1, on the other hand,
more complicated arrangements can arise.

Finally, in Theorem 5.8, we give an analogue for m > 1 of (4). This expansion, or rather
the normalized version

(8) N1−rP2,r(N) =
∑

s

Nχ(Ms),

where χ is the Euler characteristic, is called the topological expansion, since it expresses
P2,r(N) in terms of the topology of the surface Ms. For m > 1, we prove

(9)
〈

TrX2mr
〉

2m
=

∑

M

(1− 22m−2)ℓ(M)Nv(M).

In (9) the sum is taken over a generalization of maps that we call CW maps with instructions.
The full definition is given in Definition 5.4, but the main points are (i) we must work with
CW complexes with ramification along their edges instead of surfaces, and (ii) the terms
in (9) contains a factor that remembers more about how the complex was assembled than
just the final number of vertices. Corollary 5.9 gives another expression for (9) that shows
it is the generalization to higher m of the topological expansion (8).

1.4. Here is a guide to the paper. In §2 we review the connections between Gaussian
integrals and enumerating graphs. We also describe the new measure that will underlie our
matrix model, and explain how this measure can be used to enumerate hypergraphs. In
§3, we define our basic matrix model and explain a naive method of evaluating it in terms
of walks on directed graphs with labeled vertices. Next in §4 we describe how to compute
the integral by counting points on linear arrangements. As in (4), the contributions are
indexed by gluings of polygons according to partitions of their edge sets. However, unlike
the classical expression (4), the contributions are usually not monomials in N . Then in
§5 we prove that our integral has a topological expansion similar to (4). This gives an
expression for the integral as a sum of monomials, although again the contributions are
more complicated than those in (4). Finally in §6 we give some directions for future work,
and in Appendix A we give some tables of the polynomials P2m,r(N).
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2. Counting graphs and uniform hypergraphs

2.1. In this section we define the measure underlying our matrix model. We begin with
a discussion about how the integral (5) leads to generating functions of graphs. For more
information, we refer to [2, 11]

As in §1.2, let dµ2(x) be the Gaussian measure on polynomial functions on R with
moments

〈

xk
〉

2
:=

∫

R

xk dµ2(x) = W2(k),

where W2(k) is the number of pairings on [[k]]. Let t, ξ1, ξ2, . . . be indeterminates, and
let S(x) be the formal power series

∑

k≥1 ξkx
k/k!. Using (5), we can evaluate the inte-

gral
〈

exp(S(tx))
〉

2
as a formal power series in t with coefficients in the polynomial ring

Q[ξ1, ξ2, . . . ]. We have

(10)
〈

expS(tx)
〉

2
= 1 +A2t

2/2 +A4t
4/8 +A6t

6/48 + · · ·
where the first few coefficients are given by

A2 = ξ21 + ξ2, A4 = ξ41 + 6ξ21ξ2 + 4ξ1ξ3 + 3ξ22 + ξ4,

A6 = ξ61 + 15ξ41ξ2 + 20ξ31ξ3 + 45ξ21ξ
2
2 + 15ξ21ξ4

+ 60ξ1ξ2ξ3 + 6ξ1ξ5 + 15ξ32 + 15ξ2ξ4 + 10ξ23 + ξ6.

2.2. We claim that the series (10) can be interpreted as a generating function for graphs
weighted by the inverses of the orders of their automorphism groups. Let n = (n1, n2, . . . ) be
a vector of nonnegative integers, with nk nonzero only for finitely many i. Let |n| = ∑

nk.
We say a graph g has profile n if it has nk vertices of degree i. Let G(n) be the set of all
graphs of profile n, up to isomorphism (we allow graphs to have loops and multiple edges).
By an automorphism of a graph, we mean any self-map that permutes edges and vertices.
In particular, automorphisms include flipping loops and permuting multiedges. For any
g ∈ G(n), let Γ(g) be its automorphism group. Then we have the following theorem, which
is a special case of [2, Theorem 3.3]:

2.3. Theorem. We have

(11)
〈

expS(tx)
〉

2
=

∑

n

t|n|
∑

g∈G(n)

∏

k ξ
nk

k

|Γ(g)| .

Proof. We refer to the proof of [2, Theorem 3.3] for full details, and here only give the main
ideas for the convenience of the reader. First, the coefficient of tM in (11) is given by

∑

n

ξn1
1 ξn2

2 · · ·
(1!)n1(2!)n2 · · ·n1!n2! · · ·

xw(n)

where the sum is taken over all profiles n with |n| = M , and w(n) = n1 +2n2 +3n3 + · · · .
After integrating against dµ2, we obtain

(12)
∑

n

ξn1
1 ξn2

2 · · ·
(1!)n1(2!)n2 · · ·n1!n2! · · ·

W2(w(n)).
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We can interpret the terms in (12) combinatorially as follows. For each k let Fk be a
vertex with k attached 1/2-edges. We call Fk a k-flower and the 1/2-edges its petals (see
Figure 3). Let F = F (n) be the collection of |n| flowers with nk k-flowers for k ≥ 1. Since
each k-flower has k petals, there are

∑

knk = w(n) petals altogether in F . Let P (F ) be
the graphs obtained by pairing the petals in F in all possible ways (see Figure 4). Clearly

|P (F )| =
〈

xw(n)
〉

2
= W2(w(n)),

and any graph g ∈ G(n) appears in P (F ). We have a group G(F ) of order

|G(F )| =
∏

k≥1

(nk)!(k!)
nk

acting on P (F ) by permuting the flowers and their petals. The group G(F ) does not
act transitively on P (F ), but its orbits are in bijection with G(n). Moreover, all the
automorphisms of any g ∈ G(n) are induced from the action of G(F ). By the orbit-
stabilizer theorem, we have

|P (F )|
|G(F )| =

∑

g∈G(n)

|Γ(g)|−1.

If we incorporate the weights ξk for each of the k-flowers in P (F ), we recover the monomials
in ξk in (11). This completes the proof. �

F1 F2 F3 F4

Figure 3. Some flowers.

2.4. Example. Consider the term 5ξ23/24, which appears in the coefficient of t6 in (10).
There are two graphs with this profile, shown in Figure 5. The left has 2·2·2 automorphisms,
and the right has 2 · 3!, which gives 1/8 + 1/12 = 5/24.

2.5. Now we want to replace the Gaussian measure, which is connected to counting pair-
ings of a set, with something that is connected to counting partitions into higher order
subsets. For any m ≥ 1, let W2m(k) be the number of partitions of [[k]] into subsets of order
2m. Then W2m(k) = 0 unless 2m|k, and in this case we have

(13) W2m(k) =
k!

(2m)!k/2m(k/2m)!
.
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Figure 4. Gluing flowers into a graph with profile n = (0, 1, 2, 1, 0, . . . ).

Figure 5. The two graphs with profile ξ23 .

Let dµ2m(x) be the “measure” on polynomial functions on R that gives the monomial xr

the expectation W2m(r). More precisely, we consider the linear form on polynomials that
takes xr to W2m(r). Of course, this is not a measure in the usual sense, but we can formally
regard it as such on any polynomial function. The “expectation”

〈

expS(tx)
〉

2m
is then a

well-defined power series in t, again with coefficients in the polynomial ring Q[ξ1, ξ2, . . . ],
and has a combinatorial interpretation via hypergraphs.

2.6. Recall [1] that a hypergraph on a vertex set V is a collection of subsets of V , called
the hyperedges. The degree of a vertex is the number of hyperedges it belongs to, and
a hypergraph is regular if these numbers are the same for all vertices. The order of a
hyperedge is its number of vertices. If all hyperedges have the same order d, we say that
the hypergraph is d-uniform.

We extend the notion of a hypergraph by allowing V to be a multiset, in other words a
set with a multiplicity map V → Z≥1. We can extend the notions of regularity and unifor-
mity above by incorporating the multiplicity in an obvious way: the order of a subset of a
multiset is sum of the multiplicities of its elements. The resulting objects, originally consid-
ered by Ouvrard–Le Goff–Marchand-Maillet [14], are known as hyperbaggraphs.1 However,
we will continue use the simpler term hypergraph, with the understanding that our hyper-
graphs can have hyperloops (hyperedges consisting of a single vertex with multiplicity) and
hypermultiedges (hyperedges with at least two different vertices and with at least one vertex
with nontrivial multiplicity).

1In the CS literature, multisets are sometimes called bags.
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2.7. With these definitions, we can formulate an analogue of Theorem 2.3: the expectation
〈

expS(tx)
〉

2m
now enumerates 2m-uniform hypergraphs of all profiles weighted by the

inverses of their automorphism groups. More precisely, as before let n = (n1, n2, . . . ) be
a profile vector with |n| = ∑

ni. We now say a d-uniform hypergraph h has profile n if
it has ni vertices of degree i. Let HG(n) be the set of all hypergraphs of profile n, up to

isomorphism, and let HG(2m)(n) ⊂ HG(n) be the subset of those that are 2m-uniform. We
define an automorphism of a hypergraph to be any self-map that permutes hyperedges and
vertices. In particular, a hypergraph can have automorphisms that permute the vertices
within a hyperedge, including flipping hyperloops and permuting hypermultiedges. For any
h ∈ HG(n), let Γ(h) be its automorphism group.

2.8. Theorem. We have
〈

expS(tx)
〉

2m
=

∑

n

t|n|
∑

h∈HG(2m)(n)

∏

k ξ
nk

k

|Γ(h)| .

Proof. The proof is a simple modification of that of Theorem 2.3. We again have flowers Fk

with k-petals, but now we interpret each petal as being a 1/2m th hyperedge. A profile n

determines a collection of flowers P (F ). To assemble P (F ) into an element of HG(2m)(n),
we must choose a grouping of the petals into sets of order 2m (see Figure 6). This is

accomplished by integrating xw(n) against the measure dµ2m. The rest of the proof is the
same as before. �

Figure 6. A 4-uniform hypergraph with profile n = (0, 1, 2, 1, 0, . . . ).

2.9. Example. Suppose 2m = 4. We have

(14)
〈

expS(tx)
〉

4
= 1 +B4t

4/24 +B8t
8/1152 + · · ·

where

B4 = ξ41 + 6ξ21ξ2 + 4ξ1ξ3 + 3ξ22 + ξ4, B8 = ξ81 + 28ξ61ξ2 + 56ξ51ξ3 + · · ·+ 35ξ24 + ξ8.

The computation of the contribution 35ξ24/1152, which appears in the coefficient of t8, is
as follows. There are three hypergraphs of this profile, each with two hyperedges. The



HYPERGRAPH MATRIX MODELS 9

underlying set of vertices has 2 elements a, b, and we represent a hyperedge by a monomial
in these variables. The profile ξ24 means that each vertex has degree 4, and since 2m = 4 we
must have uniformity 4. Any such hypergraph can be represented by a pair of monomials
in variables a, b of total degree 4. There are three hypergraphs altogether:

(15) {a4, b4}, {a3b, ab3}, {a2b2, a2b2}.
The orders of the automorphism groups are

(16) 2 · (4!)2, 2 · (3!)2, 2 · 2 · (2!)2(2!)2.
For example, the automorphisms of the rightmost hypergraph come from interchanging the
vertices, interchanging the two hyperedges, and the internal flips within the hyperedges;
the last type of automorphism cannot occur for graphs. Adding the inverses of these orders,
one finds 1/1152 + 1/72 + 1/64 = 35/1152, which agrees with B8 above.

3. The matrix model

3.1. In this section we define our matrix model. The idea is simply to replace the measure
in (1), which is a product of Gaussians, with a product of the measures dµ2m.

We begin by explicitly choosing coordinates in V , the real vector space of N×N complex
Hermitian matrices. The space V has real dimension N2. First we take real variables
xu,u (u = 1, . . . , N) and xu,v, yu,v (1 ≤ u < v ≤ N). Let X = (Xu,v) be an N × N
matrix of Hermitian variables, with diagonal entries Xv,v = xv,v and off-diagonal entries
Xu,v = xu,v + iyu,v for u < v and Xv,u = X̄u,v.

3.2. Definition. Given any polynomial function f : V → C, we define
〈

f
〉

2m
∈ C

as follows. First put

〈

x2mr
u,v

〉

2m
=

〈

y2mr
u,v

〉

2m
=

W2m(2mr)

2r
, u 6= v,

and
〈

x2mr
u,u

〉

2m
= W2m(2mr),

where W2m(k) is given by (13); and
〈

xku,v
〉

2m
=

〈

yku,v
〉

2m
=

〈

xku,u
〉

2m
= 0

for k > 0 not divisible by 2m. We then extend
〈

·
〉

2m
linearly to all polynomials.

3.3. Definition. For an r-tuple (a1, . . . , ar) of non-negative integers with al ≤ al+1, let
S(a1, . . . , ar) denote the set of set partitions of [[a]] where

a =

r
∑

l=1

al

into subsets of orders a1, . . . , ar. Also let mi denote the number of values k such that there
are exactly i indices l, 1 ≤ l ≤ r, with al = k. Thus

|S(a1, . . . , ar)| =
1

∏r
i=1 i!

mi

(

a

a1, . . . , ar

)

.
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We also let S(2mr; 2m) denote the set of set partitions of [[2mr]] into subsets each of order
2m. Given s ∈ S(2mr; 2m), we identify s with a set of r functions

si : [[2m]] → [[2mr]]

with 1 ≤ i ≤ r whose images are disjoint. We refer to these as “blocks” or “subsets” in the
set partition.

We have the following generalization of Wick’s theorem:

3.4. Lemma. (i) Let f1, f2, . . . , f2mr be a set of (not necessarily distinct) linear func-
tions of xu,v, yu,v. Then

(17)
〈

2mr
∏

i=1

fi
〉

2m
=

∑

s∈S(2mr;2m)

r
∏

l=1

〈

2m
∏

j=1

fsl(j)
〉

2m
.

(ii) For integers a, b ≥ 0 and indices u < v, we have
〈

Xa
u,vX̄

b
u,v

〉

2m
=

〈

(xu,v + iyu,v)
a(xu,v − iyu,v)

b)
〉

2m
6= 0

if and only if (a, b) is a nonnegative integral linear combination of the lattice points

(0, 2m), (2, 2m− 2), . . . , (m,m), . . . , (2m, 0)

for m even and

(1, 2m− 1), (3, 2m− 3), . . . , (m,m), . . . , (2m− 1, 0)

for m odd.

Proof. We first prove (i). Our proof is a direct generalization of the proof of Wick’s theorem
presented in Lando–Zvonkin [11, Theorem 3.2.5]. First recall that for u < v

〈

x2mn
u,u

〉

2m
= Cm

0 W2m(2mn)

〈

x2mn
u,v

〉

2m
=

〈

y2mn
u,v

〉

2m
= Cn

1W2m(2mn)

where we have defined the normalizations C0 = 1 and C1 = 1
2 . The theorem still holds if

we use any non-zero numbers for C0 and C1, and we prove it in that generality.
Both sides of (17) are linear in each fi. It is therefore sufficient to prove the formula for

products of coordinate functions, i.e., when

fi = xu,v, yu,v, or xu,u

for each i. We simplify notation by letting the set {xk}, 1 ≤ k ≤ N2, denote the set of all
variables xu,u, xu,v and yu,v.

We claim that both sides equation (17) are non-zero if and only if for each xk, the number
of fi that equal xk is a multiple of 2m. We write the left side of equation (17) as

N2
∏

k=1

xmk

k
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where
N2
∑

k=1

mk = 2mr.

The independence of the xk implies

(18)
〈

N2
∏

k=1

xmk

k

〉

2m
=

N2
∏

k=1

〈

xmk

k

〉

2m
.

By definition of
〈

·
〉

2m
,

〈

xmk

k

〉

2m
6= 0

if and only if
mk = 2mnk

for some integer nk ≥ 0. And on the right side of (17), each expression

〈

2m
∏

j=1

fsl(j)
〉

2m

becomes an expression of the form

(19)
〈

N2
∏

k=1

xµk

k

〉

2m

for integers µk ≥ 0 that depend on s and satisfy

N2
∑

k=1

µk = 2m.

Thus, by definition of
〈

·
〉

2m
, expression (19) is non-zero if and only there is one index k

such that µk = 2m. This implies the claim.
We thus write the left side of (17) as

〈

N2
∏

k=1

x2mnk

k

〉

2m
=

N2
∏

k=1

〈

x2mnk

k

〉

2m

and apply, for any integer n ≥ 0,
〈

x2mn
u,u

〉

2m
= Cn

0W2m(2mn) = W2m(2mn)
〈

x2mu,u
〉n

2m
,

〈

x2mn
u,v

〉

2m
= Cn

1W2m(2mn) = W2m(2mn)
〈

x2mu,v
〉n

2m
,

and the same equation for yu,v to obtain

〈

N2
∏

k=1

x2mnk

k

〉

2m
=

N2
∏

k=1

(W2m(2mnk)
〈

x2mk
〉nk

2m
)(20)

=
N2
∏

k=1

(
∑

〈

x2mk
〉nk

2m
),(21)
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where the k-th sum is over allW2m(2mnk) 2m-groupings of the 2mnk copies of the monomial
xk. Expanding the product yields a sum over all the set partitions s such that for each l
there exists a k such that

fsl(j) = xk

for 1 ≤ j ≤ 2m. These are exactly the set partitions described in the claim that give a
non-zero contribution. This completes the proof of item (i).

We now prove item (ii). For integers a, b ≥ 0 with a+ b = 2m, we claim

〈

Xa
u,vX̄

b
u,v

〉

2m
=

{

2C1 if a− b ≡ 0 mod 4

0 if otherwise.

We expand the left side into monomials and then note that the only non-zero contribution
can come from the two monomials

xa+b
u,v + (−1)bia+bya+b

u,v .

We have for any integers a and b

(−1)bia+b = ia−b.

We then use a+ b = 2m and apply
〈

x2mu,v
〉

2m
=

〈

y2mu,v
〉

2m
= C1.

This proves the claim.
Now allowing a+ b = 2mr, we apply item (i) to obtain

(22)
〈

Xa
u,vX̄

b
u,v

〉

2m
=

∑

(
r
∏

i=1

i!mi)|S(a1, . . . , al)||S(2m− a1, . . . , 2m− ar)|
r
∏

l=1

〈

Xal
u,vX̄

2m−al
u,v

〉

2m
,

where the sum is over all r-tuples

(a1, . . . , ar)

with 0 ≤ al ≤ al+1 ≤ 2m such that

a =
r

∑

l=1

al

and with mi denoting the number of values k such that there are exactly i indices l, 1 ≤
l ≤ r, with al = k. Thus the right side of equation (22) is non-zero if and only if there
exists at least one such r-tuple satisfying

al − (2m− al) ≡ 0 mod 4

for each l. This means that each al is even if m is even, and each al is odd if m is odd.
This proves item (ii). �

Figure 7 shows two examples of the exponents (a, b) that satisfy the second statement of
Lemma 3.4. When m is even, the cone σ generated by the exponents is the first quadrant.
When m is odd, the cone σ is a proper subcone. In the classical case m = 1 all exponents
satisfy a = b and σ degenerates to a line.
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(a) 2m = 4 (b) 2m = 6

Figure 7. The cones of exponents giving nontrivial expectations
〈

Xa
u,vX̄

b
u,v

〉

2m
for 2m = 4 and 2m = 6.

3.5. Now we are ready to define the hypergraph matrix model. For any k ≥ 0, we set

P (N) =
〈

TrXk
〉

2m
,

where X = (Xu,v) is N ×N . This can be interpreted as computing the integral

P (N) =

∫

V
TrXk dµ2m(X),

where dµ2m(X) means the “measure” that is the product over the real coordinates of the
measure dµ2m from §2.5, where in addition the measures for the off-diagonal coordinates
have been weighted by 1/

√
2. The first main result of the paper is the following:

3.6. Theorem. We have P (N) = 0 unless k = 2mr for some integer r ≥ 0. If k = 2mr,
then P (N) = P2m,r(N) is a rational polynomial in N of degree r + 1 with coefficients in
Z[1/2].

Later (Theorems 4.7 and 5.8) we will see that P2m,r(N) is actually an integral polynomial
in N .

Proof. By the generalized Wick theorem (Lemma 3.4), it is clear that Pk(N) must vanish
unless k = 2mr. We will show that P2m,r(N) is a polynomial by explicitly evaluating it in
terms of counting walks on labeled graphs.

Let γN be the complete directed graph on N vertices with loops. Thus γN has a loop
attached to each of its vertices, and between distinct vertices u and v there is a directed
edge from u to v and one from v to u. We attach the matrix variable Xu,u to the loop at
vertex u and the variables Xu,v, Xv,u = X̄u,v to the edges between u and v. The terms in
the trace polynomial

(23) TrXk =
∑

1≤u1,...,uk≤N

Xu1,u2Xu2,u3 · · ·Xuk,u1
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can then be interpreted as encoding walks on γN that start and stop at the vertex u1, as
u1 ranges over all vertices of γN .

Now consider computing the expectation
〈

TrXk
〉

2m
. A term on the right of (23) can

give a nonzero contribution if and only if the following conditions are met:

(i) We have k = 2mr, as above.
(ii) There is a k-step walk on γN starting and stopping at vertex u1.
(iii) Any edge or loop appearing in the walk must appear in parallel batches of order a

multiple of 2m. In other words,
(a) if a loop appears in the walk, the number of times it appears is a multiple of

2m;
(b) if a nonloop edge appears in the walk, it and its opposite together must appear

a multiple of 2m times.
(iv) The edges between vertices u 6= v must appear in the walk as described in item

(ii) of Lemma 3.4. In other words, the corresponding submonomial must have the
form Xa

u,vX̄
b
u,v for a, b in the lemma.

Any walk satisfying the conditions above determines a unique connected subgraph γ ⊆
γN , namely the subgraph containing all the edges in the walk. It is clear that γ must satisfy
two conditions:

(B) the graph γ must be a balanced digraph (the in-degree of any vertex equals its
out-degree); and

(E) the graph γ arises in computation of the trace polynomial only if it has Eulerian
tours starting at any of its vertices.

We will call a balanced digraph on ≤ N vertices admissible if it meets conditions (B) and
(E).

In light of item (iii), we can use an admissible γ to determine a unique connected undi-
rected graph g = g(γ), called the reduction of γ, that has r edges and loops. More precisely,
the vertices of g are the same as those of γ. If γ has 2ms loops at vertex u, then g has
s loops at the same vertex. If γ has 2ms edges going between vertices u and v, with any
orientations, then g has s undirected edges between u and v. It is clear that any graph
with r edges can be the reduction of some γ as above.

Now let Gr be the set of connected graphs with r edges. We will compute P2m,r(N)
as a sum over Gr. Given g ∈ Gr, there is a canonical (undirected) thickening g̃ of g that
replaces each edge with 2m edges. We let D(g) be the set of admissible digraph structures
on g̃. For any γ ∈ D(g), we put

(i) W (γ) to be the total number of Eulerian tours of γ beginning and ending at any
vertex, and where parallel edges in the same direction are considered indistinguish-
able;

(ii) E(γ) to be the total contribution from groupings of the edges of γ according to
Lemma 3.4.

Finally we define N(g) to be the number of vertex labelings of g, where the labels are
taken from [[N ]], and where each vertex gets a distinct label. In particular, let Γv(g) be
the quotient of the automorphism group Γ(g) of g by the subgroup that fixes the vertices.



HYPERGRAPH MATRIX MODELS 15

Then if v(g) is the number of vertices of g, we have

N(g) = N(N − 1) · · · (N − v(g) + 1)/|Γv(g)|.
Putting everything together, we find

(24) P2m,r(N) =
〈

TrX2mr
〉

2m
=

∑

g∈Gr

N(g)
∑

γ∈D(g)

W (γ)E(γ).

Equation (24) shows that P2m,r(N) is a rational polynomial in N . Indeed, it is clear that
W (γ) and N(g) are integers, and that E(γ) is rational with denominator at worst a power
of 2. Hence P2m,r(N) ∈ Z[1/2][N ]. Furthermore, the maximal number of vertices for a
graph g ∈ Gr occurs when g is a tree, and is r + 1. This shows the degree of P2m,r(N) is
r + 1, which completes the proof. �

3.7. Example. Let m = 2. We show how one computes P8(N) = 6N3 + 21N2 + 8N . In
this case r = 2, and there are 4 graphs in G2, shown in the top of Figure 8. The canonical
thickenings replace each edge with 4 new edges. Each graph has only one admissible
digraph structure, namely with half the edges oriented one direction and half oriented in
the opposite direction. The bottom of Figure 8 shows these digraphs. For each digraph
γ1, . . . , γ4 we have labeled the vertices with the number of Eulerian tours that start and
end there. The contributions W (γi) are therefore

1, 2, 20, 12.

The contributions E(γi) are given by

35, 19, 1, 1.

Finally we have the contributions N(g). They equal

N, N(N − 1)/2, N(N − 1), N(N − 1)(N − 2)/2.

Altogether, we find P8(N) = 6N3 + 21N2 + 8N .
More examples of the polynomials P2m,r(N) for small values of m and r are in Appendix

A. These were computed using Theorem 3.6. For example, determining P2m,4 used 30
different graphs with 4 edges. We used nauty [12] to help compute these graphs.

3.8. Remark. In Example 3.7, each thickening has a unique admissible digraph structure:
for any two distinct vertices u, v, the edges running between u and v are divided into two
subsets of the same size, one of which has all edges oriented from u to v the other with
edges oriented from v to u. It is clear that this can be done for the thickening of any graph
g, and thus for any m the there is at least one nonzero contribution all g ∈ Gr to (24).
Typically, though, this digraph structure is not the only admissible one for g. For instance,
if m = 2 and r = 3, then if g is a 3-cycle there are admissible digraphs on g̃ that have all
edges oriented in the same direction. It is easy to see that the admissible digraph structures
on g̃ correspond to the lattice points in a rational polytope determined by g and m.

3.9. Remark. One can show directly that the leading coefficient of P2m,r(N) is a positive

integer C
(m)
r . For m = 1 this coefficient is the rth Catalan number, which counts (among
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111
5 15

3

3

6

Figure 8. Graphs in G2 and admissible digraph structures on their thickenings.

many things) the number of plane trees with r + 1 vertices. For m > 1 we call these num-
bers hypergraph Catalan numbers; some of their properties, including other combinatorial
interpretations, can be found in [6].

4. Computing the N-contribution I: arrangements

4.1. We recall from the introduction that P2r(N) has a geometric interpretation when
m = 1. Let Π = Π2r be a polygon with 2r vertices. Any pairing s ∈ S(2r; 2) of the edges
of Π determines a compact orientable surface Ms with an embedded graph, in other words
an orientable map. We have

(25) P2r(N) =
∑

s∈S(2r;2)

Nv(Ms),

where v(Ms) is the number of vertices of the map.

4.2. The goal of this section is to generalize (25) to m > 1. As a first step, we see that
the sum over pairings S(2r; 2) must be replaced by a sum over partitions of [[2mr]] into
blocks of order 2m. To each s ∈ S(2mr; 2m) we will associate a polynomial as(N) ∈ Z[N ]
that we call the N -contribution of s. We will prove in Theorem 4.7 that

(26) P2m,r(N) =
∑

s∈S(2mr;2m)

as(N).

We remark that, unlike the classical case m = 1, the N -contributions need not be
monomials in N , and moreover need not have positive coefficients.

4.3. We begin by recalling notation from the introduction. The trace polynomial is

TrXk =
∑

1≤u1,...,uk≤N

Xu1,u2Xu2,u3 · · ·Xuk,u1 .
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We fix a polygon Π with k vertices and with one vertex distinguished. The vertices of Π
are labeled in cyclic order with the ui, with the distinguished vertex receiving u1. The edge
between ui and ui+1 is labeled with the variable Xui,ui+1 .

Let s ∈ S(2mr; 2m) be a partition. When m = 1, each block has two edges E,E′ that
must be glued with opposite orientations to make the corresponding product of variables
XEXE′ give a nonzero contribution to P2m,r(N). In particular, if E appears first when
walking counterclockwise around the perimeter of Π starting at the distinguished vertex,
and is directed positively (pointing counterclockwise), then E′ must be oriented in the
opposite direction (pointing clockwise).

For m > 1, there are more possibilities for identifying edges. Blocks now consist of 2m
edges; if the first is positively directed, then there are 22m−1 choices of possible directions
for the other. Not all of these will arise in the computation of P2m,r(N), and as a first step
we consider which are necessary:

4.4. Definition. Let s ∈ S(2mr; 2m) and let E1, . . . , E2m be the edges corresponding to a
fixed block of s. We say that an assignment of directions to the Ei is orientable if (i) the
first edge E1 is positively oriented, and (ii) if there are a positively directed and b negatively
directed edges, then (a, b) is a lattice point arising in item (ii) in Lemma 3.4. Otherwise
we say the edge directions are nonorientable.

For example, for m = 1 the only orientable assignment is + −; the other assignment
+ + is nonorientable. This explains the terminology, since if one uses edge directions + +
for any block of a pairing when gluing a polygon, the resulting map is nonorientable. For
m = 2 the orientable assignments are

+ + + +, + + − −, + − + −, + − − +;

all others are nonorientable. The orientable assignments correspond to the three lattice
points (4, 0), (2, 2), (0, 4) in Figure 7(a). The assignment + + + + arises when (a, b) = (4, 0)
or (0, 4). The other three mixed assignments arise when (a, b) = (2, 2).

It is clear that for general m one has 22m−2 orientable assignments, and the same number
of nonorientable assignments. We denote by O the set of orientable assignments for 2m
edges.

4.5. Now let s ∈ S(2mr; 2m) be a partition of [[2mr]] into r blocks of order 2m. Let B

be the blocks of s. Let Fq be a finite field of order q >> 0, and let W be a 2mr-dimensional
vector space over Fq. Choose a basis of W , and let z1, . . . , z2mr be the coordinate functions.

Each function ω : B → O determines a subspace Wω ⊂ W as follows. Using ω we can
identify the edges of Π to make a CW -complex Mω. The map Π → Mω determines a set of
linear equations: if two vertices ui, uj of Π become identified in Mω, then the set contains
zi − zj = 0. The set of these equations determines the subspace Wω ⊂ W .

4.6. Definition. The arrangement As ⊂ W attached to the set partition s is

As = {Wω | ω : B −→ O}.

Let as(q) ∈ Z[q] be the number of points in As.
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4.7. Theorem. We have

P2m,r(N) =
∑

s∈S(2mr;2m)

as(N).

Proof. The theorem follows from the preceding discussion and Lemma 3.4. For each par-
tition the only monomials in a block that can give a nonzero expectation are those for
which the edges are directed orientably. Thus we must consider all such choices, which
corresponds to considering all functions ω : B → O. Given any ω we can freely assign the
subscripts of the edge variables Xui,ui+1 , subject to the equivalence relation imposed by ω.

The number of assignments is Nd, where d = dimFq
(Wω). Since the number of Fq points of

Wω is qd, the polynomial as(N) exactly counts the number of assignments. This completes
the proof. �

4.8. Example. We consider m = 2 and r = 2. There are 35 partitions of [[8]] into blocks
of size 4. The polygon Π is an octagon. The cyclic group C8 of order 8 acts on Π by
rotation, and if two partitions s, s′ are equivalent under rotation then as(N) = as′(N).
Thus it suffices to count the sizes of the C8 orbits and for each orbit determine as(N) for
a representative.

Figure 9 shows representatives for the 7 orbits, along with the size of the orbit (to the
upper left) and the N -contribution of each orbit. It turns out that all the N -contributions
monomials, except for the third in the top row, which is 2N2 − N . For this partition,
the subspace arrangement As ⊂ F8

q consists of two 2-planes intersecting in a line. The
orientation assignments that give the two 2-planes are shown in Figure 10.

1

44

8

88

2

N3

N3

N2

N2

N

N 2N2 −N

Figure 9. Computing P8(N) = 6N3 + 21N2 + 8N . Each octagon has a
partition s into two order 4 blocks. The N -contributions as(N) appear in
the center. Above and to the left of each octagon is the number of partitions
equivalent to it modulo rotation.
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Figure 10. Two different orientation assignments ω1, ω2 leading to 2N2 −
N . In both octagons, the leftmost vertex is labeled 1, and the labels increase
counterclockwise. The left assignment ω1 gives the equations z1 = z2 =
z4 = z5 = z7 = z8, z3 = z6. The right assignment ω2 gives z1 = z3 =
z5 = z7, z2 = z4 = z6 = z8. Thus the two subspaces Wω1 ,Wω2 ⊂ F8

q are
2-planes intersecting in the line z1 = · · · = z8. Counting the points in this
arrangement gives 2q2 − q.

5. Computing the N-contribution II: topological expansion

We now express P2m,r(N) as a sum of monomials in N . Instead of a sum over maps, we
have a weighted sum over what we call CW maps with instructions. Recall that P2m,r(N)
is defined as the expectation

〈

TrX2mr
〉

2m
.

In Theorem 5.8 we express the expectation of more general functions f(X, γ) corresponding
to an arbitrary directed graph γ, and then Corollary 5.9 gives the result when that function
is the trace.

Let K and r be positive integers. We let V (1), . . . , V (K) be a set of indices, where an
index V (i) may take any integer value from 1 to N . Let γ be a directed graph with ordered
vertex set

Vγ = {V (1), V (2), . . . , V (K)}
and ordered edge set

Eγ = {E(1), E(2), . . . , E(2mr)}
where

E(i) = (E(i, 1), E(i, 2))

and E(i, 1) and E(i, 2) denote elements of Vγ . When the index V (i) takes on an integer
value h, we think of the vertex V (i) in γ as being labeled by the integer h.

Recall that X denotes an N ×N Hermitian matrix. For E(i) ∈ Eγ , let XE(i) denote an
entry of X given

XE(i) = XE(i,1),E(i,2).

5.1. Definition. Let f(X, γ) denote the function

f(X, γ) =
∑

1≤V (j)≤N
1≤j≤|Vγ |

|Eγ |
∏

i=1

XE(i).
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Recall that S(2mr; 2m) denotes the set of all set partitions of the set

[[2mr]] = {1, 2, . . . , 2mr}
into r subsets each of order 2m. Let s denote an element of S(2mr; 2m). Such an s
determines r functions si

(27) si : [[2m]] −→ [[2mr]], 1 ≤ i ≤ r,

with disjoint images. We view a set partition of [[2mr]] as a set partition of the ordered
edge set Eγ of γ. Then we have the following result.

5.2. Lemma.

〈

f(X, γ)
〉

2m
=

∑

s∈S(2mr;2m)

∑

1≤V (j)≤N
1≤j≤|Vγ |

r
∏

i=1

〈

2m
∏

h=1

XE(si(h))

〉

2m
.

Proof. This follows directly from the definitions and item (i) in the generalization of Wick’s
theorem (Lemma 3.4). �

We next show how Lemma 3.4 is used to calculate f(X, γ).

5.3. Lemma. Given a set of values for V (1), . . . , V (K) and a function si of the form (27),
the expression

(28)
〈

2m
∏

j=1

XE(si(j))

〉

2m

is equal to 1 if and only if one of the following is true:

(i) There are two distinct integers c and d such that

(E(si(j), 1), E(si(j), 2)) = (c, d) or (d, c) for 1 ≤ j ≤ 2m,

and the number of edges that equal (c, d) differs from the number of edges that equal
(d, c) by a multiple of 4.

(ii) There is some integer c such that

E(si(j), 1) = E(si(j), 2) = c for 1 ≤ j ≤ 2m.

Otherwise (28) is equal to 0.

Proof. This follows directly from item (ii) of Lemma 3.4.
�

We next define a CW map with instructions.

5.4. Definition. We define an l-edge gluing instruction to be either:

(i) a partition of [[2l]] into two subsets of order l such that 2i− 1 and 2i are not in the
same subset for 1 ≤ i ≤ l; or

(ii) The whole set [[2l]].

We call case (i) a non-loop gluing instruction, and we call case (ii) the loop gluing instruction.
We define a CW map with instructions to be the following triple (γ, s, I) consisting of:
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(i) a directed graph γ;
(ii) a set partition s of the edge set Eγ of γ; and
(iii) a correspondence I that takes each subset in s of order l to an l-edge gluing

instruction.

5.5. Lemma. Given two distinct integers c and d with 1 ≤ c, d ≤ N , there are exactly
22m−2 possible choices for ui and vi ∈ {c, d} with ui 6= vi such that

〈

Xc,d

2m
∏

i=2

Xui,vi

〉

2m
6= 0.

Proof. Using condition 1 of Lemma 5.3, there are

1

2

(

2m

m

)

+

⌊m
2
⌋

∑

i=1

(

2m

m− 2i

)

ways for the condition to be satisfied. Applying the identity

⌊m
2
⌋

∑

i=−⌊m
2
⌋

(

2m

m− 2i

)

= 22m−1

completes the proof. �

Each of the 22m−2 possibilities corresponds to a unique 2m-edge non-loop gluing instruc-
tion. We call this set of 22m−2 non-loop gluing instructions the orientable non-loop gluing
instructions and denote it by O as in Section 4.

5.6. Definition. Let M be a CW map with instructions on a directed graph γ. Given an
ordered set of l edges of γ

(29) {(v1, v2), (v3, v4), . . . , (v2l−1, v2l)},
we let vi correspond to the integer i; then a set partition of [[2l]] as in Definition 5.4
corresponds to a set partition of the vertices in the list (29). We say that two vertices in
the same subset are in the same equivalence class. Thus all the different gluing instructions
given by M together determine an equivalence relation on the vertices of γ. We call each
equivalence class a map vertex and let v(M) denote the number of map vertices of M . We
let ℓ(M) denote the number of instructions of M that are loop-gluing instructions.

A labeling of M is an labeling of the vertices of γ with integers in [[N ]] such that if two
vertices of γ are in the same equivalence class determined by M , then they have the same
label.

Therefore the number of possible labelings of a CW map M with instructions is

Nv(M).

5.7. Remark. Two different CW maps M1 and M2 with instructions may have the same
labeling of γ as follows. Suppose M1 and M2 have the same set partition s and the same
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gluing instructions I, except for some subset si for which M1 has a non-loop gluing instruc-
tion and M2 has the loop gluing instruction. Any labeling of γ for M2 is then also labeling
for M1.

Likewise suppose we are given a set partition s of Eγ and a labeling of γ which comes
from some CW map M with instructions. Then each subset si has its vertices labeled either
all with the same number, or with exactly two different numbers such that the vertices in
each edge are labeled distinctly. If there two distinct labels in an si, then this determines
uniquely the gluing instruction that M has for that si. If there is only one label, then M
may have the loop-gluing instruction or any of the 22m−2 non-loop gluing instructions for
si.

In the next theorem, we show how to account for the common labelings by using inclusion-
exclusion.

5.8. Theorem.
〈

f(X, γ)
〉

2m
=

∑

M

(1− 22m−2)ℓ(M)Nv(M)

where the sum is over CW maps M with instructions such that the directed graph for M is
γ; each subset in a set partition of Eγ is of order 2m; and each gluing instruction is either
the loop gluing instruction or one of the 22m−2 orientable non-loop gluing instructions.

Proof. In Lemma 5.2, we fix a set partition s ∈ S(2mr; 2m) and consider

∑

1≤vj≤N
1≤j≤|V |

r
∏

i=1

〈

2m
∏

j=1

XE(si(j))

〉

2m
.

This expression is equal to the number of labelings of γ that, for each subset of 2m edges
determined by s, satisfy the criteria in Lemma 5.3. That is, it is the number of labelings of
γ that can arise as labelings of CW maps M with instructions that have the set partition s.
Let A denote the set of these labelings. To such a labeling a ∈ A we associate an r-tuple of
integers a(i) from 0 to 22m−2: if the i-th subset si has two distinct labels, then we set a(i)
to be the number from 1 to 22m−2 that corresponds to that non-loop gluing instruction,
where we have fixed an arbitrary ordering on the orientable non-loop gluing instructions;
and if the i-th subset si has only one label, then we set a(i) to be 0.

For integers 0 ≤ gi ≤ 22m−2, let A(g1, g2, . . . , gr) ⊂ A denote the set of labelings a such
that

a(i) = gi.

Since the sets A(g1, g2, . . . , gr) are disjoint for distinct r-tuples (g1, g2, . . . , gr), we have

|A| =
∑

0≤g1,g2,...,gr≤22m−2

|A(g1, g2, . . . , gr)|.

We define Ã(g1, . . . , gr) to be

Ã(g1, . . . , gr) =
⋃

g̃i

A(g̃1, . . . , g̃r)
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where

g̃i ∈
{

{0} if gi = 0

{0, gi} if gi 6= 0.

We let gi = 0 indicate the loop-gluing instruction and let M denote the CW map with set
partition s and gluing instructions (g1, . . . , gr). Then

|Ã(g1, . . . , gr)| = Nv(M).

Using

A =
⋃

0≤g1,g2,...,gr≤22m−2

Ã(g1, g2, . . . , gr),

we compute |A| by inclusion-exclusion. We claim

|A| =
∑

M

(1− 22m−2)ℓ(M)Nv(M),

where the sum is over all maps CW M with instructions on γ using the set partition s.
This is equivalent to

|A| =
∑

0≤g1,g2,...,gr≤22m−2

(1− 22m−2)# 0’s in (g1,...,gr)|Ã(g1, . . . , gr)|.

Thus it is sufficient to prove for each labeling a that

(30) 1 =
∑

0≤g1,g2,...,gr≤22m−2

(1− 22m−2)# 0’s in (g1,...,gr)1(a ∈ Ã(g1, . . . , gr))

where

1(a ∈ Ã(g1, . . . , gr)) =

{

1 if a ∈ Ã(g1, . . . , gr)

0 if a /∈ Ã(g1, . . . , gr)
.

Suppose in an r-tuple (g1, . . . , gr) that gi1 , . . . , gik = 0 for some i1, . . . , ik and gi 6= 0 for all
other i. We then say that another r-tuple (g′1, . . . , g

′
r) contains (g1, . . . , gr) if g

′
ij
, 1 ≤ j ≤ k,

are any integers from 0 to 22m−2 and gi = g′i for all other i. Then

A(g1, . . . , gr) ⊂ Ã(g′1, . . . , g
′
r)

exactly when (g′1, . . . , g
′
r) contains (g1, . . . , gr). There are

(22m−2)k−j

(

k

k − j

)

r-tuples that have exactly j zeros and that contain (g1, . . . , gr). Thus the right side of
equation (30) becomes

k
∑

j=0

(1− 22m−2)j(22m−2)k−j

(

k

k − j

)

.

By the binomial theorem this number is equal to 1. Summing over all s ∈ S(2mr; 2m)
completes the proof. �
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5.9. Corollary. Let
〈

·
〉

2m
now denote the linear form with normalizations C0 = 1

N and

C1 =
1
2N as in Lemma 3.4. We have the topological expansion

N
〈

Tr(X2mr)
〉

2m
=

∑

M

(1− 22m−2)ℓ(M)Nχ(M).

where the sum is over CW maps M with instruction as in Theorem 5.8 and γ is a 2mr-gon
with directed edges all in the same direction; and where χ(M) denotes the Euler character-
istic

χ(M) = v(M)− r + 1.

Proof. If γ is a 2mr-gon with directed edges all in the same direction, along with an ordering
on the edges, then

f(X, γ) = Tr(X2mr).

We have

〈

2m
∏

j=1

XE(si(j))

〉

2m
=

{

C0 if si has the loop gluing instruction

2C1 if si has an orientable non-loop gluing instruction
.

The normalizations C0 = 1
N and C1 = 1

2N amount to dividing the expression on the right
of the theorem statement by N r. Multiplying by N makes the exponent of each monomial

v(M)− r + 1

which we interpret as

# vertices − # edges + # faces

since after gluing we have r edges and the polygon has exactly one face. This completes
the proof. �

We note that in Corollary 5.9, when m = 1 we obtain formula (8) for P2(N) as follows.
When m = 1, there is exactly one orientable non-loop gluing instruction. This instruction
pairs an edge (c, d) with an edge (d, c) for integer labels c 6= d. And since

(1− 22·1−2)ℓ(M) =

{

0 if ℓ(M) > 0

1 if ℓ(M) = 0,

the sum over CW maps with instructions reduces to a sum over classical maps.
For a directed graph γ with 2mr edges, there are W2m(2mr)(22m−2+1)r CW maps with

instructions on γ, using the loop and orientable non-loop gluing instructions.

5.10. Example. We compute
〈

f(X, γ)
〉

4
, using the normalizations of Definition 3.2, for γ

an octagon with all its edges directed in the same direction. Thus m = 2 and r = 2, giving
875 CW maps with instructions (which we just abbreviate to maps in the following). There
are 35 maps that have two loop-gluing instructions and each of these maps has exactly 1
map vertex. Their contribution is thus

(−3)235N.
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There are 8 ·35 = 280 maps that have exactly one loop-gluing instruction; 260 of these have
exactly 1 map vertex and 20 have exactly 2 map vertices. Their contribution is thus

(−3)(260N + 20N2).

There are 16 · 35 = 560 maps with no loop-gluing instructions; 473 of these have exactly
one map vertex, 81 have exactly 2 map vertices, and 6 have exactly three map vertices.
Their contribution is thus

473N + 81N2 + 6N3.

Adding up these contributions gives

8N + 21N2 + 6N3

which agrees with Example 4.8.

6. Complements

We conclude with some complements and directions for further work.

6.1. First, in all known examples the polynomials P2m,r(N) have positive integral coeffi-
cients. This does not follow from the results in this paper, since all expressions we have for
P2m,r(N) involve sums of polynomials with coefficients that can be negative. We do not
know if the coefficients are always positive, and if so if they naturally count something (see
§6.3 below for a suggestion). We remark that when one considers similar polynomials for
products of traces of powers — i.e. for CW maps with instructions built from more than
one 2-cell — negative coefficients do occur. (Such geometric objects will be considered in
sequel to this paper.)

6.2. Next, in the case m = 1 Harer–Zagier [8] proved a beautiful generating function for
the polynomials P2r(N) (see [11, §3.1] for an exposition). Let

T (N, s) = 1 + 2Ns+ 2s
∑

r≥1

P2r(N)

(2r − 1)!!
sr.

Then we have

(31) T (N, s) =
(1 + s

1− s

)N
.

It would be very interesting to find the generalization of (31) to higher m. Generating
functions for the leading coefficients of the P2m,r(N) for m fixed and r → ∞ can be found
in [6].

6.3. The leading coefficients C
(m)
r of the P2m,r, studied in [6], can be directly defined in

terms of plane trees with additional data. In particular, let Tmr be the set of plane trees
with mr + 1 vertices. Then

C(m)
r =

∑

T∈Tmr

Nm(T )

where Nm(T ) is the number of admissible m-labelings of T (see [6, §4] for more details).
Since a plane tree can be regarded as the 1-skeleton of an orientable map of genus 0, one
can ask if there is an interpretation of the other coefficients of P2m,r(N) in terms of maps
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of higher genera with labeling data on their 1-skeletons. Note that, if so, then one expects
that nonorientable maps should also be involved.

6.4. In addition to the GUE, classically one considers two other matrix models, the Gauss-
ian orthogonal ensemble (GOE) and the Gaussian symplectic ensemble (GSE). The former
replaces the vector space V with the vector space VR of N × N real symmetric matrices,
the latter with the space VH of N ×N quaternionic Hermitian matrices. The combinatorial
interpretations of these models were thoroughly investigated by Mulase–Waldron [13]. In
both cases the expectations

〈

TrXk
〉

are computed in terms of topological surfaces, but in
contrast to the GUE one also must include nonorientable surfaces. For example, for the
GOE one has

PR
2r(N) = 2−r

∑

s

Nv(Ms),

where the sum is now taken over all possible pairings of the edges of Π, regardless of
whether the resulting surface is orientable or not. The GSE case is similar, except that
now one has

PH
2r(N) = 2−r

∑

s

α(s)Nv(Ms),

where α(s) ∈ {±1} depends on the topology of Ms.
One can define hypergraph versions of the GOE, GSE models in the obvious way. For

instance for the GOE, one replaces the off-diagonal complex variables Xu,v = xu,v + iyu,v
with real variables satisfying Xu,v = Xv,u. The polynomials PR

2m,r(N) can be computed

using the techniques in §4 with some modifications. Let O± be the set of all edge directions,
both orientable and nonorientable (thus |O±| = 22m−1). Given s ∈ S(2mr; 2m) with blocks
B, we now consider functions

ω : B −→ O
±

and the associated subspace arrangements A ±
s . We then have

PR
2m,r(N) = 2−r

∑

a±s (N),

where now a±s (q) counts the points in A ±
s .

The analogous computations for the GSE have not been investigated except in special
cases.

Mulase–Waldron also prove a duality theorem for the GOE and the GSE. In particular,
if

PR
2r(N) = ar+1N

r+1 + arN
r + · · ·+ a1N,

then

PH
2r(N) = 22rar+1N

r+1 − 22r−1arN
r + · · · ± 2ra1N.

The same relation does not hold for the hypergraph versions. For example, for m = 2 and
r = 2, we have

PR
8 (N) =

3N3

2
+

57N2

4
+

77N

4
,

PH
8 (N) = 24N3 + 12N2 −N.
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The failure of the duality is not surprising, since now the N -contributions are no longer
monomials attached to surfaces. In the hypergraph case the N -contributions are more
complicated polynomials attached to subspace arrangements; the arrangements themselves
need not even be pure (maximal subspaces need not have the same dimension). However,
one might expect a duality holds that takes into account the more complicated structure
of the N -contributions.

We note in passing that Mulase–Waldron also suggest constructing Gaussian (m = 1)
analogues of the classical matrix models using Clifford algebras over R in place of C,H.
To the best of our knowledge such models have not been constructed. One could consider
hypergraph versions as well.

6.5. The vector spaces underlying the classical matrix ensembles have another interpreta-
tion, namely as simple formally real Jordan algebras over R [10]. Briefly, a Jordan algebra
over a field k is a nonassociative algebra over k whose multiplication satisfies x • y = y • x
and (x • x) • (y • x) = ((x • x) • y) • x; it is simple if it cannot be written as a direct sum.
Although nonassociative, Jordan algebras are power-associative: if one puts xn := x •xn−1

for n > 1, then xn can be computed as x • · · · • x with any choice of bracketing. A Jordan
algebra A over R is called formally real if

∑n
i=1 x

2
i = 0 implies each xi = 0. It is known

that a real Jordan algebra being formally real is equivalent to it having a positive definite
trace form Tr: A → R. This is a linear map satisfying Tr(x2) > 0 for all x ∈ A, x 6= 0, and
one has in addition that the trace pairing Tr(x • y) is a positive definite quadratic form on
A. For the matrix spaces above, the Jordan product is given by x • y = (xy + yx)/2, and
the trace is the usual one.

For a simple formally real Jordan algebra, one can make a Gaussian measure e−TrX2/2 dX,
and can thus define the expectations

〈

TrXk
〉

. Such algebras were classified by Jordan, von
Neumann, and Wigner in 1934 [9]. Apart from the spaces of Hermitian matrices, there are
two others:

• The spin factor S = S1,N of pairs x = (x0, x) ∈ R×RN equipped with the Jordan
product x •y = (x0y0 + x · y, x0y+ y0x), where · denotes the usual dot product on
RN . The trace form is Tr(x) = x0.

• The Albert algebra A of 3× 3 Hermitian matrices over the octonions O, equipped
with the same Jordan product as VR, VC, VH, and with the usual trace as trace
form.

The matrix models associated to S and A were considered in [7], where the expectations
were computed in terms of various combinatorial objects. One could also define hypergraph
analogues of these models. The algebras S1,N depend on a dimensional parameter, and so
one could expect to determine a polynomial Pk(N). The Albert algebra is exceptional (the
N×N octonionic Hermitian matrices are not a Jordan algebra for N ≥ 4). Nevertheless, as
in [7] one might expect to compute

〈

TrXk
〉

as a sum over powers of 3; such an expansion

allows one define the expectation
〈

TrXk
〉

for N > 3, even though the matrix model doesn’t
exist.
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Appendix A. Tables of P2m,r(N)

m P2m,2(N)

1 2N3 +N

2 6N3 + 21N2 + 8N
3 20N3 + 288N2 + 154N
4 70N3 + 3685N2 + 2680N
5 252N3 + 49500N2 + 42626N
6 924N3 + 698250N2 + 652904N
7 3432N3 + 10174752N2 + 9880116N
8 12870N3 + 151215333N2 + 149311992N
9 48620N3 + 2274899220N2 + 2262619810N
10 184756N3 + 34501184146N2 + 34421895508N
11 705432N3 + 526280849952N2 + 525767926476N
12 2704156N3 + 8063562387946N2 + 8060236749448N
13 10400600N3 + 123990434535968N2 + 123968821537484N
14 40116600N3 + 1912243020174900N2 + 1912102240088720N
15 155117520N3 + 29566604787876288N2 + 29565685839436904N
16 601080390N3 + 458159040047894757N2 + 458153029822320120N
17 2333606220N3 + 7113280057151509380N2 + 7113240678135172770N
18 9075135300N3 + 110628264279384010866N2 + 110628005849959243436N
19 35345263800N3 + 1723156011388074958800N2 + 1723154312923210454700N
20 137846528820N3 + 26876807772080973901810N2 + 26876796594449267800180N
21 538257874440N3 + 419727658377406433224500N2 + 419727584728000854024720N
22 2104098963720N3 + 6562126588326317167437420N2 + 6562126102514004328079760N
23 8233430727600N3 + 102698863964408113176128640N2 + 102698860756613228059232280N
24 32247603683100N3 + 1608766764066834928980643050N2 + 1608766742866282277626475400N
25 126410606437752N3 + 25222836206508763559400612000N2 + 25222836066273206697399198876N
26 495918532948104N3 + 395766462495661160636578778460N2 + 395766461567312931123662337504N
27 1946939425648112N3 + 6214446125959394141657011559232N2 + 6214446119809324376212824301816N
28 7648690600760440N3 + 97647511242174540487608932875252N2 + 97647511201404346543865732597200N

Table 1. The polynomials
〈

TrX4m
〉

2m
for various m.
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m P2m,3(N)

1 5N4 + 10N2

2 57N4 + 715N3 + 2991N2 + 2012N
3 860N4 + 53214N3 + 1140454N2 + 1664328N
4 15225N4 + 3968087N3 + 483128259N2 + 1090473724N
5 299880N4 + 319033030N3 + 249112347045N2 + 675734451935N
6 6358044N4 + 27351953116N3 + 144661285111944N2 + 419433316997096N
7 141858288N4 + 2456767685792N3 + 89115824374493808N2 + 264310496367750112N
8 3279398265N4 + 228032530114903N3 + 56635324056004897923N2 + 169255358642521435964N
9 77730738800N4 + 21665759515089126N3 + 36686471980709644341697N2 + 109916794267753619873127N
10 1875933348432N4 + 2093828838718703120N3 + 24084270072620378456338401N2

+ 72220930246628210863587697N
11 45882224217648N4 + 204952224882223813324N3 + 15973952996451453162136090332N2

+ 47914615958204399656971326696N
12 1133728265594652N4 + 20260640463398745554900N3 + 10682787287690101862034633426336N2

+ 32046693901381068240448254609112N
13 28240495384558800N4 + 2018693356691719867568864N3 + 7193631461776444705190769635498784N2

+ 21580505958290875193026086420843808N
14 708064561500246000N4+202433132515998915941341072N3+4872505050842274403228753037344910544N2

+ 14617423853317443012808828442016773264N
15 17849706012216423360N4 + 20409382526463993156412539904N3

+ 3316996638652912728252744206895405336384N2

+ 9950968289248550591631999836329596142208N
16 452052794695103608185N4 + 2067140897618143068480820110167N3

+ 2268007122287693777339576136228966035750019N2

+ 6804016210546600711632807276586466474677564N
17 11494037187436243492800N4 + 210200930632671059865866117731558N3

+ 1556754869151969792504246439438872632599914801N2

+ 4670263371286628536268848230156218556784490591N
18 293268344389135999653000N4 + 21449528858806475000358293855272820N3

+ 1072214813013740985787191555390220486796784074061N2

+ 3216644141290694613866799233785339413536734731829N
19 7505725776437016547650000N4 + 2195485483980801935619242747107823320N3

+ 740745975439607042250728810375902207507522345766640N2

+ 2222237854311481677243167772912437679081998585455640N
20 192624656075289400261899600N4 + 225341438539793329136178845209819555124N3

+ 513153629206438687312936933812200879928655271289772773N2

+ 1539460870144325438304920986623158223804789350061849673N

Table 2. The polynomials
〈

TrX6m
〉

2m
for various m.
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m P2m,4(N)

1 14N5 + 70N3 + 21N
2 678N5 + 19405N4 + 228190N3 + 1151300N2 + 1228052N
3 57200N5 + 9249672N4 + 663296368N3 + 23015663304N2 + 72509379000N
4 7043750N5 + 5133996301N4 + 2194206265774N3 + 649578371471156N2 + 3496601133322644N
5 1112865264N5 + 3292356247240N4 + 8934623322380920N3 + 26207378017593289520N2

+ 169840387027013976536N
6 203356067376N5 + 2327989224345286N4 + 42358539595996285660N3 + 1252484603218971137182922N2

+ 8572860596835849151982156N
7 40309820014464N5 + 1760470794016891600N4 + 220875628168546516720800N3

+ 64487482336218647892560499440N2 + 448402127426916899912404473696N
8 8379037668637350N5 + 1397674190499809027085N4 + 1220475253273708488464567982N3

+ 3454734342269095061663819841923124N2 + 24133713121044731673887671026753684N
9 1795172959531094000N5 + 1151182660249369448162472N4 + 6995785268932128999554007655768N3

+ 189920916748969572099809540416641589392N2 + 1328599222453987153177911406958644513368N
10 392800279200915370928N5 + 975656238155129500067949730N4

+ 41106190578445299787264023836382940N3 + 10641539111440331329350933845423409379274150N2

+ 74475795014946003639725825945542355037009252N
11 87320368271147678319744N5 + 845866517161545514341421235664N4

+ 245905372276288767953660446911752974176N3

+ 605285088234616975494014612412577930709213913264N2

+ 4236724693473437319989474926839584904080987437152N
12 19656886903997074769845808N5 + 746867552705760727566904485163270N4

+ 1491434750869657319408387218256573724385180N3

+ 34854150713497730510212467928933753390730606921429450N2

+ 243974070260097400637009962309706342468095564073801292N
13 4470981124924626788897680000N5 + 669356153300587752330012692658491792N4

+ 9146015389124959281270622409599491598939420448N3

+ 2027780378464114086537959294928851930572576528700609456944N2

+ 14194369714577957029441626724384345718936643410238390073440N
14 1025836407005311164005708400000N5 + 607304198247408170031119018846109803356N4

+ 56601467927820406717565379277211986070151530841304N3

+ 119013143695723056191287211622552139828713942882888950522427956N2

+ 833090254865760852286285074073343498022658025500053370799984984N

Table 3. The polynomials
〈

TrX8m
〉

2m
for various m.
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