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Abstract LetG be the reductive Q-group RF/QGLn, where F/Q is a number
field. Let Γ ⊂ G be an arithmetic group. We discuss some techniques to
compute explicitly the cohomology of Γ and the action of the Hecke operators
on the cohomology. This is a writeup of a lecture course given at the summer
school Computations with modular forms, Heidelberg, Germany, in August
2011.





Lectures on computing cohomology of
arithmetic groups

Paul E. Gunnells

1 Introduction

This is a writeup of five lectures given at the summer school Computations
with modular forms, Heidelberg, Germany, in August 2011. The course cov-
ered essentially all the material here, although I have made some corrections
and modifications with the benefit of hindsight, and have taken the opportu-
nity to elaborate the presentation. I’ve tried to preserve the informal nature
of the lectures.

I thank the organizers for the opportunity to speak, and the participants
of the summer school for a stimulating environment. I thank my collaborators
Avner Ash, Mark McConnell, and Dan Yasaki, for many years of fun projects,
and for all that they’ve taught me about this material. Thanks are also due
to an anonymous referee, who carefully read the lectures and made many
valuable suggestions. Finally, I thank the NSF for supporting the research
described in these lectures.

2 Cohomology and holomorphic modular forms

The goal of our lectures is to explain how to explicitly compute some au-
tomorphic forms via cohomology of arithmetic groups. Thus we begin by
reviewing modular symbols and how they can be used to compute with holo-
morphic modular forms. For more details we refer to [19, 61]. This material
should be compared with that in Rob Pollack’s lectures, which contains a
different perspective on similar material.
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gunnells@math.umass.edu

3

gunnells@math.umass.edu


4 Paul E. Gunnells

Let N ≥ 1 be an integer, and let Γ0(N) ⊂ SL2(Z) be the subgroup of
matrices that are upper-triangular mod N . Let H ⊂ C be the upper halfplane
of all z with positive imaginary part. The group Γ0(N) acts on H by fractional
linear transformations:

(a b
c d

)

· z =
az + b

cz + d
. (1)

We let Y0(N) be the quotient Γ0(N)\H. Then Y0(N) is a smooth algebraic
curve defined over Q, called an (open) modular curve.

The curve Y0(N) is not compact, and there is a standard way to compactify
it. Let H∗ = H ∪ P1(Q), where we think of P1(Q) as being Q ∪ {∞} with
Q ⊂ R ⊂ C and ∞ lying infinitely far up the imaginary axis. The points
∂H∗ = H∗ r H are called cusps. The action of Γ0(N) extends to the cusps,
and after endowing H∗ with an appropriate topology, the quotient X0(N) =
Γ0(N)\H∗ has the structure of a smooth projective curve over Q. This is
what most people call the modular curve.

By work of Eichler, Haberland, and Shimura, the cohomology of the spaces
Y0(N) and X0(N) has connections with modular forms. These are holomor-
phic functions f : H → C satisfying the transformation law

f
(az + b

cz + d

)

= (cz + d)kf(z),
(

a b
c d

)

∈ Γ0(N),

where k ≥ 1 is a fixed integer; f is also required to satisfy a growth condition
as z approaches any cusp. The space of such functions Mk(N) is a finite-
dimensional complex vector space with a subspace Sk(N) of cusp forms : these
are the f that undergo exponential decay as z approaches any cusp. There
is a natural complement Eisk(N) to Sk(N), called the space of Eisenstein
series. Then we have

H1(Y0(N);C)
∼−→ S2(N)⊕ S2(N)⊕ Eis2(N), (2)

H1(X0(N);C)
∼−→ S2(N)⊕ S2(N). (3)

For example, let N = 11. Then it is known that dimM2(11) = 2 and
dimS2(11) = 1. The curve X0(11) has genus 1, which is consistent with (3).
The complement of Y0(11) in X0(11) consists of two points. Thus Y0(11)
deformation retracts onto a graph with one vertex and three loops. This
implies H1(Y0(11);C) ≃ C3, again consistent with (2).

We can say even more about (2)–(3):

• We don’t have to limit ourselves to quotients by Γ0(N). Indeed, we can
use other finite-index subgroups, such as the subgroup Γ1(N) of matrices
congruent to ( 1 ∗

0 1 ) modulo N , or the principal congruence subgroup Γ (N)
of matrices congruent to the identity modulo N .1 We could also work with

1 Throughout these lectures we only work with congruence subgroups. For SL2(Z) this
means any group containing Γ (N) for some N .
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cocompact subgroups of SL2(R), such as arithmetic groups coming from
orders in quaternion algebras, and (3) still holds (if we suitably modify
our definitions).

• We can work with modular forms of higher weight k > 2 by taking coho-
mology with twisted coefficients [13,60,63]. More precisely, SL2(Z) acts on
the complex vector space of homogeneous polynomials of degree k by

(a b
c d

)

· P (x, y) = P (ax+ cy, bx+ dy).

This induces a local system Mk on the quotients X0(N), Y0(N), and we
have

H1(Y0(N);Mk−2)
∼−→ Sk(N)⊕ Sk(N)⊕ Eisk(N), (4)

H1(X0(N);Mk−2)
∼−→ Sk(N)⊕ Sk(N). (5)

• Let p be a prime. Then there are Hecke operators

Tp, (p,N) = 1,

Up, (p,N) > 1

that generate an algebra of operators acting on Mk(N). The action pre-
serves the decomposition Mk(N) = Sk(N) ⊕ Eisk(N). There are corre-
sponding operators acting on the cohomology spaces, and the isomor-
phisms (2)–(5) are isomorphisms of Hecke modules.

Together these facts imply that we can use topological tools to study
modular forms and the action of the Hecke operators on them, and brings us
to the main point of our lectures:

One can explicitly compute with certain automorphic forms of arithmetic in-
terest by generalizing the left-hand sides of (2)–(5).

How this can be done will be explained in §4 onward. In the next section,
we continue to discuss the classical case and modular symbols.

3 Modular symbols

Modular symbols provide an extremely convenient way to use topology to
compute with modular forms. They form the main inspiration for the higher-
dimensional computations we discuss later. We review modular symbols here.
For simplicity we stick to weight k = 2, to avoid the notational complexity
of twisted coefficients. For more details we refer to [61] or to R. Pollack’s
lectures.
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Let Γ ⊂ SL2(Z) be a torsionfree subgroup. For instance, one could take
Γ = Γ (N) for N ≥ 3. Put YΓ = Γ\H and XΓ = Γ\H∗ as before. We want
to study the cohomology spaces H1(YΓ ;C) and H1(XΓ ;C).

By Lefschetz duality [63, Chapter 6], we have an isomorphism

H1(YΓ ;C)
∼−→ H1(XΓ , ∂XΓ ;C), (6)

where the right hand side is the homology of XΓ relative to the cusps. This
differs from the usual homology in that we allow not only 1-cycles, whose
boundaries vanish, but also 1-chains that have boundary supported on the
cusps.

According to basic algebraic topology, we can computeH1(XΓ ; ∂XΓ ;C) by
taking a triangulation of XΓ with vertices at the cusps. We then get a chain
complex C∗(XΓ ) with a subcomplex C∗(∂XΓ ), and the relative homology
groups are by definition those of the quotient complex C∗(XΓ )/C∗(∂XΓ ).

A quick way to construct the chain complexes C∗(XΓ ), C∗(∂XΓ ) is via the
Farey tessellation T of H∗. This is the ideal triangulation of H given by the
SL2(Z)-translates of the ideal triangle ∆ with vertices at {0, 1,∞} (Figure 1).
It’s easy to describe the edges of T . Denote the cusps P1(Q) = Q ∪ {∞} by
column vectors of relatively prime integers, with ∞ corresponding to (1, 0)t.
Thus the cusp α ∈ Q corresponds to the column vector (a, b)t if α = a/b;
we think of ∞ as corresponding to the “fraction” 1/0. Then two cusps are
joined by an edge in the triangulation if and only if the corresponding column
vectors form a matrix with determinant ±1:

a/b joined to c/d in T ⇐⇒ det
(

a b
c d

)

∈ {±1}. (7)

Fig. 1 The Farey tessellation.

Note that ∆ is not a fundamental domain for SL2(Z), but rather a union
of three fundamental domains. This suffices for our purposes, since one can
easily see that a fundamental domain for any torsionfree Γ can be assembled
from finitely many copies of ∆. Thus T endows our quotient XΓ with a
finite triangulation, and by construction the vertices of this triangulation are
exactly ∂XΓ .
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For example, if Γ = Γ (N) then the quotient X(N) := XΓ equipped with
this triangulation is beautifully symmetric: it has an action of PSL2(Z/NZ)
induced by the isomorphism SL2(Z)/Γ (N) ≃ SL2(Z/NZ). (Don’t forget that
the center of SL2(Z) acts trivially on H.) This finite group acts transitively on
the cells in the triangulation. For N = 3, 4, 5 the surfaces X(N) have genus
0, and the induced triangulations are familiar to anyone who inhabits three
dimensions (cf. [52]). For N = 6 the quotient is a torus with a triangulation
consisting of 24 triangles, 36 edges, and 12 vertices. For N = 7 we have
|PSL2(Z/7Z)| = 168, and the Riemann surface X(7) realizes Hurwitz’s upper
bound for the size of the automorphism group of a surface of genus three. It
is a pleasant exercise to draw the triangulations for N ≤ 7. The tessellated
Riemann surfaces X(N), N > 1 are called Platonic surfaces [12].

Thus we can compute the right hand side of (6) if we can understand
(1) a generating set for the relative homology group, and (2) all the relations
between our generating set. We will only sketch what happens, since we don’t
need more precision for our discussion.

The first is easy. The images of the Farey edges become edges in the
triangulation, and so their classes will span H1(XΓ , ∂XΓ ;C). Each such edge
corresponds to a pair of cusps of determinant ±1, as in (7). We only need to
work with representatives of these pairs modulo Γ , since these will give all
edges in the triangulation.

The relations are also not hard to understand. They come from the finite
subgroups of SL2(Z). For instance, the subgroup generated by

(

0 1
−1 0

)

stabi-
lizes the edge in T from 0 to ∞, and this tells us how to find the boundary
of this edge. The subgroup generated by

(

0 1
−1 1

)

stabilizes ∆. This tells us
how to find the boundary of ∆, and thus to compute a relation between three
elements of H1(XΓ , ∂XΓ ;C).

The upshot: we can compute the relative homology H1(XΓ , ∂XΓ ;C) as
the C-vector space generated by certain pairs of cusps modulo Γ , divided
out by certain relations imposed by the finite subgroups of SL2(Z). For full
details, including the extension to Γ with torsion, we refer to [48, 61]. Later
(§9) we will see how to define an action of the Hecke operators on this model.

4 Algebraic groups and symmetric spaces

The first step in generalizing (2)–(3) is understanding exactly how the spaces
arise from group theory. In fact they are examples of locally symmetric spaces.

Let G be the Lie group SL2(R). The subgroup K = SO(2) of matrices
satisfying ggt = Id is maximal compact, and is the unique subgroup with
this property up to G-conjugacy. The group G acts on H, again by fractional
linear transformations (1), and the action is transitive. Indeed, the subgroup
of upper-triangular matrices already acts transitively, since
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(√
y x/

√
y

0 1/
√
y

)

· i = x+ iy.

The stabilizer in G of i is K, and so we have a diffeomorphism

G/K
∼−−−→ H.

This exhibits H as a Riemannian globally symmetric space [40]. We recall that
such a space is an analytic Riemannian manifold D with a family of involutive
isometries σp : D → D, one for each p ∈ D, such that p is the unique fixed
point of σp. It is known that any such space D can be written as a quotient
G/K, whereG is the connected component of the group of isometries ofD and
K ⊂ G is a compact subgroup stabilizing a chosen point p0 ∈ D. If Γ is any
finite index subgroup of SL2(Z), then the quotient Γ\H = Γ\G/K inherits
this structure locally. Such double quotients are known as locally symmetric
spaces. These spaces, and their compactifications, will be the replacements
for Y0(N), X0(N).

So how do we build locally symmetric spaces? The first step is to build
globally symmetric spaces, and that is the focus of this section. We begin
with a linear algebraic group G. This is a group that also has the structure
of an affine algebraic variety, with the group operations being morphisms.
For instance, the group GLn of n×n invertible matrices can be realized as a
closed subgroup of affine n2 + 1-space. We take the ring

C[x11, x12, . . . , x1n, x21, . . . , xnn, δ] (8)

with variables xij corresponding to the entries of an indeterminate n × n
matrix. The group GLn is then the zero set of the polynomial δ det(xij) = 1.
The group operations can be written as polynomials in these variables, so
GLn is a linear algebraic group.

More generally, G is a linear algebraic group if it is a subgroup of GLn

defined by polynomial equations. If the coordinate ring of G can be defined
by an ideal generated by polynomials in a subfield F ⊂ C, then we say G is
defined over F .

Basic examples are the classical groups: SLn, the subgroup of GLn of ma-
trices of determinant 1; SOn, the subgroup of SLn preserving a fixed nonde-
generate symmetric bilinear form; and Spn, the subgroup of SL2n preserving
a nondegenerate alternating bilinear form.

Other examples are provided by tori. By definition G is a torus if G ≃
(GL1)

d for some d, called the rank of G. We note that this isomorphism need
not be defined over F , even if G is defined over F . If it is, we say that G is
F -split. The integer d is then called the F -rank of G and is denoted rF (G).
More generally, the F -rank rF (G) of any algebraic group G is defined to be
the F -rank of the maximal F -split torus in G.

The most important linear algebraic groups for us, which are also the most
familiar, are the reductive and semisimple groups. By definition, the radical
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R(G) is the maximal connected solvable normal subgroup of G, where con-
nected means irreducible as an algebraic variety. The unipotent radical Ru(G)
is the maximal connected unipotent normal subgroup of G, where unipotent
means all eigenvalues are 1. A group is called reductive if Ru(G) is trivial,
and semisimple if R(G) is trivial. We have Ru(G) ⊂ R(G), so semisim-
ple is a special case of reductive. Any connected group contains a reductive
and semisimple quotient: if G is connected, then G/Ru(G) is reductive and
G/R(G) is semisimple.

For example, the classical groups SLn, SOn, Spn are semisimple. The group
GLn is reductive and is not semisimple. For an example of a group that is
neither reductive nor semisimple, one can take the Borel subgroup B ⊂ GL2

of upper-triangular matrices. The unipotent radical Ru(B) is the subgroup
of B with 1s on the diagonal. This example generalizes to the subgroups
P ⊂ GLn of block upper-triangular matrices; these are examples of parabolic
subgroups. In general, even if one is ultimately interested in phenomena in-
volving reductive groups, one must consider non-reductive groups, since they
often provide an inductive tool to understand structures on reductive groups
(cf. (16)).2

As we said above, semisimple is a special case of reductive. In fact being
reductive is not that far from being semisimple. Let G be reductive and let
S be the connected component of the center of G. Then S is a torus. If we
put H = [G,G] (the derived subgroup, which is semisimple), then

G = H · S,

an almost direct product ; this means H ∩ S is finite, not necessarily {1}.
Hence a reductive group looks like a semisimple one, up to a central torus

factor. For instance, for GLn the group S is the subgroup of scalar matri-
ces a Id and the derived subgroup H is SLn. Certainly GLn = S · SLn: the
intersection S ∩ SLn is the group of nth roots of unity.

Now that we’ve identified our groups of interest, let’s explain how to find
our spaces. Let G = G(R), the group of real points of G. This has the
structure of a Lie group, although not all Lie groups arise this way. Let
K ⊂ G be a maximal compact subgroup. We now have exactly the objects
we needed to define H, and indeed we’re done if G is semisimple: the relevant
symmetric space is G/K. But if G is reductive we need to go further and
divide by a bit more. Thus we introduce the split component AG of G. By
definition AG is the connected component of the identity of the group of
real points of the maximal Q-split torus in the center of G. That’s quite a
mouthful, but it’s easy to understand in examples, as we shall see. In any
event, we define our symmetric space to be

D = G/AGK. (9)

2 This is Harish-Chandra’s “Philosophy of cusp forms” [39]; see also [15, Chapter 49].
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One should think of this quotient as being the Lie group (G/AG) divided by
its maximal compact subgroup K.

For a first example let G = SLn. Then G = G(R) = SLn(R) and K =
SO(n). The split component AG is trivial, and our symmetric space is

D = SLn(R)/SO(n). (10)

If n = 2, then (10) becomes H. The dimension of D is n(n + 1)/2 − 1. In
particular note that dimD can be odd, and thus in general D does not have
a complex structure. This is quite different from H.

Now let G = GLn, so that G = GLn(R). The maximal compact subgroup
is K = O(n), which is only a little bigger than SO(n) (it has the same
dimension as SO(n), just an extra component). The split component AG

consists of the real scalar matrices {a Id | a ∈ R>0}. Our symmetric space
is G/AGK, and in fact is isomorphic to (10). Hence by dividing out by the
split component we kill exactly the extra dimension we introduced by using
GLn instead of SLn.

We now come to examples that will be our main focus, namely general
linear groups over number fields. Before we can explain how they work, we
need the important notion of restriction of scalars. This is a useful construc-
tion that allows us to focus our attention on groups defined over Q, even if
our group is most naturally written in terms of a bigger number field.

So suppose G is a linear algebraic group defined over a number field F .
Then there is a group RF/QG, called the restriction of scalars of G from F
to Q, such that (i) RF/QG is defined over Q and (ii)

(RF/QG)(Q) = G(F ).

This is something that is already familiar to you, even if you didn’t realize
it.3 Consider the standard representation of the complex numbers as 2 × 2
real matrices:

a+ bi 7−→
(

a −b
b a

)

. (11)

This is an example of restriction of scalars, after we pass to nonzero elements.
Indeed, in that case the left hand side of (11) is the group of complex points
of G = GL1, thought of as a group defined over C; the right hand side is
the group of real points of RC/RG, a group clearly defined over R. Note that
(RC/RG)(R) = G(C).

For a more complicated example, suppose we take the group G = SL2,
again defined over C, and build RC/RSL2. We can do this using GL4/R:
simply use (11) to take the four complex entries of SL2(C) to four 2 × 2
blocks A,B,C,D of a matrix in GL4(R). The image will be determined by

3 Like Molière’s Monsieur Jourdain: “Par ma foi! il y a plus de quarante ans que je dis de

la prose sans que j’en susse rien, et je vous suis le plus obligé du monde de m’avoir appris
cela.”
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certain polynomial equations with real coefficients. Some of the equations
encode the fact that the blocks arose via (11), whereas other equations come
from the condition AD − BC = Id that defines SL2. The general definition
of restriction of scalars is no harder than this, although it’s a bit messy to
write out in these terms (cf. [53, §2.1.2]).

Let’s build some symmetric spaces starting from number fields. As a first
example, we take F/Q to be real quadratic and G = RF/QSL2. Then G =
G(R) ≃ SL2(R)× SL2(R), since F ⊗Q R ≃ R× R, corresponding to the two
distinct embeddings of F into R. One should think of G(Q) = SL2(F ) as
mapping into G(R) via these embeddings, where we use a different one for
each factor. The maximal compact subgroup K is SO(2) × SO(2), the split
component is trivial (G is semisimple), and the symmetric space is

G/K = H× H, (12)

the product of upper halfplanes familiar from Hilbert modular forms [29].
Now let’s try the reductive version. Put G = RF/QGL2. We have G ≃

GL2(R) × GL2(R) and K ≃ SO(2) × SO(2). This time the split component
AG isn’t trivial: the maximal Q-split torus in the center of G has Q-points
{( a 0

0 a ) | a ∈ Q×}. In G(R) this subgroup embeds the same in each factor,
and after taking the connected component of the R-points we find

AG =
{((

a 0
0 a

)

,
(

a 0
0 a

)) ∣

∣

∣
a ∈ R>0

}

≃ R>0,

which is one-dimensional. Counting dimensions, we see that G/AGK is five-
dimensional. In fact, as Riemannian manifolds we have

G/AGK = H× H× R, (13)

where R has the flat metric. The space (13) looks unnatural, especially to
someone interested in the geometry of Hilbert modular surfaces, but as we
will see later the “flat factor” is very convenient.

Now let F be imaginary quadratic and let G = RF/QSL2. Since F ⊗ R ≃
C, we have G = SL2(C). The maximal compact subgroup K is SU(2) and
the split component AG is trivial. The symmetric space is now H3, three-
dimensional hyperbolic space. If we take instead G = RF/QGL2, we find
G = GL2(C) and K = U(2). The maximal Q-split torus in the center of G
is again {( a 0

0 a ) | a ∈ Q×}, so AG = {( a 0
0 a ) | a ∈ R>0}. Thus the symmetric

space is again H3. Again, the situation is similar to the case of F = Q: there
is no flat factor, and replacing semisimple with reductive doesn’t change the
symmetric space.

Comparing the cases of F real/imaginary quadratic and the rationals sug-
gests that the flat factors have something to do with the rank of O

×
F , the

units of the integers of F . This is in fact true. Suppose F ⊗ R ≃ Rr × Cs.

• If G = RF/QSL2, then
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G ≃ SL2(R)
r × SL2(C)

s,

K ≃ SO(2)r × SU(2)s,

AG ≃ {1},
G/K ≃ Hr × Hs

3.

• If G = RF/QGL2, then

G ≃ GL2(R)
r ×GL2(C)

s,

K ≃ O(2)r ×U(2)s,

AG ≃ R>0,

G/AGK ≃ Hr × Hs
3 × Rr+s−1.

We can see that the dimension of the flat factor is the same as the rank of
O

×
F .

5 Arithmetic groups, locally symmetric spaces, and
cohomology

We now have an analogue of the upper halfplane H, namely our globally
symmetric space D = G/AGK. To build locally symmetric spaces, the ana-
logues of the open modular curves, we need to get discrete subgroups into
the picture. This brings us to arithmetic groups.

LetG be a linear algebraic group. Then a subgroup Γ ⊂ G is an arithmetic
group if it is commensurable withG(Z). This means the intersection Γ∩G(Z)
has finite index in both Γ and G(Z).4

For instance, suppose G is GLn. Then G(Z) is GLn(Z), the group of in-
vertible integral matrices. If we put G = RF/QGLn, then we find G(Z) =
GLn(O). We can make further examples by taking quotients. For instance, if
we choose an ideal I ⊂ O, we can consider the map GLn(O) → GLn(O/I).
The kernel is a subgroup of finite index in GLn(O) called a congruence sub-
group.

Given an arithmetic group Γ we can form the quotient

YΓ = Γ\D = Γ\G/AGK.

The space YΓ is a locally symmetric space. This is our replacement for the
open modular curve. We propose to study

4 This definition of arithmetic group suffices for our purposes because we have defined
our algebraic groups as subgroups of GLn. If one works more abstractly, then the correct
condition is that Γ ⊂ G(Q) is arithmetic if for any Q-embedding ι : G → GLn, the group
ι(Γ ) is commensurable with ι(G) ∩GLn(Z).



Lectures on computing cohomology of arithmetic groups 13

H∗(YΓ ;C); (14)

classes in these spaces will be our analogue of holomorphic modular forms of
weight two.

What about higher weight modular forms? We can find analogues of these
as well, if we’re willing to work with fancier cohomology. Let (ρ,M) be a
finite-dimensional (complex) rational representation of G. The reader should
think of the case of G a classical matrix group and ρ a classical polynomial
representation. We get a representation of Γ in M . If Γ is torsionfree, then
the fundamental group of YΓ is Γ . The representation ρ : Γ → GL(M) thus
induces a local coefficient system M on YΓ . We can then form the cohomology
spaces

H∗(YΓ ;M ). (15)

For more details about local coefficients see [13, 60, 63]. This construction
works even if Γ has torsion, although the quotient is an orbifold, not a man-
ifold. Nevertheless cohomology with coefficients in a local system still makes
sense for such objects. If G = SL2(R) and Γ ⊂ SL2(Z), this construction is
exactly what we did to express higher weight forms in terms of cohomology of
the modular curve, cf. (4)–(5). In that case the degree k homogeneous poly-
nomials are an incarnation of the standard representation of SL2 of dimension
k + 1.

We claim that the cohomology spaces (15), which include those in (14)
as a special case, provide a means to compute certain automorphic forms
explicitly. Certainly it is not clear that cohomology has anything to do with
automorphic forms, although (4)–(5) give some evidence. Justifying this re-
lationship in detail would take us well beyond the scope of these lectures; for
an excellent discussion of the connection, we refer to [43, 55, 64]. What we
can say is the following:

1. According to a deep theorem of Franke [28], which proved a conjecture
of Borel, the cohomology groups H∗(YΓ ;M ) can be directly computed in
terms of certain automorphic forms (those that are “cohomological,” also
known as those with “nonvanishing (g,K) cohomology” [65]).

2. There is a direct sum decomposition

H∗(YΓ ;M ) = H∗
cusp(YΓ ;M )⊕

⊕

{P}

H∗
{P}(YΓ ;M ), (16)

where the sum is taken over the set of classes of associate proper Q-
parabolic subgroups of G. (cf. [42, Chapter 2])

The summand H∗
cusp(YΓ ;M ) of (16) is called the cuspidal cohomology ;

this is the subspace of classes represented by cuspidal automorphic forms.
The remaining summands constitute the Eisenstein cohomology of Γ [38]. In
particular the summand indexed by {P} is constructed using Eisenstein series
attached to certain cuspidal automorphic forms on lower rank groups; one
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should compare (16) with (4). Hence H∗
cusp(YΓ ;M ) is in some sense the most

important part of the cohomology: all the rest can be built systematically
from cuspidal cohomology on lower rank groups.5

We emphasize that the cohomological automorphic forms are a very spe-
cial subset of all the automorphic forms, and that in some sense the typical
automorphic form will not contribute to the cohomology of an arithmetic
group. For SL2/Q, for example, it is only the holomorphic modular forms
of weights ≥ 2 that appear. Neither the (real-analytic) Maass forms nor the
weight 1 holomorphic forms are cohomological.

The underlying reason comes from the infinite-dimensional representation
theory of SL2(R). We can only sketch the connection here; for more details,
including undefined terms, see [14, 30]. Any automorphic form f on SL2/Q
gives rise to an automorphic representation π. This is a certain subquotient
of L2(SL2(Q)\SL2(AQ)), where AQ is the adele ring of Q. The representation
π factors as a restricted tensor product of local representations

π∞ ⊗
⊗

p prime

πp.

The factor π∞ is a unitary representation of SL2(R). Apart from the trivial
representation, the irreducible unitary representations of SL2(R) come in four
families:

1. The principal series.
2. The discrete series.
3. The limits of discrete series.
4. The complementary series.

Which of these occur as π∞ depends on what f is. If f is a Maass form, then
π∞ is principal series. If f is holomorphic, then π∞ is either discrete series
(k ≥ 2) or a limit of discrete series (k = 1). The complementary series do not
appear as π∞. Only the discrete series are cohomological, which is why we
only see holomorphic modular forms of weights ≥ 2 is the cohomology of the
modular curves.

Since many—indeed most—automorphic forms are not cohomological, why
do we study cohomological forms? Here is one answer. Our ultimate goal is
not to study automorphic forms for their own sake, but instead to pursue links
between automorphic forms and arithmetic. The standard example occurs in
every course on modular forms: the mysterious connection between counting
points on elliptic curves over prime fields and computing Hecke eigenvalues of
weight two holomorphic cusp forms. In general one expects that certain auto-
morphic forms on a reductive group G should have connections to arithmetic
geometry (Galois representations). These connections are revealed through

5 In fact the cuspidal cohomology can itself come from groups of lower rank, through
functorial liftings. The paper [6] contains evidence of cohomological lifts of paramodular
forms on Sp4/Q to SL4/Q.
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the Hecke eigenvalues. The cohomology of arithmetic groups gives us a way
to get our hands on some automorphic forms, and these forms are among
those predicted to be related to arithmetic. Some forms we’d like to see will
be missing (e.g. weight 1 holomorphic forms), but in any event the cohomo-
logical automorphic forms are a natural and tractable class to investigate.

6 Reduction theory I: the rational numbers

At this point we have found our analogues of the modular curves, the locally
symmetric spaces. We need to compute their cohomology. As everyone learns
in algebraic topology courses, to compute cohomology one needs a cochain
complex, and a first step to finding this is forming a cell decomposition of
the underlying space. For the spaces Y (N), X(N), this can be done using the
Farey tessellation of the upper halfplane. In fact, since the Farey tessellation
is SL2(Z)-invariant, it leads to a nice triangulation of the quotient by any
finite-index torsionfree subgroup of SL2(Z). Even if a subgroup has torsion,
as Γ0(N) typically does, one can still use the Farey tessellation to compute
cohomology. One can take the barycentric subdivision, or can work with
more sophisticated techniques that incorporate the torsion (cf. §8). Thus, for
modular curves, one has a powerful tool to compute cohomology.

Unfortunately, for general locally symmetric spaces Γ\D the situation is
not as nice. In fact we don’t know a good way to construct Γ -invariant
subdivisions of D for an arbitrary symmetric space! But all is not lost: we
have one general tool, a tool that works in the important case of GLn over
number fields. The construction has its origin in Voronoi’s work on reduction
theory for positive-definite quadratic forms [68], which we discuss in this
section as a warm-up. We treat the case of general number fields in §7.

Let us reconsider the setting of §§2–3 and show a different way to build
the Farey tessellation. Let V = Sym2(R) be the three-dimensional vector
space of 2 × 2 real symmetric matrices. Inside V we have the subset C of
positive-definite matrices. The set C is a convex cone: if x ∈ C then so is ρx
for any ρ ∈ R>0, and if x, y ∈ C so is x+ y. The vector space V comes with
an inner product

〈x, y〉 = Trace(xy), (17)

and C is self-adjoint with respect to this product, namely

C = C∗ = {y ∈ V | 〈x, y〉 > 0 for all x ∈ V }.

The group G = SL2(R) acts on V by (g, x) 7→ gxgt, and this action preserves
C. The stabilizer of any point is a conjugate of K = SO(2). The G-action
is not transitive, so we can’t identify C with G/K = H, but the action is
transitive after we mod out C by homotheties. This leads to an identification
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C/R>0
∼−−−→ H, (18)

which is compatible with the action of SL2(Z) on both sides. The cone C is
an example of a real self-adjoint homogeneous cone [26]. Figure 2 shows C,
where we have used the coordinates ( x z

z y ). The cone is determined by the
inequalities xy− z2 > 0, x > 0. We have also indicated a few forms in C and
its closure.

x

y

z

(

4 0

0 0

)

(

2 0

0 2

)

(

2 2

2 2

)

Fig. 2 The cone of positive definite binary quadratic forms. The ellipse is the slice of
constant trace 4.

Now consider the closure C̄ of C. This consists of certain rank 1 symmetric
matrices, as well as the unique rank 0 symmetric matrix. Consider the lattice
Z2, which we write as column vectors. We have a map q : Z2 → C̄ given by
q(x) = xxt. Restricting q to Z2r{0}, we obtain a collection of nonzero points
Ξ in the boundary ∂C = C̄ r C. The image is discrete since it lies in the
lattice of integral symmetric matrices. Furthermore the action of SL2(Z) on
V induces an action on these points. As we shall see, the points Ξ are almost
exactly the vertices of the Farey tessellation.

What makes (18) so useful is that C gives a linear model of H, apart
from the mild complication of the homotheties. In particular, given the linear
structure and convexity of C and the collection of points Ξ, the geometer’s
next step is irresistible: take the convex hull Π of Ξ. The result is a huge
polyhedron equipped with an action of SL2(Z). Of course, there is no reason
a priori that Π is a nice object, or is even computable in any reasonable
sense.

Fortunately for us, this is not the case. The polyhedron Π is very nice,
with a beautiful combinatorial structure. It has the deficiency of not being
locally finite (each vertex meets infinitely many edges), but its facets (top-
dimensional proper faces) are finite polytopes, in fact triangles. Moreover,
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after modding out by homotheties and applying (18), the proper faces of
Π become the vertices, arcs, and triangles of the Farey tessellation. The
connection can be understood as in §3. Suppose (a, b)t and (c, d)t are primitive
vectors giving cusps at the endpoints of an arc in T . Then this arc is exactly
the image of the edge of Π between q(a, b) and q(c, d). Note how useful the
homotheties are in (18). The map q “lifts” the nonzero integral points (a, b)t,
primitive or not, up along ∂C (cf. Figure 3). When forming Π by taking the
convex hull, we group the lifts nontrivially into the faces of Π. The projection
back down to C̄/R>0

∼−→ H ∪ P1(R) then recovers the Farey triangles. From
this many properties of Π become clear:

• Modulo the action of SL2(Z), there are only finitely many vertices, edges,
and triangles in Π.

• Every edge meets finitely many triangles (namely two), but every vertex
meets infinitely many edges. Thus the polyhedron fails to be locally finite,
but only “at infinity.”

q(e1) q(e2)

q(e1 + e2)

q(e1 − e2)

q(2e1 + e2)

q(2e1 − e2)

q(e1 + 2e2)

q(e1 − 2e2)

Fig. 3 A few facets of the Voronoi polyhedron Π for SL2(Z).

Now we turn to higher rank. Let n ≥ 2, let V be Symn(R), the real vector
space of n×n symmetric matrices. Let C ⊂ V be the convex cone of positive
definite matrices. Everything we did before goes through without trouble.
Again the group G = SLn(R) acts on C by (g, x) 7→ gxgt. The quotient of
C by homotheties is isomorphic to the symmetric space D = SLn(R)/SO(n),
where G acts on D by left translations. We have a map q : Zn r {0} → C̄
determining a point set Ξ ⊂ ∂C. The convex hull of Ξ is a polyhedron Π,
called the Voronoi polyhedron. By construction SLn(Z) acts on Π. The cones
on the faces of Π descend to form cells in D̄, where the latter is a certain
natural compactification of D.

Voronoi defined and studied Π because he was interested in the reduction
theory of positive-definite quadratic forms, which essentially boils down to
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finding a nice fundamental domain of SLn(Z) acting on C. To explain his
results we need the concept of a perfect form. A recent treatment of Voronoi’s
work can be found in [54, Chapter 3].

Let A ∈ C, and let QA be the corresponding positive-definite quadratic
form. Given a point x ∈ Rn, regarded as a column vector, we can evaluate
QA on it in a variety of ways:

QA(x) =
∑

i,j

Aijxixj = xtAx = 〈xxt, A〉.

Thus if x ∈ Zn, then the inner product 〈q(x), A〉 gives the value of QA on the
lattice point x. The minimum m(A) of QA is by definition the minimum of
〈q(x), A〉 as x ranges over all points in Zn r {0}. The set M(A) of minimal
vectors is the subset of Zn on which the minimum is attained. A quadratic
form is called perfect if it can be reconstructed from the knowledge of its
minimum and its minimal vectors. For instance, the binary quadratic form
x2 + xy + y2 is perfect, whereas x2 + y2 is not. Whether or not a form is
perfect is unchanged under homothety.

Voronoi proved that modulo SLn(Z), the polyhedron Π has finitely many
faces. He also proved that the facets of Π are in bijection with the homothety
classes of perfect quadratic forms. Under this bijection, if F is a facet of Π
with vertices ξ1, . . . , ξk, then the inverse images of the ξi in Zn are the minimal
vectors of a form in the corresponding class.

He even gave an algorithm that, starting with an initial perfect form, pro-
duces a list of perfect forms modulo SLn(Z), and used it to compute perfect
forms for n ≤ 5. Today we have a good understanding of the combinatorics of
Π up to n = 7. For n = 8 we know the SL8(Z)-orbits of the facets of Π, but
a notorious bugaboo living in dimension 8 challenges further progress: the E8

root lattice [22]. This lattice gives rise to a perfect form whose corresponding
facet of Π contains more that 2.5× 1014 maximal faces!

Voronoi’s algorithm produces, as a by-product, an explicit reduction theory
for C. Consider the collection of cones Σ in C̄ obtained by taking the cones
on the faces of Π. Modulo SLn(Z) there are only finitely many cones in Σ,
and one can prove that if a cone meets C then its stabilizer in SLn(Z) is finite.
Thus the top dimensional cones in Σ are very close to fundamental domains
of SLn(Z); we saw this already for n = 2, where each Farey triangle was a
union of three fundamental domains of SL2(Z). In particular, if Γ ⊂ SLn(Z) is
torsionfree, then one can make a fundamental domain for Γ by taking a union
of finitely many closed top-dimensional cones in Σ. In any case, whether Γ
has torsion or not, one can show that any point x ∈ C lies in a unique cone
σ(x) ∈ Σ. It turns out that Voronoi’s algorithm to enumerate perfect forms
leads to an algorithm that finds σ(x).
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7 Reduction theory II: general number fields

Voronoi’s theory is fantastic for the rational numbers, but what about other
number fields? The good news is that we have tools for explicit reduction
theory there as well, thanks to work of Ash [2] and Koecher [41]. The former
was developed in the context of compactifying hermitian locally symmetric
spaces [1], and is in some ways more similar to Voronoi’s original theory. The
latter sacrifices some of the structure of the former, but has the advantage
that it works over any number field: it can be Galois or not, CM or not,
totally real or not, and so on.

Let F/Q be a number field of degree d = r+2s, where F⊗R ≃ Rr×Cs. Let
O = OF be the ring of integers of F . Our goal is to compute the cohomology
of GLn(O) and its congruence subgroups by building cell decompositions of
locally symmetric spaces as in §6. It turns out that this can be done in a
straightforward way. There are just a few differences from the rational case.

First we need a vector space and a cone. The field F has r real embed-
dings and s complex conjugate pairs of complex embeddings. For each pair
of complex conjugate embeddings, choose and fix one. We can then identify
the infinite places of F with its real embeddings and our choice of complex
embeddings. For each infinite place v of F , let Vv be the real vector space of
n×n real symmetric (respectively, of complex Hermitian) matrices Symn(R)
(resp., Hermn(C)) if v is real (resp., complex). Let Cv be the corresponding
cone of positive definite (resp., positive Hermitian) forms. Put V =

∏

v Vv

and C =
∏

v Cv, where the products are taken over the infinite places of F .
We equip V with the inner product

〈x, y〉 =
∑

v

cv Trace(xvyv), (19)

where the sum is taken over the infinite places of F , and cv equals 1 for v
real and 2 for v complex. Once again, the cone C is self-adjoint with respect
to this inner product.

Koecher calls C a positivity domain; one can regard it as the cone of real-
valued positive quadratic forms over F in n-variables. Specifically, if A ∈ C
is a tuple (Av), then A determines a quadratic form QA on Fn by

QA(x) =
∑

cvx
∗
vAvxv,

where cv is defined in (19) and ∗ denotes transpose if v is real, and conjugate
transpose if v is complex. Such forms are sometimes called Humbert forms
in the literature. Note that we do not require that (Av) arises from a matrix
with entries in F via the embedding F → F ⊗ R. Instead each Av is an
independent matrix in its Cv.

6

6 Although this construction sounds strange, we shall see that it is a reasonable notion
of forms over F . Not every quadratic form of interest comes from a matrix A that is the
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The group G = GLn(R)
r ×GLn(C)

s acts on V by

(g · y)v =

{

gvyvg
t
v v real,

gvyv ḡ
t
v v complex.

This action preserves C, and exhibits G as the full automorphism group of
C. In fact, we can identify the quotient C/R≥0 of C by homotheties with
the globally symmetric space D = G/KAG, where K ≃ O(n)r × U(n)s is a
maximal compact subgroup of G and AG is the split component, cf. §4.

Now we construct a subset Ξ ⊂ ∂C̄. We can do almost exactly what we
did before; we just have to take the different embeddings of F into account.
In particular, the nonzero (column) vectors On r {0} determine points in V
via

q : x 7−→ (xvx
∗
v). (20)

We have q(x) ∈ ∂C for all x ∈ On, and we define

Ξ =
{

q(x)
∣

∣ x ∈ O
n r {0}

}

.

These points play the same role for the forms in C that the lattice points
did for positive-definite quadratic forms in §6. In particular, they lead to a
notion of perfection. Given A ∈ C we define its minimum to be

m(A) = inf
ξ∈Ξ

〈ξ, A〉

and its minimal vectors by

M(A) = {ξ ∈ Ξ | 〈ξ, A〉 = m(A)} .

A form is called perfect if it can be recovered from the knowledge of m(A)
and M(A).

With this set up, Koecher proves that perfect forms exist, and that every
perfect form has finitely many minimal vectors. Given a perfect form A, let
σ(A) ⊂ C̄ be the cone

σ(A) =
{

∑

ρξξ
∣

∣ ξ ∈ M(A), ρξ ≥ 0
}

.

Koecher calls σ(A) a perfect pyramid, and proves that they behave almost
identically to Voronoi’s perfect cones:

1. Any compact subset of C meets only finitely many perfect pyramids.
2. Two different perfect pyramids have no interior point in common.

image of a matrix from F under the embeddings; in particular the perfect forms defined
in this section usually do not come from a matrix over F .



Lectures on computing cohomology of arithmetic groups 21

3. Given any perfect pyramid σ, there are only finitely many perfect pyramids
σ′ such that σ ∩ σ′ contains a point of C (which, by item (2), must lie on
the boundaries of σ, σ′).

4. The intersection of any two perfect pyramids is a common face of each.
5. Let σ be a perfect pyramid a τ and codimension one face of σ. If τ meets

C, then there is another perfect pyramid σ′ such that σ ∩ σ′ = τ .
6. We have

⋃

σ∈Σ σ ∩ C = C.

Now we bring our discrete group into the picture. The group GLn(O) acts
on C and takes Ξ into itself. It clearly acts on the set of perfect pyramids
and thus on the cones in Σ. Koecher proves that there are finitely many
GLn(O)-orbits in Σ, and that each σ ∈ Σ that meets C has at worst a
finite stabilizer. Quotienting the entire picture out by homotheties, we wind
up with a picture exactly analogous to the Farey tessellation of the upper
halfplane, and we can use the resulting decomposition of the symmetric space
D to compute cohomology of finite-index subgroups of GLn(O).

We conclude this discussion with two points. First, it is essential that we
use GLn instead of SLn. To pass from C to the SL-symmetric space DSL, we
would need to divide each factor Cv by R>0, not just the product. In fact,
one passes from DGL to DSL by dividing out by the group of real points of
the unit group. This kills the flat factor (and explains why it has the same
dimension as the rank of O×). But we only know how to do the explicit
reduction theory for the full cone C, and so we have to keep the flat factor.
Second, when F = Q, we can construct the cones in Σ by taking cones on
the faces of the Voronoi polyhedron Π. For general F , we can define the
Koecher polyhedron to be the convex hull of Ξ. It’s not hard to see that any
perfect form gives rise to a facet of Π, but the converse is not clear. One
needs to know that the perfect pyramids have no dead ends (cf. [23, §3]).
More discussion can be found in [36, §2].

8 The cohomological dimension and spines

In §7 we explained how to find the analogues of the Farey tessellations for
GLn over number fields. In this section we want to explain how to use them
to compute cohomology.

Let Γ be an arithmetic group in a reductive Q-group G. Assume for the
moment that Γ is torsionfree. Let D = G/KAG be the global symmetric
space, and let YΓ be the locally symmetric space Γ\D. Let M be a Z[Γ ]-
module and let M be the associated local system on YΓ . Then the coho-
mological dimension of Γ is defined to be the smallest integer ν such that
Hi(YΓ ;M ) = 0 for all M [56, §1.2]. We extend this to Γ with torsion by
defining the virtual cohomological dimension vcd(Γ ) to be the cohomological
dimension of any finite-index torsionfree subgroup of Γ [56, §1.8]. One can
show that this is well-defined.



22 Paul E. Gunnells

It turns out that one can compute the virtual cohomological dimension
for any arithmetic group. By a result of Borel–Serre [10, Theorem 11.4.4], we
have

vcd(Γ ) = dim(D)− rQ(G/R(G)), (21)

where R(G) is the radical. In general this is less than the dimension of D,
which is the same as the dimension of YΓ . For instance, if G = SL2/Q, then
D = H, which has (real) dimension 2, and rQ(G) = 1 (the radical is trivial
since G is semisimple). Thus the cohomology of the open modular curve Γ\H
vanishes in degrees > 1. For G = RF/QGLn, where F ⊗ R ≃ Rr × Cs, we
have

dim(D) = r · n(n+ 1)

2
+ s · n2 − 1, rQ(G/R(G)) = n− 1.

For some examples of these numbers, see Table 1 on page 40.
For our main groups of interest, there is way to understand geometrically

why vcd(Γ ) should be given by (21). We first consider the simplest case:
G = SL2/Q. Consider the Farey tessellation of H. Inside the tessellation
one can find a regular 3-tree W that’s dual to the tessellation (Figure 4).
The vertices of W lie at the SL2(Z)-translates of ω = e2πi/3, and the edges
meet the edges of the Farey tessellation at the SL2(Z)-translates of i. The
tree, like the tessellation, is an SL2(Z)-equivariant collection of cells, but
it has an advantage over the tessellation: modulo any finite index subgroup
Γ ⊂ SL2(Z), the tree is compact. For instance, if one takes Γ = Γ (N) for N =
3, 4, 5 and computes Γ\W , the result is once again very familiar (cf. [52]).

Fig. 4 The retract inside H.

But there is still more: not only is W modulo Γ compact, it is actually
an SL2(Z)-equivariant deformation retract of H. In other words, there is a
continuous map r : H → W that is SL2(Z)-equivariant and is the identity
when restricted to W . This means

H∗(YΓ ;M )
∼−→ H∗(Γ\W ;M )

for any finite-index subgroup Γ . Since Γ\W is compact and of lower dimen-
sion than YΓ , it is easier to work with.
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This motivates the following definition. Let D be a symmetric space acted
on by an arithmetic group Γ . We say that a subspace W ⊂ D is a spine for
Γ if the following hold:

1. There is a Γ -equivariant deformation retraction of D onto W .
2. W is a locally finite regular cell complex of dimension vcd(Γ ).
3. Γ acts on W with finite stabilizers, and modulo Γ there are only finitely

many cells in W .

Spines are only known for a few symmetric spaces, and almost all of those
are some form of GLn. For GL2/Q the existence of a spine is classical. For
GLn/Q, n ≥ 3, spines were constructed by Ash, Soulé, and Lannes–Soulé
[2, 3, 59]. For GL2/F when F is imaginary quadratic, spines were built by
Mendoza [49], Flöge [27], and Vogtmann [66]. The most general construction
along these lines is due to Ash, and is known as the well-rounded retract [3].
It treats G such that G(Q) = GLn(A), where A is a division algebra over
Q. This includes RF/QGLn. Outside of these cases, spines are only known
sporadically. Yasaki proved a spine exists when G has Q-rank one and gave
complete details for SU(2, 1) over Q(

√
−1) [69, 70]. McConnell–MacPherson

[46,47] constructed a spine for Sp4/Q.
Ash’s construction [3] provides a spine for RF/QGLn; in fact he builds an

(h−1)-parameter family of spines, where h is the class number of O. For our
purposes we prefer to follow an idea in Ash’s earlier paper [2], which gives a
spine beginning from a Koecher-like decomposition. This has the advantage
that the resulting spine is clearly dual to the cones in Koecher fan, just like
the tree is dual to the Farey tessellation. We only sketch the construction
here, and leave the details to the reader.

Consider the 1-dimensional cones in the Koecher fan Σ. Each contains a
distinguished point, namely the first point in Ξ that lies on it. We call this
point a spanning point of the 1-cone, and thus for any cone in Σ we can
speak of its spanning points. Using the spanning points, we can form the
barycentric subdivision of the cones in Σ to make a new fan Σ̃. Note that
GLn(O) acts on Σ̃.

The fan Σ has the property that any cone of dimension n − 1 cannot
meet C, i.e. such cones lie in ∂C. We define a subcone W ′ ⊂ C by taking
the union of all cones in Σ̃ that are contained entirely in C. We claim that
W = W ′/R>0 gives the spine in D.

Figure 5 illustrates this for SL2/Q, after we’ve modded out by homotheties;
thus this represents a “cross-section” of what’s happening in the cone C. The
triangle on the left is taken from the Farey tessellation and has vertices at
infinity. The triangle in the middle has been barycentrically subdivided. The
heavy lines in the triangle on the right are pieces of the retract W . Note
that the edges in the spine are actually unions of cells from the barycentric
subdivision. This is what happens in general: the cells in W will be glued
together from cells arising from Σ̃ mod homotheties.
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Fig. 5 Subdividing the Farey tessellation to make a spine.

From this construction it is not hard to see that W meets all the criteria
to be a spine. For instance, the retraction is done piecewise-linearly, simply
by appropriately projecting within each cone in Σ̃ (cf. [2, §3]). The stabilizer
of a cell in W is the same as the stabilizer of the dual cone in Σ. These
stabilizers are finite, since the dual cones meet C.

We end this section with a few words about how one can useW to compute
the cohomology of YΓ . If Γ is torsionfree, there is not much to say. One
simply takes the regular cell complex Γ\W and proceeds as usual in algebraic
topology courses. But if Γ has torsion, as most of the Γ do that we care about,
the situation is more complicated. We can’t simply divide out by the action
of Γ , since there can be nontrivial stabilizer subgroups.

One solution to this dilemma would be to pass to the barycentric subdi-
vision W̃ of W . It’s not hard to see that all Γ -stabilizers in W̃ are trivial
for any Γ , so Γ\W̃ is a regular cell complex. But this is not always such a
useful path to take. The number of Γ -orbits in W̃ , for instance, will be much
greater than the number in W . It’s also less clear how to use W̃ to compute
the action of the Hecke operators on the cohomology, cf. §11.

Another solution is to compute the equivariant cohomology H∗
Γ (W,M ).

This is a ramped-up version of cohomology that takes into account the stabi-
lizers. Usually when a group acts on a space, the equivariant cohomology com-
putes different information from the cohomology of the quotient, but we’re
lucky in this case: we have an isomorphism H∗

Γ (W ;M ) ≃ H∗(Γ\W ;M ).
In particular, we have H∗

Γ (W ;C) ≃ H∗(Γ\W ;C). To prove this one uses a
spectral sequence relating the two cohomology theories; for more information
see [13, Chapter VII] (in the language of homology) or [5, §3]. What makes
everything work is that (1) the stabilizers on W are finite and (2) the lo-
cal systems we consider come from complex representations of our discrete
group. In particular, the orders of the stabilizers are invertible in the ring
over which the coefficient modules are defined.

The paper [5] explains in great detail how to compute the boundary maps
one needs to compute H∗

Γ (W ;C). Another presentation can be found in [24].
The amazing fact is that, after all the dust settles, the boundary map is
essentially what one would make from the Koecher fan! In other words, there
is a natural chain complex one could build from the cones in Σ. One simply
takes the free abelian groups generated on the oriented cones that meet C,
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and then the boundary map is induced from passing from a cone to the
codimension one cones on its boundary. This gives a chain complex that
mod Γ computes the cohomology of YΓ , at least if Γ is torsionfree. If Γ
has torsion, then the boundary maps must include information about the
stabilizers in its definition and things get more complicated (cf. [5]); otherwise
the construction is the same. The indexing in this scheme is very pleasant:
the cones of codimension k in Σ induce the chain group that captures Hk.

9 Hecke operators and modular symbols

It is now time to talk about Hecke operators. They are a collection of linear
maps on the cohomology, and their eigenvalues reveal the arithmetic lurking
in the cohomology.

We fix a reductive group G and an arithmetic group Γ . The symmetric
space (resp., locally symmetric space) is denoted D (resp., YΓ ) as usual.
Let g ∈ G have the property that Γ and g−1Γg have finite index in Γ ′ =
Γ ∩ g−1Γg. We get a diagram

Γ ′\D
t

##
GGGGGGGG

s

{{wwwwwwww

Γ\D Γ\D

, (22)

where the map t is the composition of Γ\D → g−1Γg\D with the diffeomor-
phism g−1Γg\D → Γ\D given by multiplication on the left by g:

g−1Γgx 7−→ Γgx.

The diagram (22) is called aHecke correspondence. The condition on g ensures
that s, t are finite-to-one maps.

The diagram (22) induces a map on cohomology, namely

t∗s
∗ : H∗(YΓ ;M ) → H∗(YΓ ;M ). (23)

The map s∗ is just the usual map s induces on cohomology, but t∗ only
makes sense because t has finite fibers. This kind of map is sometimes called a
“wrong-way” map. It can be built using integration over the fibers, if one uses
de Rham cohomology [11], or via the transfer map in group cohomology [13,
III.9]. The map (23) is called an Hecke operator and is denoted Tg. For
instance if one takes G = SL2/Q and g =

(

1 0
0 p

)

, one gets the classical
operator Tp.

The Hecke operators satisfy many properties. For instance, the correspon-
dence and the operator depend only on the double coset ΓgΓ . The operators
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form an algebra by composition. Given any g as above, we can write

ΓgΓ =
⊔

h∈Ω

Γh, (24)

where the Ω is a finite set (i.e., the double coset ΓgΓ is a finite union of
single cosets). Thus the diagram (22) can be thought of as a “multi-valued
function” on YΓ :

7 we have

Γx 7−→ {Γhx}h∈Ω . (25)

Many details about the Hecke operators on GLn/Q, especially the algebra
structure, can be found in [57, Chapter 3].

We are keenly interested in using topological tools to determine eigenvalues
and eigenclasses of the Hecke operators in cohomology. But unfortunately we
cannot directly use the cell decompositions we constructed in §§6–7 to achieve
this. The problem is that the Hecke correspondences do not act cellularly on
our decompositions, and so we cannot easily write the Hecke operator as a
linear map on our chain complexes. This is already visible for SL2(Z): the
Farey tessellation is not taken into itself under the “map” (25). To see this,
take g = ( 1 0

0 2 ) and consider the edge from 0 to ∞, which is colored green in
Figure 6. We have Ω = {( 1 0

0 2 ) , (
2 0
0 1 ) , (

1 1
0 2 )}. After applying (25), this edge

is taken to itself with multiplicity two and the red edge in Figure 6, which
runs from 1/2 to ∞. The red edge isn’t an edge in the tessellation.

Fig. 6 Hecke correspondences don’t preserve the tessellation.

How to deal with this problem? One solution is to simply refine the cell de-
composition to include these new edges. In fact for T2 on the upper halfplane
this is not an unreasonable approach. It’s not hard to see that essentially all
one needs to do is to add all the SL2(Z)-translates of the red edge and to take
the common refinement of them with the original Farey triangles. A similar
strategy can be applied to Tp. The problem is that this will only allow one
to compute a single Hecke operator at a time, with the geometric complexity

7 According to R. MacPherson, the great geometers of old were perfectly comfortable with
multi-valued functions and would have embraced such a perspective. It is only modern
mathematicians who have the paucity of imagination to insist that functions be single-
valued.



Lectures on computing cohomology of arithmetic groups 27

rapidly increasing as p increases. Usually one wants to be able to compute
many Hecke operators, for as many p as possible.

Another solution is to build a bigger complex with Γ -action that also
computes H∗(YΓ ) but has the additional property of admitting a Hecke ac-
tion. Such a complex can’t possibly be finite modulo Γ , so a priori is not
computationally useful.

The example of SL2/Q is instructive. We recall from §3 how we used the
Farey triangulation to compute cohomology. There we took a congruence
subgroup Γ ⊂ SL2(Z) and let XΓ be the compactified modular curve. The
chain complex built from the Farey tessellation allowed us to compute the
relative homology H1(XΓ , ∂XΓ ;C). We now need to add edges to this trian-
gulation to account for the Hecke images. A little experimentation with (25)
quickly convinces one that one needs to add the images (under the projection
H∗ → XΓ ) of all geodesics in H∗ from cusp to cusp, if one wants to include
all possible Hecke images of Farey edges. This is now a huge collection of
geodesics. It’s clearly not Γ -finite, since the absolute value of the determi-
nant of a pair of cusps is preserved by Γ (cf. (7)). Nevertheless, we’ll see that
this is a good idea.

Thus one is naturally led to a new model for H1(XΓ , ∂XΓ ;C). One con-
siders the C-vector space U generated by symbols u = [x1, x2], where each
xi is a cusp. We think of the symbol u as corresponding to the class in
H1(H

∗, ∂H∗;C) of the oriented geodesic from x1 to x2. As such, these sym-
bols have to satisfy some obvious relations. For instance, [x2, x1] = −[x1, x2],
since the geodesics have opposite orientations. Certainly [x1, x1] = 0, since
the geodesic is a point. The most complicated one is the three-term relation,
which says

[x1, x2] + [x2, x3] + [x3, x1] = 0. (26)

This simply says that if three geodesics form the oriented boundary of a
triangle, the sum of their classes should vanish. The space U is the space
of modular symbols. It has a Γ -action since Γ acts on the cusps, and we let
UΓ be the quotient U by relations of the form u − γ · u (i.e., the space of
coinvariants.) Then UΓ is isomorphic to H1(XΓ , ∂XΓ ;C) and admits a Hecke
action: if ΓgΓ has the decomposition (24), then

Tg(u) =
∑

h∈Ω

h · u. (27)

By (6) this corresponds to a Hecke action on H1(YΓ ;C), and thus on the
weight two modular forms.

Now we connect this back to our original model for the relative H1, which
came from the Farey tessellation. Clearly the Farey tessellation determines
a subspace U ′ ⊂ U , the subspace generated by unimodular symbols, which
by definition are the symbols with determinant ±1 (cf. (7)). This is an eas-
ier space to work with since the space of coinvariants U ′

Γ is finite. So our
computational problem becomes the following:
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1. Start with a cycle η ∈ U ′
Γ , representing a class in H1(XΓ , ∂XΓ ;C).

2. Lift η to sum of symbols η̃ =
∑

auu and thus to an element of U ′, which
determines an element of U .

3. Now apply the Hecke operator (27) to compute Tg(η̃). Thus will lie in U
and not U ′ in general.

4. Somehow push Tg(η̃) to an equivalent element in U ′. Here “equivalent”
means that we are allowed to rewrite Tg(η̃) using the defining relations for

U , such as (26). The goal is to obtain a sum θ̃ =
∑

buu, where each u is
unimodular.

5. Then one projects θ̃ back down to U ′
Γ .

Of course step (4) is the subtle part of this process; this is where all the
action takes place. For modular symbols on SL2/Q, step (4) is done through
a version of the continued fraction algorithm and is known as Manin’s trick.
See [61, Proposition 3.11] for an exposition. Since our goal is to treat more
complicated groups, here we content ourselves with showing what happens to
the red modular symbol from Figure 6. We can push it back to the unimodular
subspace by applying one three-term relation, which writes it as the sum of
the two orange modular symbols in Figure 7.

Fig. 7 Making the red modular symbol unimodular.

10 The sharbly complex

We return toG = RF/QGLn. Our goal is to describe a complex S∗ with Hecke
action that computes H∗(YΓ ;C). This will take the place of the modular
symbols U from §9. In fact it will turn out that U is the quotient S0/∂S1,
where ∂ is the boundary map in the complex. Like the modular symbols,
this complex will be built from tuples of “cusps,” but now the cusps will be
equivalence classes of the points we used in the construction of the Koecher
fan.

Recall that for any x ∈ On r {0}, we have constructed a point q(x) ∈ C̄
(see (20)). Write x ∼ y if there exists λ ∈ R>0 such that q(x) = λq(y). Thus
x is equivalent to y if they determine the same ray in C̄. Let Ak be the set
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of formal C-linear sums of symbols u = [x1, . . . , xk+n], where each xi is in
On r {0}. Let Ck be the submodule generated by the elements

1. [xσ(1), . . . , xσ(k+n)]−sgn(σ)[x1, . . . , xk+n] for any permutation σ on (k+n)
letters,

2. [x, x2, · · · , xk+n]− [y, y2, . . . , yk+n] if x ∼ y, and
3. u if x1, · · · , xk+n are contained in a hyperplane (we say u is degenerate).

The quotient Sk = Ak/Ck is called the space of k-sharblies. We define a
boundary map ∂ : Sk+1 → Sk by linearly extending

∂[x1, · · · , xk+n] =

k+n
∑

i=1

(−1)i[x1, · · · , x̂i, . . . , xk+n], (28)

where x̂i means omit xi. The resulting complex S∗ is called the sharbly com-
plex. Note that S∗ is a homological complex—the boundary maps decrease
degrees.

For example, let G = SL2/Q. Two points x, y ∈ Z2 r {0} satisfy x ∼ y if
and only if they determine the same cusp of the upper halfplane. The defining
relations for C0, together with the additional relations obtained from the
image of ∂(S1), are exactly the relations used to build U .

The complex S∗ has a left Γ -action for any subgroup Γ ⊂ GLn(O): if
g ∈ Γ and u = [x1, . . . , xk+n], then g · u = [gx1, . . . , gxk+n]. The Γ -action
commutes with the boundary, so we can form the complex (S∗)Γ of coinvari-
ants. We claim

Hvcd(Γ )−k(YΓ ;C)
∼−−−→ Hk((S∗)Γ ).

This follows from Borel–Serre duality, as we now explain. We first need to
recall the Steinberg module.

Let V = Fn be an n-dimensional vector space over F . We build a simpli-
cial complex T , called the Tits building, from this vector space as follows.
The vertices are the proper nonzero subspaces of V . Subspaces V1, . . . , Vk+1

determines a k-simplex if they can be arranged into a flag

{0} ( V1 ( V2 ( · · · ( Vk+1 ( V.

By the Solomon–Tits theorem, T has the homotopy type of a bouquet of (n−
2)-spheres.8 In particular the reduced homology groups H̃∗(T ) are nonzero
only in degree (n− 2).

One can construct classes in H̃n−2(T ) by taking the fundamental classes
of apartments: one chooses a basis E = {v1, . . . , vn} of V and considers
all the possible flags that can be constructed from E by taking spans of
permutations of subsets. By appropriately choosing signs one obtains a class
〈v1, . . . , vn〉 ∈ H̃n−2(T ). It is known that such classes span the homology.

8 A bouquet of spheres is wedge sum of a set of spheres.
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We have an action of G(Q), and by definition, the Steinberg module Stn is
the G(Q)-module H̃n−2(T ).

For instance, suppose n = 3 and F = Q. Then the vertices of T come
in two types, namely those indexed by lines and those indexed by planes.
Two vertices are joined by an edge if one corresponds to a line and one to a
plane, and the line is contained in the plane. There are no higher-dimensional
simplices. Thus T is a graph, which certainly has the homotopy type of a
bouquet of circles. If we fix a triple of lines in Q3 only meeting at the origin,
we can determine 3 planes by taking their pairwise spans. Thus we obtain 6
different flags whose edges can be grouped together into a hexagon (Figure 8;
the white (resp., black) dots correspond to the lines (resp., planes)). The
classes of all such hexagons span H̃1(T ).

Fig. 8 A cycle in the Tits building.

Now we are ready to connect the Steinberg module to the sharbly complex.
The Borel–Serre duality theorem [10] states that for any arithmetic group
Γ ⊂ G(Q), we have

Hvcd(Γ )−k(YΓ ;C)
∼−−−→ Hk(Γ ; Stn ⊗C).

A more general result holds for the local coefficient systems M ; one simply
replaces Stn ⊗C with Stn ⊗M . Thus to compute the cohomology of Γ , we
need to take a resolution of the Steinberg module. This is what the sharbly
complex gives us. We have a map

ε : S0 −→ Stn

gotten by taking the 0-sharbly u = [x1, . . . , xn] to the class 〈x1, . . . , xn〉. It is
not hard to see that the composition ∂ ◦ ε : S1 → Stn vanishes, so we get a
map of complexes S∗ → Stn (we regard Stn as being a complex concentrated
in degree 0.) The sharbly complex itself is easily seen to be acyclic, and thus
it furnishes us with a resolution of Stn.

Hence we can use the sharbly complex to compute the cohomology
H∗(YΓ ;C). By extending the coefficients of the sharbly complex, we can even
use it to compute the cohomology with coefficients H∗(YΓ ;M ). The sharbly
complex admits an action of the Hecke operators. Suppose η ∈ (Sk)Γ is
a cycle. Then we can lift η to a k-sharbly chain η̃ =

∑

auu ∈ Sk, where
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au ∈ C and almost all coefficients are zero. If a Hecke operator T has coset
representatives Ω, as in (24), then we put

µ̃ = T (η̃) =
∑

au(h · u).

In general µ̃ will depend on our choice of Ω, but the image µ of µ̃ in (Sk)Γ
will not. Thus we can define T (η) to be µ.

At this point we find ourselves in a very similar position to that in §9.
We have a complex S∗ that allows to compute the cohomology of YΓ , a
complex that is the analogue of the modular symbols U . The only glitch is
that each Sk isn’t finite modulo Γ . This is easy to see. If u = [x1, . . . , xn]
is a 0-sharbly, we can compute how “big” it is using determinants. For any
x ∈ On r {0}, let x′ ∈ On r {0} denote the unique point such that x′ ∼ x
and q(x′) is closest to the origin in the ray through q(x). We define Size(u) =
|NF/Q det(x′

1, . . . , x
′
n)| ∈ Z>0. If is clear that Size is constant on GLn(O)-

orbits in S0, and that Size is unbounded on S0.
Hence we have an analogue of the space of modular symbols. What’s miss-

ing is the analogue of the unimodular subspace U ′. This subspace U ′ has two
characterizations: it can be defined as the space spanned by (i) determinant
one modular symbols, or (ii) modular symbols whose support is an edge in the
Farey tessellation. By coincidence these are the same condition for SL2(Z),
but this is not necessarily true in other settings. Our perspective is that the
second criterion is more robust, and works better for other groups.

Thus the decompositions we constructed in §§6–7 return to the stage.
Recall that Σ is the fan of Koecher cones in the closed cone C̄, and that
the quotient C/R>0 is a model for the symmetric space associated to G.
Recall also that we can compute the cohomology H∗(YΓ ;C) by computing
the equivariant cohomology H∗

Γ (W ;C) of the retract W dual to Σ, and that
the complex used to do this is essentially the chain complex on the Koecher
cones. Since the Koecher cones are encoded by tuples of nonzero points in
On, just as the sharblies are, it is irresistible to try to build a “Koecher”
subcomplex of S∗ corresponding to the Koecher cones. In fact this is basically
what the unimodular subspace is: it comes from the subcomplex of S0 built
from the Farey edges, i.e. the Voronoi 2-cones.

This is the idea that will eventually allow us to compute the action of the
Hecke operators on the cohomology, but implementing it is not as straight-
forward as one might hope. An immediate problem is that the Koecher cones
need not be simplicial. Hence for some Koecher cones there is not an obvious
way to build a corresponding sharbly chain.

One way to deal with this is as follows. A basis k-sharbly u = [x1, . . . , xk+n]
induces a collection of rays R>0q(x1), . . . ,R>0q(xk+n) in C̄. We say u is
reduced if there is a top-dimensional Koecher cone that contains these rays.
We say a k-sharbly chain is reduced if all its basis sharblies are reduced. Note
that a sharbly being reduced is not the same as saying that these rays span
a cone in the fan Σ, since the cones in Σ aren’t necessarily simplicial.
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Reduced sharblies are our analogue of unimodular symbols. It is clear that
the reduced sharblies form a subcomplex of S∗, since the boundary of any
reduced sharbly chain is reduced. Let R∗ be this complex. It is finite modulo
Γ , since there are only finitely many Koecher cones modulo Γ .

Thus (R∗)Γ looks like a good candidate to compute H∗(YΓ ;C), but unfor-
tunately it doesn’t work. The problem is that because the Koecher fan isn’t
simplicial, the complex (R∗)Γ could be missing some identifications neces-
sary to capture the cohomology we want. Rather than pursuing a complete
presentation, which is not necessary for our purposes, we give an example to
illustrate what’s going on.

Suppose that n = 2 and that Σ contains a 3-cone σ that is a cone on a
square; this is the simplest way Σ can fail to be non-simplicial. There are four
reduced 1-sharblies “associated” to σ, namely those corresponding the four
simplicial cones obtained by drawing the two different diagonals across the
square (Figure 9 shows a cross section). Let’s call these 1-sharblies u1, . . . ,u4.
Certainly we want to have the relation u1 + u2 = u3 + u4. If the stabilizer
of σ in Γ includes rotation by 90◦, then we can pick it up when we pass to
the coinvariants. But if we don’t have this rotation we may miss a relation
we clearly want, and YΓ might appear to have extra cohomology.

u1

u2 u3

u4

Fig. 9 Reduced 1-sharblies from a cone on a square.

There are three ways out of this problem:

1. We can ask for less by restricting ourselves to torsionfree Γ . Then we
can take each cone σ ∈ Σ and can simplicially subdivide it without
adding new rays. Since Γ is torsionfree we can perform this subdivision
Γ -equivariantly. We can define a subcomplex R′

∗ ⊂ R∗ corresponding to
these cones. Then (R′

∗)Γ is finite and computes the cohomology of YΓ .
But this possibility is rather unappealing, since our main groups of inter-
est (analogues of Γ0(N) ⊂ SL2(Z)) have torsion in general.

2. We can steel ourselves and can work with R∗. We just add all the extra
relations we need. In particular, if two unions of cones corresponding to
two sets of reduced k-sharblies form the same cone in C̄, then we pick
up a relation, exactly as Figure 9 tells us that u1 + u2 = u3 + u4. This
can be somewhat painful to work out, but there are only finitely many
possibilities to worry about, and often the stabilizers of the Koecher cones
can help.
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3. We can gamble and only compute cohomology in the degrees where the
Koecher fan is simplicial. In particular suppose we are interested in the
cohomology group Hvcd(Γ )−i. Then we want to work with k-sharblies for
k = i− 1, i, i+1. If the Koecher fan is simplicial in these dimensions, then
we can use R∗ without having to muck around with subdivisions.

The last idea sounds somewhat crazy, but it turns out to work very well
in practice: experience teaches us that in many examples the Koecher fan is
simplicial up to cones of relatively large dimension. Even better, for various
reasons we may only care about the small-dimensional cones in Σ, where Σ
is often simplicial. For instance this is what happens in the computations
described in §12. In the next section, we will try to explain this.

11 Hecke operators and sharbly reduction

In this section we finally describe how to use the sharbly complex to com-
pute the action of the Hecke operators. We will explain what happens in the
mysterious step (4). However, we must come clean at the very beginning, and
confess that we don’t actually have a proof that our techniques to compute
Hecke operators work. Nevertheless, the techniques are robust enough that
they have worked in every attempt, without fail. We frame the discussion in
a sequence of heuristics.

Before we begin, we must discuss the cuspidal range. Recall the decompo-
sition (16) from §5:

H∗(YΓ ;C) = H∗
cusp(YΓ ;C)⊕

⊕

{P}

H∗
{P}(YΓ ;C). (29)

Here we have taken cohomology with trivial coefficients. The cuspidal coho-
mology H∗

cusp is the most interesting summand from our point of view, since
it corresponds to certain cuspidal automorphic forms; these are our analogues
of the weight two holomorphic modular forms.

This decomposition only tells us that there is a summand for the cusp
forms. It doesn’t say anything about which cohomological degrees actually
contain cuspidal cohomology, so where does it live? It turns out that cuspidal
cohomology is a rather picky beast: outside of a certain interval, called the
cuspidal range, the cuspidal cohomology vanishes. One can get an estimate
for this range using the structure theory of G = G(R) [43, §2.C]. Assume
that G = RF/QSLn, so that G ≃ SLn(R)

r×SLn(C)
s, with maximal compact

subgroup K ≃ SO(n)r × SU(n)s and associated symmetric space D = G/K.
Let r(G) = rC(G) be the absolute rank of G, and let l0(G) = r(G) − r(K).
Then for any coefficient system M as before and any arithmetic group Γ , we
have

Hi
cusp(YΓ ;M ) = 0
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unless

b(Γ ) :=
1

2
(dimD − l0(G)) ≤ i ≤ 1

2
(dimD + l0(G)) =: t(Γ ). (30)

For instance, if F = Q then r(SL2(R)) is the rank of SL2(C), which is
1, and r(SO(2)) is the rank of SO(2,C), which is 1. Thus l0 = 0, and the
cuspidal cohomology occurs in degree 1 = (dimH)/2. This is why we see
the holomorphic modular forms in H1. For SL3 we have r(SL3(R)) = 2, but
r(SO(3)) = 1 (since this is the rank of SO(3,C), which has Cartan-Killing
type B1 ≃ A1). Thus l0 = 1. The space D has dimension 5, and so cuspidal
cohomology can only show up in degrees 2 ≤ i ≤ 3.

The case of F imaginary quadratic is also interesting. We have G =
SL2(C), thought of as a real Lie group, not a complex Lie group. Thus
r(SL2(C)) = 2, since G(C) is two copies of SL2(C). On the other hand
r(SU(2)) = 1, since SU(2) is the compact form of SL2(C). Hence l0 = 1, and
since dimH3 = 3, cuspidal cohomology can only occur in degrees 1 ≤ i ≤ 2.

What about the difference between G = RF/QGLn and G
′ = RF/QSLn?

The only difference in the locally symmetric spaces attached to these two
groups is that the GL-space YΓ is a torus bundle over the SL-space Y ′

Γ . One
can find a Γ ⊂ GLn(O) such that this bundle is trivial, which means (by the
Künneth theorem) that H∗(YΓ ) = H∗(T ) ⊗H∗(Y ′

Γ ), where T ≃ (S1)r+s−1.
From this it is clear that the formula (30) becomes

b(Γ ) :=
1

2
(dimD − l(G)) ≤ i ≤ 1

2
(dimD + l(G)) =: t(Γ ), (31)

where l(G) = l0(G
′(R))+r+s−1. Notice that the lower bound b(Γ ) doesn’t

change. The upper bound t(Γ ) grows, but the difference vcd(Γ )−t(Γ ) doesn’t
change. Table 1 gives some examples of these numbers.

Thus the cuspidal cohomology only occurs in a restricted range. Further-
more, if a given cusp form contributes to any cohomology group in this inter-
val, then it does so to all of them, and in an easily understood way. Therefore
if one wants to compute cuspidal cohomology, one might as well pick a single
group in the cuspidal range to study.

Now we work with k-sharbly cycles. There are two reasons we prefer to
make k as small as possible. First, in many examples the Koecher fan is
simplicial in low dimensions; thus it is easy to map the chain complex coming
from the reduction theory into the sharbly complex. Second, k-sharbly cycles
become more difficult to handle as k increases, since our main tool is to
modify k-sharbly cycles

∑

a[x1, . . . , xk+n] by fiddling with subtuples of the
xi of order n. This leads to our first heuristic:

(A)It is better to work with sharbly cycles in low degree, and thus with coho-
mology in high degree.

In fact, to date we have focussed on k-sharbly cycles when k = 0 or 1,
for the number fields F where the cuspidal cohomology contributes either to
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vcd(Γ ) or vcd(Γ )−1. Some of these cases have been previously studied using
other techniques. Indeed this prior work was extremely important to us; our
work would not have been possible without it.

11.1 0-sharblies

We begin with 0-sharblies and F = Q. Let u = [x1, . . . , xn] be a 0-sharbly.
We may assume each xi is primitive, which is equivalent to xi = x′

i. Call u
unimodular if Size(u) = 1. Unimodular 0-sharblies are reduced in the sense of
§10, since they are all equivalent to v = [e1, . . . , en] modulo GLn(Z), where
{ei} is the standard basis of Zn; the vectors ei are some of the minimal
vectors of the An perfect form. We have the following fundamental result of
Ash–Rudolph [9], which generalizes Manin’s trick to higher dimensions:

Theorem 1. [9] If Size([x1, . . . , xn]) > 1, then there exists x ∈ Zn r {0}
such that

0 ≤ Size([x, x1, . . . , x̂i, . . . , xn]) < Size([x1, . . . , xn]), (i = 1, . . . , n).

Thus Hvcd(Γ )(YΓ ;C) is spanned by unimodular 0-sharblies.

We call any integral point that can play the role of x in the theorem a reducing
point for u = [x1, . . . , xn]. The set of all reducing points for u is denoted
Redu. The proof of Theorem 1 is constructive, and gives an algorithm for
finding a reducing point for u. The algorithm is a higher-dimensional version
of continued fractions.

Theorem 1 has been applied to compute the Hecke action on H3(YΓ )
when Γ ⊂ SL3(Z) [4,62]. Variants have been used for RF/QSL2 where F is an
imaginary quadratic field with ring of integers O norm-Euclidean [17, 25, 32]
or a PID [21], and even in some cases of nontrivial class group [16,44]. These
algorithms compute the Hecke action on H2(YΓ ) for Γ ⊂ SL2(O).

Theorem 1 provides a beautiful way to reduce 0-sharblies to unimodular,
but its beauty is also its fatal flaw when one goes from Q to other number
fields: it relies on the Euclidean algorithm in an essential way. Thus the
method breaks down on fields that aren’t norm-Euclidean, in particular for
fields with nontrivial class number. Other techniques must then be tried. This
leads us to our next heuristic:

(B)Choose candidates for 0-sharblies using the geometry of Koecher fan, and
not using continued fractions.

This is based on ideas that go back to [33,34]. This idea and variations of
it have been used in [5,35,36,71]. Here’s how it works. To make the discussion
more accessible we restrict to RF/QGL2, which has Q-rank 1. A 0-sharbly u

is then a pair [x1, x2]. In the compactified symmetric space D̄ = C̄/R>0, we
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can realize u as a geodesic ϕ running from the image of q(x1) to that of q(x2).
It will meet the images of the Koecher cones in various ways, and u will be
reduced if and only if ϕ is completely contained in the image of a Koecher
cone.

We want to find a reducing point x ∈ On such that in the three-term
relation

[x1, x2] = [x1, x] + [x, x2] =: u1 + u2, (32)

the 0-sharblies u1,u2 will be closer to being reduced (for instance, we might
ask that their sizes be smaller than that of u). The idea is that the reducing
point x should be selected from the vertices of the Koecher cone containing
the center of ϕ. Here the center means the ray through the points q(x1+x2);
note that this is only well-defined since we’ve chosen specific points in the
rays R>0q(x1),R>0q(x2).

Why should an x chosen in this way be a reducing point? We must confess
that we don’t know. Geometric motivation comes from looking at the Voronoi
cones for SL2(Z). Consider Figure 10, which shows a cross-section of the cone
C. The triangles in the middle look rather large compared to the triangles on
the outside, so the center of a “balanced” 0-sharbly will tend to land there.
Any of the three points w,w′, w′′ appear to be good choices for a reducing
point, since the two 0-sharblies on the right of (32) look like they will cut
across fewer top-dimensional cones and will be closer to being reduced.

x1

x2

w

w′w′′

y

Fig. 10 Using the tessellation to find reducing points. The point y is the center, and

w,w′, w′′ are the potential reducing points.

Of course, motivation is not a proof, and sadly we don’t have a proof
that this will work. Thus we don’t know if selecting reducing points in this
way eventually allows one to write a 0-sharbly as a sum of reduced ones.
For SL2(Z), it’s not hard to engineer a geometric proof that realizes the
motivation above, but the general case is unknown. Nevertheless, the heuristic
works extremely well in practice. In fact, the 0-sharblies on the right of (32)
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tend to be much closer to being reduced than the original. We also expect
this idea to work in cases where Γ is cocompact, such as [31,51,67].

11.2 1-sharblies

Now we go to 1-sharblies. We continue to take G = RF/QGL2. We will also
assume that Γ is torsionfree to avoid some complications. We assure the
reader that these restrictions are only for convenience: we have also applied
the ideas in this subsection to groups of higher Q-rank, in particular GLn/Q,
n = 3, 4, and RF/QGL3 where F is imaginary quadratic. We have also treated
Γ with torsion. The reader curious about dealing with torsion and higher Q-
rank can consult [5, 34]. The papers [36, 37] also contain more details of this
method. Our goal here is to explain its geometry and combinatorics.

Let u = [x1, x2, x3] be a basis 1-sharbly. We call the three 0-sharblies
that appear in ∂u the submodular symbols of u. We denote the set of all
submodular symbols appearing in u by Z(u), and extend this notation to
sharbly chains in the obvious way.

Let η =
∑

auu be a 1-sharbly chain that is cycle modulo Γ . Note that
this is now a nontrivial condition, unlike for 0-sharblies. In particular, any
0-sharbly chain in S0 automatically a cycle, even without passing to (S0)Γ .
For a 1-sharbly chain to have zero boundary modulo Γ , there must be non-
trivial identifications among the submodular symbols Z(η) appearing in its
boundary.

Suppose η is not reduced. How can we reduce it? One criterion for whether
or not η is reduced involves its submodular symbols. Since we have heuris-
tics for reducing 0-sharblies, it makes sense to try to reduce η by somehow
reducing Z(η). This is in fact the approach we take, although there are two
subtleties:

1. We can try to reduce the modular symbols in Z(η) by choosing a bunch
of reducing points. But what’s the best way to do this?

2. And if we select reducing points, what are we supposed to do with them?
In other words, how do we combine the candidates and the points in η
into a new 1-sharbly cycle that is somehow better?

3. Certainly if η is reduced, then is submodular symbols are as well. Unfortu-
nately the converse is not true in general: it is possible for Z(η) to consist
entirely of reduced 0-sharblies and for η to not be reduced. What do we
do about this?

Let’s treat these one at a time. First, we should use heuristic (A) to pick
reducing points, just as we did for 0-sharblies on their own. However we have
to take more care in this case, since the submodular symbols in Z(η) are the
boundary ∂η ∈ S0, and for η to be a cycle modulo Γ we need the image
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of ∂η to vanish in (S0)Γ . This means we need to choose reducing points Γ -
equivariantly. In other words, suppose v,v′ appear in ∂u and satisfy v = γ ·v′

for some γ ∈ Γ . Then if we choose w ∈ Redv for v, we must take γw for
v
′. We also insist that we choose the best possible reducing points, in the

sense that the sizes of the resulting 0-sharblies are as small as possible (for
instance, we might want to minimize the sum of sizes).

The second issue is more interesting. Assume that all submodular symbols
of u = [x1, x2, x3] need reducing (the general case is an easy variation of this).
Choose three reducing points w1, w2, w3 using (A); we label them such that
wi goes with [xj , xk] if any only if i, j, k are distinct. We need to assemble
them into a 2-sharbly chain whose boundary contains u and some 1-sharblies
that have a chance of being closer to reduced. This gives us our next heuristic:

(C) Three points and a triangle make an octahedron.

Figure 11 illustrates what’s happening. We use the six points x1, . . . , w3 to
make an octahedron O. We can subdivide O any way we like into tetrahedra
to make a 2-sharbly chain; its boundary in S2 will be eight 1-sharblies, which
in S1 induces the relation

u = u1 + u2 + u3 − u12 − u13 − u23 + u123. (33)

In (33) the notation uS for S ⊂ {1, 2, 3} means the 1-sharbly in the boundary
that contains {wi | i ∈ S}. When we mod out by Γ , a miracle happens: (33)
becomes

u = −u12 − u13 − u23 + u123. (34)

That is, the three 1-sharblies represented by the shaded triangles in Figure 11
disappear. The reason is simple. Consider the 1-sharbly u1 = [w1, x2, x3].
Since u was part of a cycle mod Γ , there must be some 0-sharbly v

′ that
cancels v = [x2, x3] when ∂η is taken. This 0-sharbly cannot be reduced since
v isn’t, so we must have chosen a reducing point for it. Since we made these
choices Γ -equvariantly, there must be some other 1-sharbly u

′ with v
′ in its

boundary. When we build an octahedron O′ over u
′, a triangle in ∂O′ will

cancel u1 in ∂O.
Thus over η we replace each 1-sharbly with four new 1-sharblies and obtain

a new cycle η′ mod Γ . Why is η′ better than η? Consider (34). Certainly
u12,u13,u23 look better than u, since the reducing points have improved
some edges. But why is u123 better? Notice that it is built from the reducing
points. When choosing them we only look at the 0-sharblies; we don’t consider
them collectively until we package them into u123. In fact, upon reflection
it’s clear that we can’t choose the wi with the intent of making u123 good,
since we have to choose them Γ -equivariantly over the whole cycle η, and we
have no control over what this cycle looks like. All we can do is look at the
submodular symbols and pick reducing points locally, in other words without
considering what 1-sharblies contain them.
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x1x1

x2x2 x3x3

w1w1

w2w2 w3w3

Fig. 11 The 1-sharbly u and its reducing points (left) assembled into an octahedron
(middle). The shaded triangles (right) don’t appear in (S1)Γ , so u is transformed to four

new 1-sharblies.

We claim that u123 will be much closer to being reduced than u. In fact,
in practice u123 will be far better than the other 1-sharblies in (34). We have
no proof of this, but again we can provide some geometric motivation. Up
to a flat factor, the symmetric space D is of noncompact type and is thus
nonpositively curved. This means the centers of the facets of a simplex tend
to be close to the center of the simplex itself; think of what triangles look
like in the hyperbolic plane. The hyperbolic plane is not an entirely accurate
picture of what happens, since D may have high-dimensional flat subspaces
if the R-rank of G is large, but nevertheless this picture is compelling.

Thus the three reducing points for the submodular symbols of u tend to
be taken from the same Koecher cone, or at least from cones that are very
close together. Therefore the potentially bad 1-sharbly u123 = [w1, w2, w3]
tends to be very close to reduced. Since u123 has good edges, so do the other
three 1-sharblies on the right of (34). Figure 12 illustrates this principle in
the cone model of H. The reducing points wi are the vertices of two adjacent
triangles, which means u123 can’t be too bad.

x1x1

x2x2

x3x3

w1w1

w2w2

w3w3

u

u23

u13

u12

u123−−−→

Fig. 12 The transformation of Figure 11 viewed in the cone. The new 1-sharblies are
closer to being reduced.
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Finally we come to the last issue: what do we do if a 1-sharbly has reduced
edges but is not itself reduced? This phenomenon does occur, quite often in
fact, although not for G = SL2/Q. This phenomenon is an artifact of the flat
factor and reflects the presence of the unit group O×. What happens is that
we wind up with a 1-sharbly [x1, x2, x3] when we really want [ε1x1, ε2x2, ε3x3]
for some εi ∈ O× of infinite order. The fix in this case involves “subdividing
edges at infinity.” The process is similar to what we describe above, but is in
fact easier since it is an abelian analogue. For more details, we refer to [36, §7]
for an example.

dimD vcd(Γ ) t(Γ ) b(Γ )

SL2/Q 2 1 1 1
SL3/Q 5 3 3 2

SL4/Q 9 6 5 4

SL5/Q 14 10 8 6

RF0,1/Q(SL2) 3 2 2 1

RF2,0/Q(SL2) 4 3 2 2

RF2,0/Q(GL2) 5 4 3 2

RF1,1/Q(SL2) 5 4 3 2

RF1,1/Q(GL2) 6 5 4 2

RF0,2/Q(SL2) 6 5 4 2

RF0,2/Q(GL2) 7 6 5 2

Table 1 Examples of dimensions of symmetric spaces (§4), virtual cohomological di-
mensions (§8), and cuspidal ranges (§11). Fr,s means that F is a number field with
F ⊗ R ≃ Rr × Cs.

12 Computational examples

As proof of concept, we conclude by presenting some examples of compu-
tations done with these techniques [35, 36]. Other examples can be found
in [5–8,37]. Here we consider GL2 over two number fields:

• F1 is the quartic field Q(ζ), where ζ is a primitive fifth root of unity. Thus
F1 ≃ Q[x]/(x4 + x3 + x2 + x + 1). F1 has discriminant 53, is Galois with
Galois group isomorphic to Z/4Z, and is a CM extension of its totally real
subfield F+

1 = Q(η), η = ζ+1/ζ. The ring of integers O1 has class number
one and as a Z-module equals Z[ζ].

• F2 is the nonreal cubic field of discriminant −23. Thus F2 = Q(t) with t
a root of x3 − x2 + 1. The field F2 is not Galois over Q (obviously), and
has no subfields other than Q. The ring of integers O2 has class number
one and admits a power basis: O2 = Z[t].
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In some sense these two fields are as different as possible. F1 is highly symmet-
ric, in fact much more symmetric than a complex quartic field “deserves” to
be, since it is a cyclotomic extension. F2, on the other hand, has no symmetry
at all. But this does not mean F2 is devoid of charm. For example, it is the first
cubic field in databases of such fields ordered by absolute value of discrimi-
nant. Its Galois closure is the Hilbert class field of Q(

√
−23), which means

F2 often appears in algebraic number theory courses as an appealing exam-
ple. The field F2 is the invariant trace field of the Weeks–Mateo’s–Fomenko
manifold, which is the contender for the orientable hyperbolic 3-manifold of
minimal volume [45]. This field even appears in architecture and design: the
unique real root of x3 − x − 1, which lives in F2, is known in some circles
as the plastic number, and apparently functions as a generalization of the
golden ratio [50]

The focus of the papers [35, 36] is testing the relationship between auto-
morphic forms on GL2 and elliptic curves. In particular, we wanted to test
whether elliptic curves over these number fields were modular, in the weakest
possible sense that still has content: matching of partial L-functions on both
sides, at least as far as we could compute. We recall what this means.

Let F be a number field with ring of integers O. Let E be an elliptic curve
defined over F with conductor n ⊂ O. Given any prime p not dividing n, one
defines an integer ap(E) by

ap(E) = N(p) + 1−Np. (35)

Here N(p) is the cardinality of the residue field Fp = O/p, and Np is the num-
ber of points E has in Fp. These numbers can be assembled into a (partial)
L-function L(s,E) by making an Euler product

L(s,E) =
∏

p∤n

1

1− ap(E)N(p)−s +N(p)1−2s
. (36)

The product (36) can be completed with certain local factors at the “bad
primes”—those p that divide n—and with Gamma factors for the archimedian
places of F , so that the resulting L-function has a functional equation of the
form s 7→ 2−s and has analytic continuation to the complex plane. For more
details, see [58].

On the automorphic side, let f be an cuspidal automorphic form on
GL2/F , also of conductor n. Assume f is an eigenform for the Hecke op-
erators. Then f produces a collection of eigenvalues ap(f), one for each for
each prime p not dividing n, and we can make an L-function L(s, f) using
(36), with ap(E) replaced with ap(f).

Now a modularity result predicts, at the lowest level, that there should be
a tight relationship between the L-functions constructed from elliptic curves
and modular forms. In particular, given E, one hopes to find f such that
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L(s,E) = L(s, f). (37)

In particular one should have ap(f) = ap(E) for all p ∤ n. We say f is attached
to E if (37) is true. Conversely, given a cuspidal automorphic form with
rational Hecke eigenvalues, one expects to find an elliptic curve attached to
it in this sense, with matching conductor. This is motivated by what happens
when F = Q. In this case, thanks to work of many people, we know that this
is true. Hence one might hope the same phenomenon happens over general
number fields, or at least might check the extent to which it does. As it turns
out, there are some subtleties; we indicate some below.

The papers [35, 36] test this relationship in the following way. First we
generate a small database of elliptic curves over F in the most ingenuous
way: we search over a family of Weierstrass equations

y2 + a1xy + a3 = x3 + a2x
2 + a4x+ a6

by taking a1, a2, a3, a4, a6 in some bounded subset of O. On the automorphic
side, we look for appropriate automorphic forms by computing cohomology of
the subgroups Γ0(n) ⊂ GL2(O) using techniques described above. In particu-
lar we can use the reduction algorithm in §11 to decompose the cohomology
into eigenspaces for the Hecke operators Tp for a range of primes p. We found
excellent agreement between the arithmetic and automorphic sides:

• For each elliptic curve E with norm conductor within the range of our
cohomology computations, we found a cuspidal cohomology class with ra-
tional Hecke eigenvalues that matched the point counts for E as in (35),
for every Hecke operator that we checked.9

• For each cuspidal cohomology class with rational Hecke eigenvalues, we
found a corresponding elliptic curve whose point counts matched every
eigenvalue we computed, with just one exception: over the CM field F1,
we found an eigenclass with rational eigenvalues that corresponds to an
abelian surface over F+

1 .10

We now present more information for our specific fields.11

9 For general number fields, it is not expected that every elliptic curve should correspond to
a cusp form in this way. For instance, suppose F is complex quadratic. Then if E is defined

over F and has complex multiplication by an order in OF , then E should correspond to
an Eisenstein series, cf. [25].
10 Similar phenomena happen over complex quadratic fields [18], and can be expected to
happen over any CM field.
11 The cohomology computations in the following are simplified by the fact that F1 and
F2 each have class number 1. One can still perform these computations for fields with
higher class numbers, although it is best to work adelically. In practice this means that
one has to work with several copies of the locally symmetric spaces instead of one, each

equipped with its own Koecher decomposition. However, such complications are not always
necessary. For F imaginary quadratic with odd class number, for instance, Lingham [44]
developed a technique to work with a single connected component.
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12.1 The field F1 = Q(ζ)

The positivity domain C1 is Herm2(C)
2, which has real dimension 8. The

Koecher polyhedron and the perfect forms for F1 were determined by D. Yasaki
[72]. (For GL2 over F1 and F2, the facets of the Koecher polyhedron are in
bijection with the perfect forms.) Modulo the action of GL2(O1) there is
just one perfect form with 240 minimal vectors. Any two minimal vectors
that differ by multiplication by a torsion element of O

×
1 determine the same

vertex of the Koecher polyhedron. Thus the Koecher fan Σ1 contains one
top-dimensional cone; the corresponding facet of the Koecher polyhedron
has 24 = 240/10 vertices. One can easily compute the rest of the cones in
Σ1 modulo GL2(O1). One finds 5 GL2(O1)-classes of 7-cones, 10 classes of 6-
cones, 11 classes of 5-cones, 9 classes of 4-cones, 4 classes of 3-cones, 2 classes
of 2-cones, and 1 class of 1-cones.

The symmetric space X1 attached to G1 = RF1/QGL2 has dimension 7.
Since the derived subgroup G

′
1 has Q-rank one, the virtual cohomological

dimension is 6. By Table 1 the cuspidal cohomology occurs in degrees 3, 4, 5.
Using 1-sharblies we compute with H5(Γ ;C).12 The Koecher fan is simplicial
in dimensions 2, 3, 4, so we can identify R∗ in these degrees with a subcomplex
of S∗.

We were able to compute H5 for all levels n with N(n) ≤ 4941. For n

prime we were able to carry the computations further to N(n) ≤ 7921. We
also computed Hecke operators on H5. For all levels we were able to compute
at least up to Tq with q ⊂ O1 prime satisfying N(q) ≤ 41; at some smaller
levels we computed much further.

We found a variety of phenomena:

1. We found classes that seemed to correspond to elliptic curves defined over
F1 that were not base changes from any subfield of F1. The smallest con-
ductor we found was p with N(p) = 701. The elliptic curve had equation
(a1, a2, a3, a4, a6) = (−ζ−1, ζ2−1, 1,−ζ2, 0). Altogether we found 13 such
examples.13

2. We found classes that seemed to correspond to base changes of curves from
Q and curves/abelian surfaces from F+

1 .
3. We found “old” cohomology classes, namely eigenclasses whose eigenvalues

matched those of eigenclasses appearing at smaller level norms.
4. One eigenclass ξ at level norm 3025 deserves some extra discussion. Let

m ⊂ OF+

1

be the ideal p25p11. The space of parallel weight 2 Hilbert modular

newforms of level m contains an eigenform g with Hecke eigenvalues aq in
the field F+

1 . For any prime q ⊂ OF+ , let q ∈ Z be the prime under q.
Then we have aq(g) = 0 if q = 5, and

12 Actually, to avoid precision problems we work with the large finite field F12379 instead
of C.
13 One curve was found by Mark Watkins using the method of Cremona–Lingham [20];
see the appendix to [35].
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aq(g) ∈
{

Z if q = 1 mod 5,

Z ·
√
5 if q = 2, 3, 4 mod 5.

(38)

These conditions (38), together with the Hecke eigenvalues of g, imply
that the L-series L(s, g)L(s, g⊗ε) agrees with the L-series attached to our
eigenclass ξ, where ε is the unique quadratic character of Gal(F1/F

+
1 ).

Thus ξ has rational Hecke eigenvalues, but does not correspond to an el-
liptic curve over F1. Instead, it can be attributed to an abelian surface over
F+
1 with extra symmetry, and thus gives an example over F1 of phenomena

first seen in [18] for complex quadratic fields.

Other than item 4, we found perfect matching between elliptic curves and
cuspidal cohomology classes with rational eigenvalues.

12.2 The field F2 = Q(t)

For this field the positivity domain C2 is Sym2(R)×Herm2(C), which has real
dimension 7. Modulo the action of GL2(O2) there are nine perfect forms. Of
these, seven give simplicial cones in the Koecher fan Σ2; for the other two the
facets of the Koecher polyhedron have eight and nine vertices respectively.
14 For the rest of Σ2, one finds 35 GL2(O2)-classes of 6-cones, 47 classes of
5-cones, 31 classes of 4-cones, 10 classes of 3-cones, 2 classes of 2-cones, and
1 class of 1-cones.

The symmetric space X2 attached to G2 = RF2/QGL2 has dimension 6. As
before the derived subgroup G

′
2 has Q-rank one; the virtual cohomological di-

mension is 5. The cuspidal cohomology occurs in degrees 3, 4, and 1-sharblies
enable us to compute H4(Γ ;C).15 As before the Koecher fan is simplical in
the dimensions we care about, so in these degrees we can identify R∗ with a
subcomplex of S∗.

We computed the cohomology at 308 different levels, including all ideals
with level norm ≤ 835, and the Hecke operators:

1. As for F1, we found examples of elliptic curves over F2 that are not base
changes from Q and that are apparently attached to eigenclasses of the
appropriate levels. The first curve appears at level norm 89, and has equa-
tion (a1, a2, a3, a4, a6) = (t − 1,−t2 − 1, t2 − t, t2, 0). Altogether 43 such
curves were found in the range of our computations.

2. We found “old” cohomology classes.

14 One cannot help but notice the contrast between the highly symmetric perfect cone for
F1 and the minimally symmetric perfect cones for F2.
15 See footnote (12).
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3. We found one base change from Q to F : at level norm 529 = 232, there
is an eigenclass with eigenvalues in Q(

√
5). This class is accounted for by

the level 23 abelian surface over Q with real multiplication by Q(
√
5).
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Tokyo, 1971, Kanô Memorial Lectures, No. 1.
58. J. H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in

Mathematics, vol. 106, Springer, Dordrecht, 2009.
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