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Introduction

Cells—left, right, and two-sided—were introduced by D. Kazhdan and G. Lusztig
in their study of the representation theory of Coxeter groups and Hecke algebras
[22]. Cells are related to many disparate and deep topics in mathematics, including
singularities of Schubert varieties [23], representations of p-adic groups [24], characters
of finite groups of Lie type [25], the geometry of unipotent conjugacy classes in simple
complex algebraic groups [5,6], composition factors of Verma modules for semisimple
Lie algebras [21], representations of Lie algebras in characteristic p [19], and primitive
ideals in universal enveloping algebras [32].1

In this note we hope to present a different and often overlooked aspect of the
cells: as geometric objects in their own right, they possess an evocative and complex
beauty. We also want to draw attention to connections between cells and some ideas
from theoretical computer science.

Cells are subsets of Coxeter groups, and as such can be visualized using standard
tools from the theory of the latter. How this is done, along with some background, is
described in the next section. In the meantime we want to present a few examples,
so that the reader can quickly see how intriguing cells are.

Let p, q, r ∈ N ∪ {∞} satisfy 1/p + 1/q + 1/r ≤ 1, where we put 1/∞ = 0. Let
∆ = ∆pqr be a triangle with angles (π/p, π/q, π/r). If 1/p + 1/q + 1/r = 1, then ∆
is Euclidean, and can be drawn in R2; otherwise ∆ lives in the hyperbolic plane. In
either case, the edges of ∆ can be extended to lines, and reflections in these lines
are isometries of the underlying plane. The subgroup W = Wpqr of the group of
isometries generated by these reflections is an example of a Coxeter group. Under
the action of W , the images of ∆ become a tessellation of the plane, with tiles in
bijection with W (Figure 1). Hence we can picture cells by coloring the tiles of this
tessellation.

We thank M. Belolipetsky, W. Casselman, J. Humphreys, and E. Sommers for helpful conver-
sations. Some computations to generate the figures were done using software by W. Casselman,
F. du Cloux, and D. Holt. In particular, the basic Postscript code to draw polygons in the Poincaré
disk is due to W. Casselman, as is the photo of G. Lusztig. The author is partially supported by
the NSF.

1D. Vogan [32] also introduced cells for Weyl groups like those of Kazhdan-Lusztig.
1
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Figure 1. Generating a tessellation of the hyperbolic plane by reflec-
tions. The central white tile is repeatedly reflected in the red, green,
and blue lines.

For example, the triangle ∆236 is Euclidean, and the associated group W236 is

also known as the affine Weyl group G̃2. Figure 2 shows George Lusztig sporting a

limited edition T-shirt emblazoned with the two-sided cells of G̃2 [26], also reproduced
in Figure 3. Figure 4 shows two hyperbolic examples, the groups W237 and W23∞.
The latter group is also known as the modular group PSL2(Z). We invite the reader
to ponder how the three pictures are geometrically part of the same family.

Visualizing Coxeter groups

By definition, a Coxeter group2 W is a group generated by a finite subset S ⊂ W
where the defining relations have the form (st)ms,t = 1 for pairs of generators s, t ∈ S.
The exponents ms,t are taken from N ∪ {∞}, and we require ms,s = 1. Hence each
generator s is an involution. Two generators s, t commute if and only if ms,t = 2.

The most familiar example of a Coxeter group is the symmetric group Sn; this is
the group of all permutations of an n-element set {1, . . . , n}. We can take S to be
the set of simple transpositions si, where si is the permutation that interchanges i
and i + 1 and fixes the rest. It’s not hard to see that S generates Sn, and that the
generators satisfy (sisi+1)

3 = 1 and commute otherwise.
The triangle groups Wpqr from the introduction are also Coxeter groups, for which

the generators are reflections through the lines spanned by the edges of the fixed
triangle ∆pqr. The most important Coxeter groups are certainly the Weyl and affine
Weyl groups, which play a vital role in geometry and algebra. In fact, the symmetric
group Sn is also known to cognoscenti as the Weyl group An−1, while the three
Euclidean triangle groups W333, W234, and W236 are examples of affine Weyl groups.

2For more about Coxeter groups, we recommend [8,20].
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Figure 2. George Lusztig delivering an Aisenstadt lecture at the
CRM during the workshop Computational Lie Theory in Spring 2002.
This year marks Lusztig’s 60th birthday; a conference in his honor will
be held at MIT from May 30 to June 3, 2006.

The first step towards a geometric picture of a Coxeter group is its standard geo-
metric realization. This is a way to exhibit W as a subgroup of GL(V ), where V
is a real vector space of dimension |S|. Suppose we have a basis ∆ = {αs | s ∈ S}
of the dual space V ∗. For each t ∈ S, there is a unique point α∨

s ∈ V such that
〈αs, α

∨
t 〉 = −2 cos(π/ms,t) for all s ∈ S, where the brackets denote the canonical

pairing between V ∗ and V . Each αs determines a hyperplane Hs, namely the sub-
space of V on which αs vanishes. For each s, let σs ∈ GL(V ) be the linear map
σs(v) = v−〈αs, v〉α

∨
s . Note that σs fixes Hs and takes α∨

s to −α∨
s (Figure 5(a)). One

can show that the maps {σs | s ∈ S} satisfy (σsσt)
ms,t = Id, which implies that the

map s 7→ σs extends to a representation of W . It is known that this representation
is faithful, and thus we can identify W with its image in GL(V ). 3

3This construction allows us to define Weyl and affine Weyl groups. A Weyl group W is a finite
Coxeter group generated by a set S of real reflections and also preserving a certain Euclidean lattice
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Figure 3. G̃2 = W236

(a) W237 (b) W23∞

Figure 4.

Next we need the Tits cone C ⊂ V . Each hyperplane Hs divides V into two
halfspaces. We let H+

s be the closed halfspace on which αs is nonnegative. The
intersection Σ0 = ∩H+

s , where s ranges over S, is a closed simplicial cone in V . The
closure of the union of all W -translates of Σ0 is a cone C in V ; this is the Tits cone.
It is known that C = V exactly when W is finite. Usually in fact C is much less
than all of V . Hence the Tits cone gives a better picture for the action of W on V .

L in its geometric realization. The associated affine Weyl group W̃ is the extension of W by L. As

a Coxeter group W̃ is generated by S and one additional affine reflection.
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Under certain circumstances we can obtain a more succinct picture of the action
of W on C . For certain groups W it is possible to take a nice “cross-section” of
the simplicial cones tiling C to obtain a manifold M tessellated by simplices. An

example can be seen in Figure 5(b) for the affine Weyl group Ã2. This group has three
generators r, s, t, with the product of any two distinct generators having order three.
Thus V = R3, and the Tits cone C is the upper halfspace {(x, y, z) ∈ R3 | z ≥ 0}.

It turns out that the action of Ã2 preserves the affine hyperplane M := {z = 1},
and moreover the intersections of M with translates of Σ0 are equilateral triangles.

This reveals that Ã2 is none other than our triangle group W333. A similar picture
works for any affine Weyl group, except that the triangles must be replaced by higher-
dimensional simplices whose dihedral angles are determined by the exponents ms,t.

For more examples we can consider the hyperbolic triangle groups Wpqr, where
1/p+1/q+1/r < 1. In this case the Tits cone is a certain round cone in R3, and the
manifold M is one sheet of a hyperboloid (Figure 6). Then M can be identified with
the hyperbolic plane; under this identification the intersections M ∩wΣ0 become the
triangles of our tessellation.
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W -graphs and cells

There are two main ingredients needed to define cells: descent sets and Kazhdan-
Lusztig polynomials. To introduce them we require a bit more notation.

The Coxeter group (W,S) comes equipped with a length function ` : W → N∪{0},
and a partial order ≤, the Chevalley-Bruhat order. Any w ∈ W can be written
as a finite product s1 · · · sN of the generators s ∈ S. Such an expression is called
reduced if we cannot use the relations to produce a shorter expression for w. Then
the length `(w) is the length N of a reduced expression s1 · · · sN = w. The partial
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order ≤ can also be characterized via reduced expressions. Given an expression
s1 · · · sN , a subexpression is a (possibly empty) expression of the form si1 · · · siM ,
where 1 ≤ i1 < · · · < iM ≤ N . Then y ≤ w if an expression for y appears as a
subexpression of a reduced expression for w. Although it is not obvious from this
definition, this partial order is well-defined.

The left descent set L (w) ⊂ S of w ∈ W is simply the set of all generators s
such that `(sw) < `(w). There is an analogous definition for right descent set. The
definition of the Kazhdan-Lusztig polynomials, on the other hand, is too lengthy to
reproduce here, although it can be phrased in completely elementary terms. For each
pair y, w ∈ W satisfying y ≤ w, there is a Kazhdan-Lusztig polynomial Py,w ∈ Z[t].
By definition Py,y = 1; otherwise Py,w has degree at most d(y, w) := (`(w) − `(y) −
1)/2. These subtle polynomials are seemingly ubiquitous in representation theory;
they encode deep information about various algebraic structures attached to (W,S).
Moreover, computing these polynomials in practice is daunting: memory is rapidly
consumed in even the simplest examples. In any case, for our purposes we only need
to know whether or not Py,w actually attains the maximum possible degree d(y, w)
for a given pair y < w. We write y−−w if this is so; when w < y we write y−−w if
w−−y holds.

We are finally ready to define cells. The left W -graph ΓL of W is the directed
graph with vertex set W , and with an arrow from y to w if and only if y−−w and
L (y) 6⊂ L (w). The left cells are extracted from the left W -graph as follows. Given
any directed graph, we say two vertices are in the same strong connected component
if there exist directed paths from each vertex to the other. Then the left cells of W
are exactly the strong connected components of the graph ΓL . The right cells are



CELLS IN COXETER GROUPS 7

defined using the analogously constructed right W -graph ΓR , while y, w are in the
same two-sided cell if they are in the same left or right cell.

Figure 7 illustrates all the computations necessary to produce the cells for the
symmetric group S3 = 〈s, t | s2 = t2 = (st)3 = 1〉. Figure 7(a) shows S3 with
its partial order and with the left descent sets in boxes. For this group one can
compute that Py,w = 1 for all relevant pairs (y, w). Thus all the information needed
to produce ΓL is contained in the left descent sets. Figure 7(b) shows the resulting
graph ΓL , and Figure 7(c) shows the four left cells. Computing right descent sets
shows that there are three two-sided cells, with the blue and green cells forming a
single two-sided cell.

Now we can explain the coloring scheme used in Figures 3 and 4. All regions of a
given color comprise a two-sided cell. Moreover, the left cells are exactly the connected
components of the two-sided cells, in the following sense. Let us say two triangles are
adjacent if they meet in an edge. Then by definition, a set T of triangles is connected
if for any two triangles ∆,∆′ ∈ T it is possible within T to build a sequence
∆∗ = ∆1,∆2, . . . of triangles with each ∆i adjacent to ∆i+1, and such that the
sequence ∆∗ contains ∆ and ∆′. Note a significant difference between the Euclidean
group W236 and the two hyperbolic groups. For the former, each two-sided cell
contains only finitely many left cells, whereas this is not necessarily the case in general.
The latter phenomenon was first observed by R. Bédard [2], who also showed [3] that
there are infinitely many left cells for all rank 3 crystallographic hyperbolic Coxeter
groups (see the last section for the definition of crystallographic). M. Belolipetsky
proved that each Coxeter group in a certain infinite family has infinitely many left
cells [4].
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More examples

There are two families of Coxeter groups for which we have a good combinatorial

understanding of their cells: the symmetric groups Sn and the affine Weyl groups Ãn.
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For the former, left cells appear naturally in the combinatorics literature in the study
of the Robinson-Schensted correspondence. A lucid exposition of this connection can
be found in Chapter 6 of the recently published [8].

The latter is the work of J.-Y. Shi [29]. To describe some of his results, recall

that we can associate to the group Ãn a tiling of Rn by simplices. The simplices
can be further grouped into certain convex sets called sign-type regions. Figure 8(a)

shows the sixteen sign-type regions for Ã2; in general for Ãn there are nn+2 sign-type
regions. One of Shi’s main results is that each left cell is a union of sign-type regions.
Moreover, Shi also gave an explicit algorithm that allows one to determine to which
left cell a given region belongs. The algorithm requires too much notation to state
here, but it is completely elementary and involves no computation of Kazhdan-Lusztig

polynomials. Figure 8(b) shows the two-sided cells for Ã2 [26]; one can clearly see
how the regions are joined into cells.

Figures 9(a) and 9(b) depict the cells of Ã3.
4 These images were computed directly

from the data in [29, §7.3].5 In the exploded view we have omitted the red cells, which
are all simplical cones. Figure 10 shows the left cells up to congruence. All left cells
in a given two-sided cell are congruent, except for the yellow two-sided cell, which
contains two distinct types of left cells up to congruence (an S and a U).

These figures also indicate relationships between cells in different rank groups.
Perhaps the most colorful way to describe them is through the permutahedron, which
is a polytope ΠW attached to a Weyl group W as follows. Let x ∈ V be a point
in the standard geometric realization of W such that the W -orbit of x has size |W |.
Then ΠW is defined to be the closed convex hull of the points {w · x | w ∈ W}.
It turns out that the combinatorial type of ΠW is independent of the choice of x,
and moreover the structure of ΠW is easy to understand: its faces are isomorphic
to lower-rank permutahedra ΠW ′ , where W ′ ⊂ W is the subgroup generated by any
subset S ′ ⊂ S (such subgroups are called standard parabolic subgroups). For example,
the polytope underlying Figure 9(a) is the permutahedron for the symmetric group
S4. The eight hexagonal (respectively, six square) faces correspond to parabolic
subgroups isomorphic to S3 (resp., S2 ×S2).

Now the relationship between cells of affine groups of different ranks is conjectured

to be as follows. For any finite Weyl group W , let W̃ be the associated affine Weyl

group. Then the intersection of the cells of W̃ with the face of ΠW corresponding
to the standard parabolic subgroup P should produce the picture for the cells of the

affine group P̃ . This is clearly visible in Figure 9(a): the cells for Ã2 (respectively,

Ã1 × Ã1) appear when one slices the cells for Ã3 with hexagonal (resp. square)

faces of ΠA3
. Comparing the cells for C̃3 (Figure 11(b)), originally computed by R.

4To keep the pictures uncluttered, we have omitted the edges of the simplices.
5Unfortunately this data is incomplete due to a publisher error: four left cells are missing.
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Bédard [2], with the cells of C̃2 (Figure 11(a), [26]) shows another example of this.
For more along these lines see [17].

(a) Ã2 sign-type regions (b) Ã2 cells

Figure 8

(a) (b)

Figure 9. Two views of the cells of Ã3
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Figure 10. Ã3 left cells up to congruence

(a) C̃2 (b) C̃3

Figure 11

Cells and automata

Simple examples show that W -graphs can be quite complicated. However, despite
this complexity lurking in their construction, the cells themselves appear to be very
regular. In fact, for many groups one can prove that the cells can be built using
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a relatively small set of rules, rules that involve no Kazhdan-Lusztig polynomial
computations at all [13, 14].

Computer scientists have a formal way to work with this phenomenon, the theory
of regular languages and finite state automata [1]. One starts with a finite set A,
called an alphabet. Words over the alphabet are sequences of elements of A, and any
set L of words over A is called a language. Informally, a language is regular if its
words can be recognized using a finite list of finite patterns in the alphabet, patterns
that are familiar to anyone who has ever used a Unix shell (e.g., ls *.tex). A finite
state automaton F over A is a finite directed graph with edges labelled by elements of
A. The vertices of F are called states. All vertices are designated as either accepting
or nonaccepting, and one vertex is set to be the initial state.

Such an automaton determines a language over A as follows. One starts at the
initial state and follows a directed path terminating at an accepting state. Such a
path determines a word (one simply concatenates the labels of the edges along the
path to produce a word). We say that this word is recognized by the automaton.
The set of all words recognized by an automaton is hence a language over A. A basic
theorem is that a language is regular exactly when it can be recognized by a finite
state automaton.

For a Coxeter group W , the alphabet is the set of generators S, and the language
is the set ReducedW of all reduced expressions. By a result of B. Brink and R.
Howlett [10], the language ReducedW is regular. Any left cell C determines a sub-
language ReducedW (C) := {w ∈ ReducedW | w is a word in C}. W. Casselman has
conjectured that the language ReducedW (C) is always regular.

Figure 12 illustrates these ideas for one of the yellow left cells in Ã2 (Figure 8(b)).
This cell has the property that every element in it has a unique reduced expression;
such cells were first considered by G. Lusztig [24, Proposition 3.8]. The automaton
has edges labelled by elements of {r, s, t}. The initial state is the encircled light
purple vertex and is nonaccepting; all other vertices are accepting. To make the
connection between the automaton and the cell, start at the bottom grey triangle.
Then if while following a directed path we encounter an element of S, we flip the
indicated vertex to move to a new triangle in the cell. For another example for a cell
in the hyperbolic group W343, as well as more information about the role of automata
in the context of cells, we refer to [11,12].

For W = Ãn, the existence of automata for ReducedW (C) follows easily from the
work of P. Headley [18] and Shi. Headley proved that one can construct an automaton
F recognizing ReducedW in which the vertices are the sign-type regions, and in which
all vertices are accepting. Hence to recognize ReducedW (C) one merely takes F and
makes a new automaton FC by designating only the vertices corresponding to regions
in C as accepting. In fact Headley’s automaton makes sense for all Coxeter groups,6

6An exposition can be found in Chapter 4 of [8], where F is called the canonical automaton
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although the examples of C̃2 and G̃2 already show that the above argument for
ReducedW (C) breaks down. However, for affine Weyl groups, we have conjectured
that a closely related automaton works for ReducedW (C) [17].
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Further questions

The pictures in this paper certainly raise more questions than they answer. For
example, in the case of affine Weyl groups, for all known examples the left cells are
of “finite-type,” in the sense that they can be encoded by finitely much data. Here
we have in mind descriptions of the cells using such tools as patterns among reduced
expressions [2, 13,14], sign-types [29], or similar geometric structures [2, 17].

The cells for general Coxeter groups, on the other hand, appear to be fractal
in nature, and thus cannot be described in the same way. Automata provide one
convenient way to treat such structures, but they are not the only way. What are
other techniques, and which are natural?

The situation becomes even more intriguing when one considers relationships be-
tween cells and representation theory. For instance, Lusztig conjectured [24, 3.6] and
proved [27] that an affine Weyl group W contains only finitely many two-sided cells.
In fact, he proved much more: he showed [28] that there is a remarkable bijection
between two-sided cells and the unipotent conjugacy classes in the algebraic group
dual to that of W . Moreover, each two-sided cell contains only finitely many left
cells. Lusztig also conjectured [24, 3.6] that the number of left cells in a two-sided
cell can be explicitly given in terms of the cohomology of Springer varieties [31].

For general Coxeter groups our knowledge is much more impoverished. First of
all, it is not known if there are always only finitely many two-sided cells, although
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in all known examples it is evidently true. Perhaps the only general result is due
to M. Belolipetsky, who showed that right-angled hyperbolic Coxeter groups have
only 3 two-sided cells [4]. Furthermore, in joint work with M. Belolipetsky we have
conjectured that the Coxeter group associated to a hyperbolic n-gon with n distinct
angles has (n+ 2) two-sided cells.

The connection with geometry is even more tenuous. If a Coxeter group W is
crystallographic, which by definition means mst ∈ {2, 3, 4, 6,∞} for all distinct gen-
erators s, t, then there is associated to W an infinite-dimensional Lie group G called
a Kac-Moody group. In principle, G provides a setting to study geometric questions
about cells, since many of the standard constructions (e.g., flag varieties, Schubert
varieties) make sense there. Of course, at the moment the connections with geome-
try are poorly understood. For instance, the fact that a two-sided cell can contain
infinitely many left cells [2–4] is somewhat sobering.

If W is not crystallographic, then there is no such group G. For such W we have
no candidate for an algebro-geometric picture. However, computations with many
examples (cf. Figures 3 and 4) indicate that certain structures vary “continuously” in
families containing both crystallographic and non-crystallographic groups, and that
these structures are apparently insensitive to whether or not the underlying group is
crystallographic.

The situation is analogous to that of convex polytopes. In the 1980s many difficult
theorems about polytopes were first proven using the geometry of certain projective
complex varieties—toric varieties—built from the combinatorics of rational poly-
topes. Deep properties of the intersection cohomology of these varieties led to highly
nontrivial theorems for rational polytopes; for some of these theorems no proofs
avoiding geometry were known.

By definition rational polytopes are those whose vertices have rational coordinates.
However, not every polytope is rational, and for irrational polytopes no toric variety
exists. Yet irrational polytopes seem to share all the nice properties of their rational
cousins.

Today we have a much better understanding of this story. Recently several re-
searchers have developed purely combinatorial replacements for the toric variety as-
sociated to a rational polytope, and using these replacements have extended various
difficult results from the rational case to all polytopes; see [9] for a recent survey of
these results.

For Coxeter groups, the analogy suggests developing combinatorial tools to take
the role of the algebro-geometric constructions that seem essential in the study of
crystallographic groups.7 Recently there has been significant progress in this effort
[15,16,30]. Nevertheless, understanding the geometry behind cells for general groups,
if it exists, remains an intriguing and difficult problem.

7In fact, the analogies between convex polytopes and Coxeter groups go much further than what
is suggested in these paragraphs [7], and deserves a lengthy exposition of its own.
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[21] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750,

Springer-Verlag, Berlin, 1979.
[22] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent.

Math. 53 (1979), no. 2, 165–184.



CELLS IN COXETER GROUPS 15
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