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ABSTRACT. Let F' be an imaginary quadratic field of discriminant D < 0, and let O = Op
be its ring of integers. Let I' be the group GLy(O). In this paper we investigate the
cohomology of T" for N = 3,4 and for a selection of discriminants: D > —24 when N = 3,
and D = —3,—4 when N = 4. In particular we compute the integral cohomology of
I" up to p-power torsion for small primes p. Our main tool is the polyhedral reduction
theory for I' developed by Ash [4, Ch. II] and Koecher [I8]. Our results extend work of
Staffeldt [28], who treated the case n = 3, D = —4. In a sequel [II] to this paper, we
will apply some of these results to the computations with the K-groups K4(Op), when
D = -3,—4.

1. INTRODUCTION

1.1. Let F be an imaginary quadratic field of discriminant D < 0, and let O = Op be its
ring of integers. Let I' be the group GLx(O). The homology and cohomology of I" when
N = 2 — or rather I'’s close cousin the Bianchi group PSLy(O) — have been well studied
in the literature. For an (incomplete) selection of results we refer to [BLI0L2TH24130]. Today
we have a good understanding of a wide range of examples, and one can even compute them
for very large discriminants (cf. [32]). For N > 2, on the other hand, the group I' has not
received the same attention. The first example known to us is the work of Staffeldt [28]. He
treated the case N = 3, D = —4 with the goal of understanding the 3-torsion in K3(Z[v/—1]).
The second example is [8], which investigates the case of the groups GL(L) for L an O-lattice
that is not necessarily a free O-module. This allows the authors to compute the Hermite
constants of those rings in case D > —10 and rank(L) < 3. Our methods apply as well to
the non-free case, and the corresponding cohomology computations would be useful when
investigating automorphic forms over number fields that are not principal ideal domains
(cf. |29, Appendix]| for more about the connection between cohomology of arithmetic groups
and automorphic forms).

In this paper we rectify this situation somewhat by beginning the first systematic compu-
tations for higher rank linear groups over O. In particular investigate the cohomology of I for
N = 3,4 and for a selection of discriminants: D > —24 when N = 3, and D = —3, —4 when
N = 4. We explicitly compute the polyhedral reduction domains arising from Voronoi’s
theory of perfect forms, as generalized by Ash [4, Ch. II] and Koecher [18]. This allows
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us to compute the integral cohomology of I' up to p-power torsion for small primes p. In
a sequel [T1] to this paper, we will apply some of these results to computations with the
K-groups K4(Op), when D = -3, —4.

1.2. Here is a guide to the paper (which closely follows the structure of the first five sections
of [I4]). In Section [ we recall the explicit reduction theory we need to build our chain
complexes to compute cohomology. In Section B] we define the complexes, and explain the
relation between what we compute and the cohomology of I'. In Section [ we describe a
“mass formula” for the cells in our tessellations that provides a non-trivial computational
check on the correctness of our constructions. In Section Bl we give an explicit representative
for the nontrivial class in the top cohomological degree; this construction is motivated by a
similar construction in [I3l[I4]. Finally, in Section Bl we give the results of our computations.

1.3. Acknowledgments. This research, and the research in the companion papers [11[12]
was conducted as part of a “SQuaRE” (Structured Quartet Research Ensemble) at the
American Institute of Mathematics in Palo Alto, California in February 2012. It is a pleasure
to thank AIM and its staff for their support, without which our collaboration would not have
been possible.

2. THE POLYHEDRAL CONE
Fix an imaginary quadratic field F' of discriminant D < 0 with ring of integers O = Op.
Define w = wp as
D/4 if D=0mod4
w =
(1++/D)/2 if D=1mod 4.

Then F = Q(w) and O = Z[w]. Fix a complex embedding F' — C, and identify F' with its
image in C. We extend this identification to vectors and matrices with coefficients in F'.

2.1. Hermitian forms. Let " (C) denote the N2-dimensional real vector space of N x N
Hermitian matrices with complex coefficients. Using the complex embedding of F' we can
view HY (F), the Hermitian matrices with coefficients in F, as a subset of H (C). Moreover,
this embedding allows us to view H™ (C) as a Q-vector space such that the rational points
of HN(C) are exactly HY (F).

Define a map ¢: ON — HY(F) by the outer product g(z) = xz*, where * denotes
conjugate transpose (with conjugation being the nontrivial conjugation automorphism of
F). Each A € HN(C) defines a Hermitian form on CV by

(1) Alz] = 2* Az, for x € CN,

*

is complex conjugate transpose. Define the non-degenerate bilinear pairing

() HN (@) x 1Y (C) = C
by (A, B) = Tr(AB). For x € OV, identified with its image in CV, one can easily verify that
(2) Alz] = Tr(Aq(x)) = (4, q(2)) -

Let Cn C HY(C) denote the cone of positive definite Hermitian matrices.

where -

Definition 2.1. For A € Cy, the minimum of A, denoted mp(A) = m(A) is

A)= inf Alz].
)= ok, Al
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Note that m(A) > 0 since A is positive definite. A vector v € O is a minimal vector of A
if A[v] = m(A). Denote the set of minimal vectors of A by M(A).

It should be emphasized that these notions depend on the fixed choice of the imaginary
quadratic field F. Since q(OY) is discrete in H~(C), the minimum for each A is attained
by finitely many minimal vectors.

From (@), we see that each vector v € OV gives rise to a linear functional on H"(C)
defined by ¢(v).

Definition 2.2. We say that a Hermitian form A € C is a perfect Hermitian form over F
if
spany, {q(v) | v € M(A)} = H™(C).

From Definition [2.2] it is clear that a form is perfect if and only if it is uniquely determined
by its minimum and its minimal vectors. Equivalently, a form A is perfect when M(A)
determines A up to a positive real scalar. It is convenient to normalize a perfect form by
requiring that m(A) = 1, and we will do so throughout this paper. A priori there is no reason
to expect that such an A is actually a rational point in H"(C); indeed, when one generalizes
these concepts to general number fields this is too much to expect (cf. [15]). However, in our
case we can assume this:

Theorem 2.3. [20, Theorem 3.2] Suppose F is a CM field. Then if A € Cy is a perfect
Hermitian form over F such that m(A) = 1, we have A € HN (F).

We now construct a partial compactification of the cone Ch:

Definition 2.4. A matrix A € H(C) is said to have an F-rational kernel when the kernel
of A is spanned by vectors in FY C CV. Let C% C H™N(C) denote the subset of nonzero
positive semi-definite Hermitian forms with F-rational kernel.

Let G be the reductive group over Q given by the restriction of scalars Resp/q(GLy).
Thus G(Q) = GLy(F) and G(Z) = GLx(0O). The group G(R) = GLx(C) acts on C} on
the left by

g-A=gAg",
where g € GLy(C) and A € C};; one can easily verify that this action preserves C. Let
H = RyG(R)° be the identity component of the group of real points of the split radical of
G. Then H ~ R4, and as a subgroup of G(R) acts on C'x by positive real homotheties.
Voronoi’s work [31], generalized by Ash [4, Ch. II] and Koecher [I8] shows that there are
only finitely many perfect Hermitian forms over F' modulo the action of GLx(O) and H.

Let X3 denote the quotient X} = H\C}, and let m: C% — X} denote the projection.
Then Xy = 7(Cyn) can be identified with the global Riemannian symmetric space for the
reductive group H\ GLy(C).

2.2. Two cell complexes. Let M be a finite subset of O \ {0}. The perfect cone of M is
the set of nonzero matrices of the form ) _,, Ayq(v), where A, € R>¢; by abuse of language
we also call its image by 7 in X} a perfect cone. For a perfect form A, let 0(A) C X} be the
perfect cone of M(A). One can show [4L[I§] that the cells 0(A4) and their intersections, as A
runs over equivalence classes of perfect forms, define a GLy (O)-invariant cell decomposition
of X} . In particular, for a perfect form A € Cy and an element v € GLy(O), we have

7 - o(A) = perfect cone of {yv |v € M(A)} = o((v*) ' 4y).
Endow X} with the CW-topology [17, Appendix].
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FIGURE 1. Voronoi tessellation of § shown in green, with its dual the well-
rounded retract shown in black.

If 7 is a closed cell in X} and A is a perfect form with 7 C o(A), we let M (1) denote the
set of vectors v € M(A) such that g(v) € 7. The set M(7) is independent of the (possible)
choice of A. Then 7 is the image in X} of the cone C; generated by {q(v) | v € M(7)}. For
any two closed cells 7 and 7/ in X}, we have M (1) N M(7") = M(rn7’).

Let ¥ C C% be the (infinite) union of all cones C, such that ¢ € X% has nontrivial
intersection with X . One can verify that the stabilizer of C, in GLy(0O) is equal to the
stabilizer of o. By abuse of notation, we write M (C,) as M(o).

The collection of cones ¥ was used by Ash [1}2] to construct the well-rounded retract,
a contractible N? — N dimensional cell complex W on which GLx(0) acts cellularly with
finite stabilizers of cells. More precisely, a nonzero finite set M C OV is called well-rounded
if the C-span of M is CV. For a well-rounded subset M, let o(M) denote the set of forms
A € Cy with M(A) = M and m(A) = 1. It is easy to prove that if o(M) is non-empty then
it is convex and thus topologically a cell. The well-rounded retract is then defined to be

W= U o(M).
M well-rounded
The space W is dual to the decomposition of X in a sense made precise in Theorem
below. For instance when N = 2 and F = Q, X can be identified with the upper half-plane
$ = {z+iy | y > 0}. The Voronoi tessellation is the tiling of $ by with the SLy(Z)-translates
of the ideal geodesic triangle with vertices {0,1,00}. The well-rounded retract is the dual
infinite trivalent tree (see Figure [I]).

Lemma 2.5. If C, € ¥, then M(0) is well-rounded.

Proof. This is proved by McConnell in [I9, Theorem 2.11] when F = Q, and we mimic his
proof to yield the analogous result for imaginary quadratic fields. Let M = M(C,) denote
the spanning vectors of C,. Suppose M is not well-rounded. Then M does not span C,
and so there exists a non-zero vector w € CV such that vw* = 0 for all v € M. Then each
6 € C, can be written as a non-zero Hermitian form 6 = Y _, a.,q(v), where a, > 0. It

follows that
e[w] = Z ) <Q(v)7Q(w)> = Z CLUIU’LU*|2 =0,
veM vEM

where | - | is the usual norm on C¥. In particular, 6 is not positive definite, contradicting
the assumption that C, € X. O

Theorem 2.6. Let M C O be well-rounded and let o(M) € W. Then there is a unique
cone C, € % such that M(C,) = M. The map o(M) — Cy is a canonical bijection W — %
that is inclusion-reversing on the face relations.
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Proof. Tt suffices to prove that a well-rounded subset M C O has o(M) # 0 if and only if
there is a cone C, € ¥ such that M (o) = M.

Suppose C, € . By Lemma 25, M = M (Cy) is well-rounded. Thus it remains to show
that o (M) is non-empty. We do so by constructing a form B € o(M) with M (B) = M(C,).
Since C,, € %, there is a perfect form A such that Cy is a face of the cone Sy = 7~ (c(A)).
Furthermore, C, can be described as the intersection of S 4 with some supporting hyperplane
{6| (H,0) = 0} for some H € HN(C). It follows that

(H,q(v)) =0 ifveM and (H,qv)) >0 ifve M(A)\M.

Let B = A+ pH. Since (H,q(v)) = B[v], a standard argument for Hermitian forms shows
that for sufficiently small positive p, B is positive definite, B[v] = m(A) for v € M and
Blv] > m(A) for v € M(A)\ M. Thus M(B) = M and so B € o(M). In particular, o(M)
is non-empty.

Conversely, suppose M is a well-rounded subset of OV with (M) non-empty. Choose
B € o(M) so that M(B) = M. If B is perfect, then M = M (B) and we are done. Otherwise,
we can use the generalization of an algorithm of Voronoi [12] to find a perfect form A such
that M (B) C M(A). Let H= B — A. Then

(H,q(v)) =0 ifveM and (H,q(v))>0 ifve M(A)\M.

Thus the hyperplane {6 | (H,6) = 0} is a supporting hyperplane for the subset of Sy =
n1(o(A)) spanned by {q(v) | v € M}. Therefore M defines a face of S, in 3 as desired. O

Remark 2.7. Let X% denote a set of representatives, modulo the action of GLy(O), of n-
dimensional cells of X3, that meet Xpy. Let ¥* = U, X5

The well-rounded retract W is a proper, contractible GL 5 (O)-complex. Modulo GLy (O),
the cells in W are in bijection with cells in ¥*, and the isomorphism classes of the stabilizers
are preserved under this bijection. To see this, let o(M) be a cell in W. Then the forms
B € o(M) have M(B) = M and m(B) = 1. Under the identification in Theorem [2:6]
o(M) corresponds to the cone C/ with spanning vectors {¢q(v) |v € M}. Let o’ be the
corresponding cell. There is a cell ¢ € ¥* that is [-equivalent to ¢’. If v € GLy(O), then
v-o(M)=0o({(v*)"'v|veM}). Thusif v € Stab(s(M)), then (y*)~! € Stab(C}). It is
therefore clear that Stab(C?) = Stab(o”’) ~ Stab(o).

The map g — (¢*)~! is an isomorphism of groups, so the duality between W mod T
and X* in Theorem allows us to work with X* and its stabilizer subgroups as if we
were working with a proper, contractible GLy (O)-complex. This fact will be used later to
compute the mass formula (§4).

3. THE COHOMOLOGY AND HOMOLOGY

The material in this section follows [14] §3], [27, §2], and [3], all of which rely on [9].
Recall that I' = GLy(O). In this section, we introduce a complex Vory p = (Vi(T),d.)
of Z[I'-modules whose homology is isomorphic to the group cohomology of I' modulo small
primes. More precisely, for any positive integer n let S,, be the Serre class of finite abelian
groups with orders only divisible by primes less than or equal to n [25]. Then the main result
of this section (Theorem B.7) is that, if n = n(N, D) is larger than all the primes dividing
the orders of finite subgroups of I', then modulo S,, the homology of Vory, p is isomorphic
to the group cohomology of T

As above let ¥F = X (T") denote a finite set of representatives, modulo the action of T', of
n-dimensional cells of X5 which meet Xy. A cell o is called orientable if every element in
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Stab(o) preserves the orientation of . By X,, = ¥,,(I") we denote the set of orientable cells
in £ (T') Let £* = U, X} and let ¥ = U,%,.

3.1. Steinberg homology. The arithmetic group I'—like any arithmetic group—is a vir-
tual duality group [0, Thm 11.4.4]. This means that there is a Z['J-module I that plays
the role of an “orientation module” for an analogue of Poincaré duality: for all coefficient
modules M there is an isomorphism between the cohomology of I with coefficients in M
and the homology of I with coefficients in M ® I, for any torsion-free finite index subgroup
I ¢ T. For more details see [6, §11]. The module I is called the dualizing module for T.
Borel and Serre prove that I is isomorphic to the Steinberg module Str = H”(T', Z|I']), where
v = vedT is the virtual cohomological dimension of T' (cf. §l); note that for I' = GLy(O),
we have v = N2 — N.

For any T-module M, the Steinberg homology [9, p. 279], denoted HS(T', M), is defined
as HS(I, M) = H, (T, Str ®M). Let H* denote the Farrell cohomology H* (T, M) of T with
coefficients in M (cf. [9 X.3]). There is a long exact sequence

(3) = HYY —» H - H = HS () — HY = H

that implies that we can understand the group cohomology by understanding the Steinberg
homology and the Farrell cohomology. In particular, if the Farrell cohomology vanishes,
(which is the case when the torsion primes in I' are invertible in M, see [0, IX.9 et seq.]),
then the Steinberg homology is exactly the group cohomology Hft_k(I‘, M) ~ H*(T, M).
We now specialize to the case M = 7Z with trivial I'-action, and in the remainder of
this section omit the coefficients from homology and cohomology groups. Note that the

well-rounded retract W is an (N2 — N)-dimensional proper and contractible I'-complex.

Proposition 3.1. Let b be an upper bound on the torsion primes for T' = GLx(O). Then
modulo the Serre class Sy, we have

Hp (1) = HH(I).

3.2. The Voronoi complex. Let V,,(I") denote the free abelian group generated by %,,(T).
Let d,,: V,(T') = V;,—1(T') be the map defined in [14}, §3.1], and denote the complex (V,.(T'), d.)
by VOI‘N7D.

Let 0X5 denote the cells in X3 that do not meet X. Then 0X}% is a I'-invariant sub-
complex of Xj. Let HI (X3%,0X}%) denote the relative equivariant homology of the pair
(X%, 0X%) with integral coefficients (cf. [9, VIL.7]).

Proposition 3.2. Let b be an upper bound on the torsion primes for T' = GLyx(O). Modulo
the Serre class Sy,
H,(Vory.p) =~ HL (X, 0X ).

Proof. This result follows from [27, Proposition 2]. The argument is explained in detail for
F =Qin [14] §3.2] and extends to F' imaginary quadratic. For the convenience of the reader
we recall the argument.

There is a spectral sequence E7 converging to the equivariant homology groups

Hzl:+q(X1>:/7 aXXT)
of the homology pair (X}, 0X5) such that
(4) E), = @D Hy(Stab(0),Z,) = Hp, (X, 0XN),

oeLy
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where Z, is the orientation module for o.
When o is not orientable the homology Hy(Stab(o),Z,) is killed by 2. Otherwise,
Hy(Stab(o),Zs) ~ Z,. Therefore, modulo Sy, we have

Ely= P Zo.

oEX,

Furthermore, when ¢ > 0, H,(Stab(0),Z,) lies in the Serre class S, where b is the upper
bound on the torsion primes for I'. In other words, modulo Sy, the E! page of the spectral
sequence () is concentrated in the bottom row, and there is an identification of the bottom
row groups with the groups V,,(I") defined above. Finally, [27] Proposition 2] shows that
dl =d,. O

Remark 3.3. If we do not work modulo S, then there are other entries in the spectral
sequence to consider before we get H.(X%,0X3%). In particular, the small torsion in
H,(Vory,p) may not agree in general with the small torsion in Hy,  (X3,0X}%).

3.3. Equivariant relative homology to Steinberg homology. For V C F a proper
subspace, let C (V') be the set of matrices A € C% such that the kernel of A is V ®qg R, and

let X (V) = n(C(V)). The closure C(V) of C(V) in the usual topology induced from H" (C)
consists of matrices whose kernel contains V. Let X (V) = n(C(V)).

The following Lemma shows that X (V) is contractible. Soulé proves this for F = Q
in [27, Lemma 1] and [26, Lemma 2], and the same proof with simple modifications applies

to our setting:

Lemma 3.4. For any proper subspace V.C FVN, the CW-complex X (V) is contractible.

Proof. Let A be a perfect Hermitian form over F. Then o(A4) N X (V) is the perfect cone of
the intersection M (A)NV+, where V= is the orthogonal complement to V in F'V. It follows
that that X (V') is a sub-CW-complex of X3 .

Now, we show that X (V') is contractible. Since X (V') has the same homotopy type as
X (V), we prove that the latter is contractible. For this, it suffices to prove that the CW-
topology on X (V') coincides with its usual topology, since X (V) in this topology is clearly
contractible (it is convex). And to prove this, we argue that the covering of X (V) by the
closed sets of the form o(A) N X(V'), where A is perfect, is locally finite.

Given any positive definite Hermitian form A, let A+ be its restriction to the real space
Vit = V4 ®gR. Then X(V) is isomorphic to the symmetric space for the group Aut(Vy")
via the map A + AL. If v € T satisfies v - X (V) N X (V) # 0, then in fact v stabilizes V.
Let P C T be the stabilizer of V and let a: P — I = Aut(Vi- N L) be the projection map.
Then the set of cells o0(A) N X(V), as A ranges over the perfect Hermitian forms, is finite
modulo I': if 6(A)NX (V)N (y-0(A))NX (V) # 0, then v € P, and thus (y-c(A)NX(V)) =
a()(o(4) N X (V).

To conclude the argument one uses Siegel sets; we refer to [7] for their definition and
to [, Ch. II] for their properties in our setting. Given any point x € X (V'), one can find
an open set U 2 x and a Siegel set & such that & D U. Furthermore, any cell of the form
o(A) N X (V) is itself contained in another Siegel set &’. Thus if U meets v(o(A) N X (V))
for v € TV, we must have that v - &’ meets &. But this is only possible for finitely many ~
by standard properties of Siegel sets. Thus the covering of X (V') by the closed sets of the
form o(A) N X (V) (A perfect) is locally finite, which completes the proof. O
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Proposition 3.5. For every n > 0, there are canonical isomorphisms of I'-modules

Str‘ z'fn:N—l,

H, (X%, 0X%) ~
(X ~) {O otherwise.

Proof. Since X} is contractible, the long exact sequence for the pair (X%,0Xx)
o= H,(0Xy) —» Hy(Xy) = Ho(X¥,0XN) = Hoo1(0XN) = Hpor (X)) — -+

implies H,,(X%,0X%) ~ H,_1(0X}%) for n > 1, where the tilde denotes reduced homology.

From properties of Hermitian forms, it is clear that X (V) N X(W) = X(VNW) for
each pair of proper, non-zero subspaces V,W C FY. Thus the nerve of the covering U
of 9X3 by X(V) as V ranges over non-zero, proper subspaces of FV is the spherical Tits
building Tr . Since each X (V') in U is contractible by Lemma B4] the cover U is a good
cover (i.e., nonempty finite intersections are diffeomorphic to R for some d). It follows that
the relative homology groups are isomorphic HR(GXJ"Q,) ~ ﬁn(TE ~)- By the Solomon-Tits
theorem, the latter is isomorphic to Sty if n = N — 2 and is trivial otherwise. ]

Proposition 3.6. For all n, we have
Hy, (X3, 0X5) = Hy (y_y)(T).
Proof. There is a spectral sequence [27, equation (2)] computing the relative equivariant

homology

B2, = H,(T, Hy(X},0X})) = HY

p+q(X;/7 aX;/')

Proposition 3.5 implies the E? page of the spectral sequence is concentrated in the ¢ = N —1
column. Then

HF+(N—1)(XXU‘9X;I) = Hp(Fqu(X}k\lvaX;)) = Hp(rvstf) = Hst(r)v

p

and the result follows. O

Theorem 3.7. Let b be an upper bound on the torsion primes for GLy(O). Modulo the
Serre class Sy,

H,(Vory p) ~ HY =1="(GLy (0)).
Proof. Let T' = GLx(O). Modulo S, Propositions B2 B8, and Bl imply
H,(Vory,p) = HY (X5, 0X%) = HS (1 (D) =~ HY ~1=(T),
O

3.4. Torsion elements in I'. To finish this section we discuss the possible torsion that can
arise in the stabilizer subgroups of cells in our complexes. This allows us to make the bound
in Theorem B effective.

Lemma 3.8. Let p be an odd prime, and let F/Q be a quadratic field. Let ®, = 2P~ +
P2 ..+ 2+ 1 be the p™ cyclotomic polynomial. Then ®, factors over F as a product of
irreducible polynomials of degree (p —1)/2 if F = Q(v/p*), where p* = (—=1)®=1/2p and is
irreducible otherwise.
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Proof. Let ¢, denote a primitive p*® root of unity. Consider the diagram of Galois extensions
below:

If F = Q(v/p*), then F is the unique quadratic subfield of Q((,). It follows that @,
factors over F' as a product of irreducible polynomials of degree (p — 1)/2. If F # Q(y/p¥),
then FNQ((,) = Q. It follows that [F((p) : Q({p)] = [F : Q] =2 and so [F((p) : F]=p—1.
Thus ®,, is irreducible over F if F # Q(/p¥). O

Lemma 3.9. Let p be an odd prime, and let F/Q be a imaginary quadratic field. If g €
GLN(F) has order p, then

< N+1 ifp=1mod4,
“ |2N +1 otherwise.

Proof. If p = 1 mod 4, then p* > 0. In particular, F' # Q(y/p*) and so by Lemma 3.8 @,
is irreducible over F'. Then the minimal polynomial of g is ®,. By the Cayley-Hamilton
Theorem, ®, divides the characteristic polynomial of g. Therefore p —1 < N. Similarly, if
p# 1mod 4, then (p—1)/2 < N. O

Lemmas [3.8 and immediately imply the following:

Proposition 3.10. If g € GL3(OF) has prime order q, then q € {2,3,7} for F = Q(v/-T7)
and q € {2,3} otherwise. If g € GL4(Op) has prime order q, then q¢ € {2,3,5,7} for
F=Q(v-T7) and q € {2,3,5} otherwise.

In Tables [THIZ] we give the factorizations of the orders of the stabilizers of the cells in ¥*.

4. A MASS FORMULA FOR THE VORONOI COMPLEX

The computation of the cell complex is a relatively difficult task and there are many ways
in which the computation can turn out to be wrong. Hence it is important to have checks
that allow us to give strong evidence for the correctness of the computations. One is that the
complexes we construct actually are chain complexes, namely that their differentials square
to zero. Another is the mass formula, stated in Theorem According to this formula, the
alternating sum over the cells of X* of the inverse orders of the stabilizer subgroups must
vanish. A good reference for this section is [9 Ch. IX, §§6—7], and we follow it closely. The
main theorem underlying this computation is due to Harder [16].

4.1. Euler characteristics. We begin by recalling some definitions. The cohomological
dimension cdT of a group T is the largest n € Z U {oo} such that there exists a ZI'-module
M with H™(T'; M) # 0. The virtual cohomological dimension vedT of T' is defined to be the
cohomological dimension of any torsion-free finite index subgroup of T" (one can show that
this is well-defined). We recall that I is said to be of finite homological type if (i) ved T < 0o
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and (ii) for every ZI'-module M that is finitely generated as an abelian group, the homology
group H;(T'; M) is finitely generated for all i.

Definition 4.1. Let T’ be a torsion-free group of finite homological type, and let H,(T")
denote the homology of I' with (trivial) Z-coefficients. The Fuler characteristic x(T') is

X(T) =Y (=1)" ranks (H;(T)).
Proposition 4.2. [9, Theorem 6.3] If T' is torsion-free and of finite homological type and
I is a subgroup of finite indezx, then

X(I') = [T T x(T).

One can use Proposition to extend the notion of Euler characteristic to groups with
torsion. Namely, if I' is an arbitrary group of finite homological type with a torsion-free
subgroup I" of finite index, one sets

o) w0 = 2

By Proposition [£.2] this is independent of the choice of T".

Proposition 4.3. If T is a finite group, then x(T') = 1/|T.
Proof. Take I to be the trivial subgroup in (&]). O

Theorem 4.4. [I6] Let F be a number field with ring of integers O, and let (r(s) be the
Dedekind zeta function of F'. Then

N
X(SLn(0)) = ] ¢r(1 = k).
k=2

In particular, since when F' is imaginary quadratic (r(m) vanishes for m any negative
integer, we have x(SLy(0)) =0 for N > 2.

Corollary 4.5. Let F' be an imaginary quadratic field with ring of integers O. Then
X(GLN(O)) =0 for N > 2.

Proof. This follows immediately from Theorem 4] and the definition of the Euler charac-
teristic since GLy(O) is of finite index in SLy(O). O

Now we turn to a different concept, the equivariant Euler characteristic xr(X) of T'. Here
X is any cell complex with I" action such that (i) X has finitely many cells mod I', and (ii)
for each o € X, the stabilizer subgroup Stabr(c) is finite. One defines

xr(X) =) (=)™ 7x(Stabr(0)),
oceS

where S is a set of representatives of cells of X mod T'.

4.2. The mass formula. The well-rounded retract W defined in §2.2 is a proper, con-
tractible I'-complex and so its equivariant Euler characteristic is defined. We compute its
equivariant Euler characteristic, phrased in terms of cells in ¥* using Remark 2.7 to get a
mass formula.
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Theorem 4.6 (Mass Formula). We have

1
—)F——— =0.
ng( ) | Stabr ()]
Proof. Let I' = GLy(O). By Proposition 23 we have x(Stabr(c)) = 1/|Stabr(o)|. Thus the
result follows from Corollary if we can show xr(W) = x(T'), where W is the I'-complex
formed from the well-rounded retract, using Theorem and Remark 27 to identify cells
of W mod T" with cells in 3*. But according to [, Proposition 7.3 (e’)], this equality is true
if I' has a torsion-free subgroup of finite index, which is a standard fact for I'. ([l

Using the stabilizer information in Tables [HI2 one can easily verify that x(GL,,(O)) =0
for each of our examples. For instance, if we add together the terms 1/| Stabp(o)| for cells
o of the same dimension to a single term for GL4(O_4), we find (ordering the terms by
increasing dimension in X*)

11 127 4187 28375 868465 126127 81945

T 3072 T 960 2304 T 2304 18432 | 1152 512
340955 48655 16075 21337 101 17

2304 576 | 576 4608 | 384 92160
The other groups can be checked similarly.

5. EXPLICIT HOMOLOGY CLASSES

By Theorem B we have Hyz_;(Vory p ®Q) ~ H°(GLy(0),Q), which in turn is iso-
morphic to Q. This suggests that there should be a canonical generator for this homology
group, a fact already explored in [I4], Section 5]. An obvious choice is the analogue of the
chain presented there, namely

1
§:= §N,D = ; W[U]a

where o runs through the cells in ¥n2_1(GLN(O)). In this section we verify that this
is true for our examples. We should point out that all the cells in ¥y2_;(GLy(O)) are
orientable. The reason is that the group GL,,(C) is connected and so the determinant of its
action on H™(C) is positive. Since the stabilizers are included in GLy(Q) and the faces in
Y n2_1(GLy(0O)) are full-dimensional the orientation has to be preserved.

Theorem 5.1. When N = 3 and D > —24 or N = 4 and D = —3,—4, the chain £ is a
cycle and thus generates Hpy2_1(Vory, p ®Q).

Proof. The proof is an explicit computation with differential matrix A representing the
map Vyz_1(T") = V2 _o(T) (cf. §82). Note that the signs of the entries of A depend on
a choice of orientation for each of the cells in Xx2_; and Xpn2_5. In each non-zero row
of A, there are exactly two non-zero entries. Each non-zero entry A;; has absolute value
| Stab(c;)|/| Stab(7;)|, where 0; € Yn2_1(GLy(0)) and 7; € Xn2_o(GLy(O)). One then
checks that there is a choice of orientations such that the non-zero entries in a given row
have opposite signs. O

For example, consider N =4 and D = —4. The differential matrix is

g0 0
15711920 —256|°
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with kernel generated by (2,15) = 92160(1/46080,1/6144). The orders of the two stabilizer
groups for the cells in ¥15(GLy(O_4)) are 46080 and 6144, respectively, and thus &4 _4 is a
cycle.

It seems likely that Theorem BTl holds for all GLx (Op), although we do not know a proof.

6. TABLES

We conclude by presenting the results of our computations. Here is a guide to the notation
in the tables.

e The first three columns concern the cell decomposition of X mod I':

— n is dimension of the cells in the (partially) compactified symmetric space X} .

— |XZ| is the number of T-orbits in the cells that meet Xy C Xy .

— | Stab | gives the sizes of the stabilizer subgroups, in factored form. The notation
A(k) means that, of the |X7| cells of dimension n, k of them have a stabilizer
subgroup of order A.

e The next four columns concern the differentials d,, of the Voronoi complex Vory p:

— |3,| is the number of orientable I'-orbits in X} .

— Q is the number of nonzero entries in the differential d,,: V,,(T') — V,_1(T).

— rank is the rank of d,,.

— elem. div. gives the elementary divisors of d,,. As in the stabilizer column, the
notation d(k) means that the elementary divisor d occurs with multiplicity k.
If the rank of d,, vanishes, then this column is empty.

e Finally, the last column gives the homology of the Voronoi complex. One can easily
check that H,, ~ Z" ® @(Z/dZ)*, where r = |%,,| — rank(d,,) — rank(d,41) and the
sum is taken over the elementary divisors d(k) from row n+1. To save space, we ab-
breviate Z/dZ by Zq4. By Theorem 3.1 we have H,(Vory p) =~ HN*=1=7(GLy (0))
modulo the torsion primes in GLy (O). These primes are visible in the third column
of each table.

The tables suggest that the rank of H,,(GL3(O) is nonzero if and ounly if n = 0, 4 or 5,
and similarly that the rank of H,(GL4(O)) is nonzero if and only if n =0, 3, 5, 6, 8 or 9.

TABLE 1. Invariants for the cell complex, differentials, and homology for

GL3(0_3).
n || [3;] | [Stab] 1$,] | Q | rank | elem. div. H,
2 1 [2%3%(1) 0 [0] O 0
31 2 ]213°(1), 2°3°(1) 0 [0] 0 0
413 [2232(1), 2%33(1), 2*31(1) 1 [0o] 0 Z
50 4 [2%32(1), 223%(1), 213%(1), 2 (0] 0O Z
2233(1)
6 || 3 |2232(1), 213%(1), 2233(1) L2 1 [1(1) 0
7 2 |2%32(1), 2232(1) 1 0] 0 Zg
81 2 [2%3%(2) 2 (2] 1 [9(1) Z
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TABLE 2. Invariants for the cell complex, differentials, and homology for

GL3(O-4).
n || |X5| | |Stab| [Xn] | © | rank | elem. div. H,
20 2 [2731(2) 0 [0 0 0
3 3 |233(1), 2°31(2) 0 o 0 0
41 4 |2%1),23(1), 25(1), 2731 (1) 1 o] o Z
51 5 |2231(2), 23(1), 2°3%(1), 2°(1) 4 1o 0 Z® Lo
6 3 [2231(2),2%(1) 3 10| 3 [1(2),201) 0
71 [27(1) 0 [0o] o0 0
8 1 [273(1) 1 o] o Z
TABLE 3. Invariants for the cell complex, differentials, and homology for
GL3(0-7).
n || |X5] | | Stab | [.] | © | rank | elem. div. H,
20 3 [2831(3) 0 [0 0 0
3 6 |2231(2), 2331(1), 22(1), 2*31(1), 0 0] 0 0
24(1)
41 9 |2231(1), 21(1), 233%(1), 2%(2), 3 0] o Z
24(1), 23(3)
51 11 |2231(1), 21(2), 22(1), 2*31(3), 10 [8] 2 [1(2 VAEY A
2131(3), 23(1)
6 8 [2%(2),2131(2), 23(3), 213171 (1) 6 [19] 6 [1(5),7(1) 0
71 2 [2'7(1), 22(1) 1 o] o Zs3
8 2 [2137L(1), 213171 (1) 2 2] 1 [301) Z
TABLE 4. Invariants for the cell complex, differentials, and homology for
GL3(O_g).
n || |X%5] | | Stab| [Xn] | @ | rank | elem. div. H,
2 || 5 [2231(2), 2131(2), 2%(1) 0 0 0 0
31 16 |2%(2), 22(5), 2331(1), 2231(5), 2 0 0 0
213(1), 2°(2)
41 26 |2%(14), 22(9), 23(1), 2°3%(1), 6 [ 12] 2 [1(2) Z® Lo
24(1)
51 37 | 2%(25), 22(4), 2'31(4), 23(2), 36 [ 104 13 [1(12),2(1) || Z*®Zs
2131(2)
6 || 28 |21(18), 22(2), 2!31(4), 23(2), 26 | 166 | 21 | 1(20), 2(1) 0
2231(2)
71 7 ] 2%6), 22(1) 6 |45 | 5 |1(5) 0
8 2 [2131(1), 2°(1) 2 6 1| 1(1) Z
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TABLE 5. Invariants for the cell complex, differentials, and homology for

GL3(0-11).
n || |X%] | | Stab | [Xn] | Q | rank | elem. div. H,
2 [ 8 [2231(2), 2331(1), 22(2), 2*31(1), 1 0 0 0
24(2)
3 34 21(13) 2(11), 23(2), 2*3%(1), 5 ] 6 1| 1(1) 0
223'(4), 233 (3)
4 [ 91 | 2%(67), 22(15), 2131(1), 23(5), 75 1193 | 14 | 1(14) Z
2231(1), 2 ( ), 231(1)
5 (| 150 | 21(124), 22(13), 2131(7), 23(2), 147 | 700 | 60 | 1(60) VALY
2231(3), 2431 (1 )
6 || 125 21(110), 22(6), 2131(6), 23(3) 122 | 859 | 85 | 1(84), 4(1) 0
7| 51 | 21(44), 22(2), 2131(3), 2231 (1), 48 404 | 37 | 1(37) 73
24(1)
8| 12 |2%(4), 2131(6), 2%(2) 12 [ 88 | 11 [ 1(9), 3(2) Z
TABLE 6. Invariants for the cell complex, differentials, and homology for
GL3(0O_15).
n || |ZX] | |Stab| [25] Q | rank | elem. div. H,
2 ([ 34 [21(4), 22(8), 2131( ), 23(8), 10 0 0 Z
2131(3), 2°31(3), 24(7)
3| 217 | 21(102), 22(77), 2131(2), 23(23), 128 | 175 | 9 | 1(9) 0
2231(5), 24(2), 2°3'(3), 23'(3)
4[| 689 21(546), 22(114), 2131(1), 604 | 2112 | 119 | 1(119) VAR Y2
2°(20), 223'(2), 24(5), 2°3'(1)
5 || 1224 | 21(1109), 22(84), 2131(7), 1185 | 6373 | 482 | 1(478), 2(4) VA
27(13), 223!(5), 24(3), 23'(3)
6 || 1139 | 21(1081), 22(47), 2131(7), 23(4) 1102 | 7771 | 698 | 1(698) 0
7 || 522 | 21(489), 22(30), 2131(1), 23(1), 493 | 4162 | 404 | 1(404) VY YT,
2231(1)
81 90 [21(78), 22(3), 2131(5), 23(2), 90 | 972 | 89 | 1(84), 3(2), Z
2231(2) 6(2), 12(1)
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TABLE 7. Invariants for the cell complex, differentials, and homology for

15

GL3(0-19).
[2%] | | Stab | [ Q| rank | elem. div. H,
43 | 21(23), 2%(10), 2431( ), 2131(3), 29 0 0 0
2%(1), 2%31(2), 24(2), 2331< )
359 | 21(304), 22(38), 2131(3), 23(7), 314 | 664 | 29 [1(29) 0
2231(4), 2331(2), 2431 (1)
1293 | 21(1234), 22(52), 23(4), 2%(1), 1255 | 5410 | 285 | 1(285) VA
233L(1), 2431(1)
2347 | 21(2287), 22(37), 2131(13), 2339 | 13596 | 968 | 1(968) 73 7o ®Zs
23(7), 2231(2), 243%(1)
2169 | 21(2137), 22(15), 2131(10), 23(7) || 2164 | 15404 | 1368 | 1(1366), 0
2(1), 8(1)
958 | 21(950), 2%(6), 2"3'(1), 2%(1) 952 | 8181 [ 796 | 1(796) 73
157 | 21(149), 2131(6), 24(2) 157 | 1884 | 156 | 1(152), 3(4) Z
TABLE 8. Invariants for the cell complex, differentials, and homology for
GL3(0-2).
|2 ] |Stab\ [25] Q rank | elem. div. H,
69 | 2%(21), 22(26) 2131(4), 23(6), 31 0 0 Z
2231(3), 24(7), 213'(2)
538 | 21(398), 22(98) 2131(4), 23(22), || 425 | 772 | 30 | 1(30) Zs
2231(7), 24(3), 23" (4), 23'(2)
1895 | 21(1721), 22(153) 23(15), 1804 | 7464 | 395 [ 1(394), 2(1) VARV
2231(1), 2(4), 2431<1>
3382 | 21(3223), 22(117), 2131(15), 3345 [ 19167 | 1405 | 1(1401), VARV
23<15> 2231(7), 24(4), 2'3'(1) 2(4)
3061 | 21(2976), 22(61), 2131(15), 3017 [ 21502 | 1934 | 1(1933), 0
2%(8), 2231 (1) 3(1)
1330 | 21(1293), 2%(37) 1294 | 11127 | 1083 | 1(1083) Z3 D LED Zao
212 | 21(202), 22(2), 2131(5), 23(2), 212 | 2532 | 211 | 1(206), Z
2231(1) 3(2), 6(2),
12(1)
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TABLE 9. Invariants for the cell complex, differentials, and homology for

GL3(O-23).
n || X% | |Stab]| 2] Q | rank | elem. div. H,
2 [ 204 |2%(89), 22(65), 2131 (4), 23(27), 126 0 0 VA
2231(6), 24(10), 2431(3)
3 || 1777 | 21(1402), 22(295), 2131(2), 1477 | 3272 | 122 | 1(122) Zs
23(56), 2231(11), 2%(3), 2331(5),
2431(3)
4[| 6589 | 21(6112), 22(434), 23(35), 6285 | 26837 | 1355 | 1(1354), VARY YA
2231(2), 24(5), 2231(1) 2(1)
5 || 12214 | 2%(11866), 22(291) 2131(19), 12119 | 69891 | 4925 | 1(4912), " o Z3
23(23), 2231(6), 24(6), 2431(3) 2(10), 6(3)
6 || 11627 | 21(11461), 22(138), 2131(16), 11568 | 81720 | 7184 | 1(7179), 0
2°(10), 2231(2) 2(5)
7 || 5303 | 2%(5250), 22(48), 213%(2), 5253 | 44741 | 4384 | 1(4384) 73,072 073
2231(2), 24(1)
8 || 870 | 2%(853), 22(3), 2131(10), 23(2), 870 | 10464 | 869 | 1(862), Z
24(2) 12(2), 3(2),
6(3)
TABLE 10. Invariants for the cell complex, differentials, and homology for
GL3(0O_a4).
n || |Xk| | |Stab| |2 Q rank | elem. div. H,
2 || 158 | 21(90), 22(41) 2131(3), 23(13), 104 0 0 Z
2231(1), 21(8), 2'31(2).
3 || 1396 | 21(1214), 22(142), 2'31(4), 1247 | 2967 | 103 | 1(103) Z}
23(24), 223%(6), 24(1), 2331(3),
2431(2)
4 ][ 5090 | 21(4859), 22(199), 2*31(1), 4957 | 22280 | 1144 | 1(1137) ARV
23(23), 2231(1), 24(5), 2331(1), 2(7)
243L(1)
5 || 9091 21(8889) 2(161), 2131(12), 9043 | 53385 | 3808 | 1(3803), VAY YA
2°(20), 2231(5), 24(3), 2'3'(1) 2(5)
6 || 8319 | 21(8187), 22(102), 2131(13), 8263 | 58948 | 5228 | 1(5218), Zs
2°(15), 2231(2) 2(8), 4(2)
7 1| 3662 | 21(3617), 22(42), 23(2), 24(1) 3630 | 31020 | 3035 | 1(3034), 72,073 d Lg
2(1)
8 || 596 | 21(578), 22(8), 2131(2), 23(4), 596 | 7188 | 595 | 1(589), Z
2231(2), 21(2) 12(2), 2(3),
6(1)
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TABLE 11. Invariants for the cell complex, differentials, and homology for

GL4(0_3).
n || |25 | |Stab| X, | Q| rank | elem. div. H,
3 2 [ 2%35(1), 273°(1) 0 0 0 0
4 5 [2%32(1), 23251(1), 2°33(1), 0 0 0 0
2534(1), 233%(1)
5 || 12 [2232%(2), 233%(1), 2233(1), 0 0 0 0
2331(1), 2°3%(1), 2333(1),
2431(2), 2532(2), 263%(1)
6 || 34 |2°3%(1), 2131(1), 2131(2), 8 0 0 Z
2231(8), 2533(1), 213%(2),
2334(1), 233%(4), 2°32(1),
2333(1), 2432(2), 2233(4),
2232(6)
7 || 82 [2131(21), 2°31(1), 2231(23), 50 | 58 7 | 1(7) VA7
213%(7), 2233(3), 2331(5),
233%(1), 223%(8), 2333(2),
2734(1), 2431(4), 2133(2),
243%(1), 2332(3)
8 [ 166 | 2333(2), 2 31(88) 2433(1), 129 | 604 | 41 | 1(40), 2(1) Zg
2231(36), 2132(13), 2°33(1),
2331(5), 2232(7) 2131(2),
2133(2), 2332(5), 2233(3),
2235(1)
9 || 277 | 2131(191), 2°3%(1), 223%(34), 228 | 1616 | 88 | 1(87), 9(1) VY
2132(17), 2°3°(2), 2331(6)
213151(1), 2232(9), 2 33( ),
2332(3), 2°3%(1), 2233(7),
2733(1), 2235(1), 2*3251(1)
10 || 324 | 2131(246), 2231(35), 213%(16), 286 | 2531 | 139 | 1(138) Z®Ls
2331(7), 223%(9), 2133(2), 24(1)
2433(1) 2233( )’ 233 3( )
2532(1)
11 [[ 259 | 2131(200), 2231(24), 2132%(11), 237 | 2283 | 146 | 1(142), 2(4) 73 @ Zg
2331(6), 2232(9), 2234(1),
2431(1), 2133(1), 2233(2),
2432(2), 2433(2)
12 || 142 | 213%(91), 2231(20), 213%(9), 122 [ 1252 | 91 | 1(88), 2(2), || ZDZs3 D Z1o
2331(5), 223%(11), 2133(4), 6(1)
2233(1), 243%(1)
13 [ 48 [2133(1), 2333(1), 2131(22), 36 | 369 | 30 | 1(28), 3(1) Zqs
2231(6), 213%(7), 2331(2), 12(1)
223%(8), 2431(1)
14 || 15 [ 213%(2), 223%(2), 2133(1), 10 | 51 6 | 1(5), 15(1) Z12 ® Zoss
2233(3), 2131(1), 243%51(1),
2331(1), 2231(2), 213151 (1),
2632(1)
5] 5 [2933(1), 273°51(1), 2%35(1), 5 16 4 | 1(2), 12(1), Z
2233(2) 288(1)
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TABLE 12. Invariants for the cell complex, differentials, and homology for

GL4(O_y).

%5

| Stab |

[Xn]

rank

elem. div.

w

4

21131(2), 2931(1), 2731(1)

0

o

0

10

2331(1), 28(1), 2131(1),
253151(1), 27(1), 2531(2),
2831(1), 273%(1), 2°(1)

0

0

33

21031(1), 2%(1), 273°(1), 2°3'(1),
23(6), 213"(2), 2(7), 27(1),
2°31(2), 2°3(2), 2'°(1), 2°(2),
2(6

98

L 2731(2), 2%(26), 2°(37),
). 24(10), 2°3%(1), 233 (1),
131(4), 20(1), 2031 (1),

48

35

Z®Zs

258

189

682

42

VAV

501

435

2972

145

75 ® Ly

704

), 2'(15),
231(2),
53151(1)7

o
=)

639

5928

290

VEYEEYA

10

628

597

6701

348

ZSL; DL ® Ls D Long

11

369

22(320), 23(25), 2231(4), 2%(12),
4), 2°(3),

2632(1)

346

4544

248

12

130

22(103), 25(
2331( ) 5(
26(1), 2531(

, 2231(8), 2%(3),
, 2232(1), 2%31(D),

120

1787

98

7D 7o P Zsg

13

31

),
22(13), 2631
24(1), 2331(
29

), 2°(7), 2°31(4),

9), 2
2), 2
1)
(1
); 2), 2°(1), 2°3%(1),
(1)

22

337

21

Ls

14

2731(2), 27(2), 2°3T51(1),
2251(1), 2731(1)

Z128

15

2103251(1), 21131(1)
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