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Abstract. We extend the computations in [AGM11] to find the mod 2 ho-
mology in degree 1 of a congruence subgroup Γ of SL(4,Z) with coefficients

in the sharbly complex, along with the action of the Hecke algebra. This ho-
mology group is closely related to the cohomology of Γ with F2 coefficients

in the top cuspidal degree. These computations require a modification of the

algorithm to compute the action of the Hecke operators, whose previous ver-
sions required division by 2. We verify experimentally that every mod 2 Hecke

eigenclass found appears to have an attached Galois representation, giving ev-

idence for a conjecture in [AGM11]. Our method of computation was justified
in [AGM12].

1. Introduction

1.1. This is a continuation of a series of papers [AGM02, AGM08, AGM10, AGM11,
AGM12] devoted to the computation of the cohomology of congruence subgroups
Γ ⊂ SL(4,Z) with constant coefficients, together with the action of the Hecke oper-
ators on the cohomology. We also investigated the representations of the absolute
Galois group of Q that appear to be attached to Hecke eigenclasses in the cohomol-
ogy. The papers [AGM02, AGM08, AGM10] deal with complex coefficients, while
[AGM11, AGM12] deal with coefficients in a prime finite field Fp, with p odd. The
current paper takes p = 2. We concentrate on H5(Γ) because on the one hand, H5

supports cuspidal cohomology with C-coefficients, and on the other hand it is only
one degree below the virtual cohomological dimension of Γ and therefore amenable
to an algorithm due to one of us (PG) for computing Hecke operators [Gun00].
Our next project will be to rewrite our code to deal with finite-dimensional twisted
coefficients, which should lead to more interesting examples of attached Galois
representations, aimed at testing the generalization of Serre’s conjecture found in
[ADP02] and in [Her09].

As explained in [AGM11], when p > 5, the C- and mod p-betti numbers coincide.
In this case we can compute the cohomology in terms of the Steinberg module and
the sharbly complex, which is what we did. Namely, H5(Γ,K) ≈ H1(Γ, St⊗K) ≈
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H1(Γ, Sh• ⊗K). Here, K = C or Fp, Γ ⊂ SL(4,Z) is a congruence subgroup, St
denotes the Steinberg module, and Sh• the sharbly complex, whose definitions are
recalled in Section 2 below.

What we actually compute is the homology valued in the sharbly complex, be-
cause only in the sharbly complex do we know how to compute the Hecke action in
a feasible way. In theory we could compute the mod p cohomology using a spectral
sequence similar to that used by Soulé for SL(3,Z) in [Sou78]. However, even if we
carried out this arduous task, we do not know how to compute the Hecke action on
the resulting cohomology.

The method we use to compute H1(Γ, Sh• ⊗ F2) is the same as in the previous
papers. However, the algorithm in [Gun00] for the computation of the Hecke action
had required division by 2, which prevented our treatment of mod 2 coefficients.
Following a suggestion of Dan Yasaki, we overcome that problem in this paper.

1.2. The mod 2 homology is especially interesting for two reasons. One is that
there are many more mod 2 classes than exist for odd primes, so there is more
opportunity for testing conjectures and studying phenomenology. The other is
that every mod 2 Galois representation is odd and therefore again there are more
possibilities for investigating the Serre-type conjectures.

By Theorem 13 of [AGM12], the Hecke eigenvalue data we compile gives us parts
of Hecke eigenpackets ocurring in the sharbly homology of Γ0(N), for various N .
Therefore we can test Conjecture 5(d) of [AGM11], which asserts the existence of a
Galois representation unramified outside 2N associated to each such eigenpacket.
We do this by searching for the Galois representation using a computer program
described in Section 4. There can easily be more than one Galois representation
that fits our data for any given Hecke eigenclass, because we have only computed
a few Hecke operators at each level (because of time and space constraints). Our
Galois finder searches for the “simplest” Galois representation that fits our data
in each case. We use the supply of characters and 2-dimensional representations
coming from classical modular forms of weights 2, 3 and 4. In no case do we fail
to find a match, using just reducible representations made out of these blocks. An
explanation of why we use just these weights appears in Section 4.

Although we stop searching when we have found one Galois representation that
appears to be attached to a given Hecke eigenpacket, we know by the Brauer-
Nesbitt Theorem that up to semisimplification there can be at most one Galois
representation that is truly attached. This Galois representation might be describ-
able in many different ways using characters and classical cuspforms, because such
things can be congruent modulo a prime above 2. Of course, we would expect more
complicated and even irreducible 4-dimensional representations to be needed if we
could compute for much larger levels and more Hecke operators. But at least in
this small way we find evidence both for Conjecture 5(d) of [AGM11] and of the
correctness of our computations.

1.3. We now give a guide to the paper. In Section 2 we recall the definitions of
the Steinberg module, the sharbly complex, and the concept of attached Galois
representation. We state the conjecture of [AGM11] that asserts the existence of
attached Galois representations to Hecke eigenclasses in the sharbly homology.

In Section 3 we describe what we actually compute, namely certain Hecke eigen-
classes in the sharbly homology in degree 1. We use the Voronoi complex. We
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describe how the sharbly homology is calculated as a Hecke module, with reference
to our earlier papers for details. Then we explain what modifications we made to
the Hecke algorithm to allow us to work with F2-coefficients.

In Section 4 we describe our Galois representation finder. Because there are so
many mod 2 homology classes, we had to automate the process of finding candidates
for the conjecturally attached Galois representations.

In Section 5 we give our results. We give the level N of Γ, the dimension of
H1(Γ, Sh• ⊗ F2), and an enumeration of packets of Hecke eigenvalues. For each
packet, we give the dimension of its simultaneous eigenspace and a Galois repre-
sentation that appears to be attached to the packet.

It may be seen that every Galois representation that appears in our results
is reducible. Of course, if the conjecture of [ADP02] is true, and if there is a
robust enough connection between sharbly homology and group cohomology, then
there should exist plenty of irreducible Galois representations attached to sharbly
homology eigenclasses. But they would occur at levels far too large for us to
compute.

We thank Dan Yasaki for conversations that greatly helped this project at the
start. We thank Kevin Buzzard for very helpful correspondence, particularly in
regard to (4.8).

2. The Steinberg module and the sharbly complex

2.1. Let n > 2 and let Qn denote the vector space of n-dimensional row vectors.

2.2. Definition. The Sharbly complex Sh• is the complex of ZGL(n,Q)-modules
defined as follows. As an abelian group, Shk is generated by symbols [v1, . . . , vn+k],
where the vi are nonzero vectors in Qn, modulo the submodule generated by the
following relations:

(i) [vσ(1), . . . , vσ(n+k)]− (−1)σ[v1, . . . , vn+k] for all permutations σ;
(ii) [v1, . . . , vn+k] if v1, . . . , vn+k do not span all of Qn; and
(iii) [v1, . . . , vn+k]− [av1, v2, . . . , vn+k] for all a ∈ Q×.

The boundary map ∂ : Shk → Shk−1 is given by

∂([v1, . . . , vn+k]) =
n+k∑
i=1

(−1)i[v1, . . . , v̂i, . . . vn+k],

where as usual v̂i means to delete vi.

The sharbly complex

· · · → Shi → Shi−1 → · · · → Sh1 → Sh0

is an exact sequence of GL(n,Q)-modules. We may define the Steinberg module
St as the cokernel of ∂ : Sh1 → Sh0 (cf. [AGM12, Theorem 5]).

Of course, all these objects depend on n, which we suppress from the notation,
since we will later only work with n = 4.

Let Γ be a congruence subgroup of SL(n,Z).

2.3. Definition. Let M be a right Γ-module, concentrated in degree 0. The sharbly
homology of Γ with coefficients in M is defined to be H∗(Γ, Sh• ⊗Z M), where Γ
acts diagonally on the tensor product.
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If (Γ, S) is a Hecke pair in GL(n,Z) and M is a right S-module, the Hecke algebra
H(Γ, S) acts on the sharbly homology since S acts (diagonally) on Sh• ⊗Z M .

Here is a restatement of Corollary 8 of [AGM12], which shows the close connec-
tion between the sharbly homology and the group cohomology of Γ:

2.4. Theorem. For any Γ ⊂ GL(n,Z) and any coefficient module M in which 2
is invertible, there is a natural isomorphism of Hecke modules

H∗(Γ, Sh• ⊗Z M)→ H∗(Γ, St⊗Z M).

By Borel-Serre duality [BS73], if Γ is torsionfree, there is a natural isomorphism
of Hecke modules

Hi(Γ, St⊗Z M)→ H(n
2)−i(Γ,M)

for all i. This result can be extended to any Γ as long as its torsion primes are
invertible on M .

In general, the sharbly homology is more mysterious. Nevertheless, we still
expect it to have number theoretic significance, as described in Conjecture 2.7 as
follows.

2.5. Let Γ0(N) be the subgroup of matrices in SL(4,Z) whose first row is congruent
to (∗, 0, 0, 0) modulo N . Define SN to be the subsemigroup of integral matrices in
GL(4,Q) satisfying the same congruence condition and having positive determinant
relatively prime to 2N .

Let H(N) denote the Z-algebra of double cosets Γ0(N)SNΓ0(N). Then H(N) is
a commutative algebra that acts on the cohomology and homology of Γ0(N) with
coefficients in any F2[SN ] module. When a double coset is acting on cohomology
or homology, we call it a Hecke operator. Clearly, H(N) contains all double cosets
of the form Γ0(N)D(`, k)Γ0(N), where ` is a prime not dividing 2N , 0 6 k 6 m,
and

D(`, k) =



1
. . .

1
`

. . .

`


is the diagonal matrix with the first m− k diagonal entries equal to 1 and the last
k diagonal entries equal to `. It is known that these double cosets generate H(N)
(cf. [Shi71, Thm. 3.20]). When we consider the double coset generated by D(`, k)
as a Hecke operator, we call it T (`, k).

We can extend H(N) to a larger commutative algebra H∗(N) by adjoining the
double cosets of D(`, k) for ` | N . Such a double coset, considered as a Hecke
operator, is denoted U(`, k).

Let F2 be an algebraic closure of F2.

2.6. Definition. Let V be an H(N) ⊗Z F2-module. Suppose that v ∈ V is a
simultaneous eigenvector for all T (`, k) and that T (`, k)v = a(`, k)v with a(`, k) ∈
F2 for all prime ` 6 | 2N and all 0 6 k 6 4. If

ρ : GQ → GL(4,F2)
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is a continuous representation of GQ = Gal(Q/Q) unramified outside 2N , and

(1)

4∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Frob`)X)

for all ` 6 | 2N , then we say that ρ is attached to v.

Here, Frob` refers to an arithmetic Frobenius element, so that if ε is the cyclo-
tomic character, we have ε(Frob`) = `. The polynomial in (1) is called the Hecke
polynomial for v and `. If ` | N , we can still compute the left-hand side of (1)
and call it the Hecke polynomial for U(`, k), but it has no obvious bearing on the
attached Galois representation.

The following is a special case of [AGM11, Conjecture 5]:

2.7. Conjecture. Let N > 1. Let v be a Hecke eigenclass in H∗(Γ0(N), Sh•⊗ZF2).
Then there is attached to v a continuous representation unramified outside 2N ,

ρ : GQ → GL(4,F2).

3. Computing homology and the Hecke action mod 2

3.1. As explained in Sections 5 and 6 of [AGM12], we compute the Hecke operators
acting on sharbly cycles that are supported on Voronoi sharblies. Theorem 13 of
[AGM12] guarantees that the packets of Hecke eignvalues we compute do occur
on eigenclasses in H1(Γ0(N), Sh• ⊗Z F2). In this section, we recall results from
[AGM12] and explain how they are modified to work with F2 coefficients.

The sharbly complex is not finitely generated as a ZSL(n,Z)-module, which
makes it difficult to use in practice to compute homology. To get a finite complex
to compute H1, we use the Voronoi complex. We refer to [AGM12, Section 5]) for
any unexplained notation in what follows.

Let X0
n ⊂ R(n+1

2 ) be the convex cone of positive-definite real quadratic forms in n-
variables. This has a partial (Satake) compactification (X0

n)∗ obtained by adjoining
rational boundary components, which is itself a convex cone. The space (X0

n)∗ can
be partitioned into cones σ = σ(x1, . . . , xm), called Voronoi cones, where the xi
are contained in certain subsets of nonzero vectors from Zn. (We write elements of
Zn as row vectors, as we did in Section 2 for Qn.) The cones are built as follows:
each nonzero xi ∈ Zn determines a rank 1 quadratic form q(xi) = txixi ∈ (X0

n)∗.
Let Π be the closed convex hull of the points {q(x) | x ∈ Zn, x 6= 0}. Then each
of the proper faces of Π is a polytope, and the σs are exactly the cones on these
polytopes. The indexing sets are constructed in the obvious way: if σ is the cone
on F ⊂ Π, and F has distinct vertices q(x1), . . . , q(xm), then the indexing set is
{±x1, . . . ,±xm}. We let Σ denote the set of all Voronoi cones.

Let X∗n be the quotient of (X0
n)∗ by homotheties. The images of the Voronoi

cones are cells in X∗n. Let ZV• be the oriented chain complex on these cells, graded
by dimension, and let Z∂V• be the subcomplex generated by those cells that do
not meet the interior of X∗n (i.e., the image in X∗n of the positive-definite cone).
The Voronoi complex is then defined to be V• = ZV•/Z∂V•. For our purposes, it
is convenient to reindex V• by introducing the complex W•, where Wk = Vn+k−1.
The results of [AGM12] prove that if n 6 4, both W• and Sh• give resolutions of
the Steinberg module. In particular, let Γ = Γ0(N). If M is a Z[Γ]-module such
that the the order of all torsion elements in Γ is invertible, then H∗(Γ,W•⊗ZM) ≈
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H∗(Γ, Sh• ⊗Z M), and furthermore by Borel–Serre duality are isomorphic (after
reindexing) to H∗(Γ,M). These two complexes can be related as follows in our
case of interest: when n = 4, every Voronoi cell of dimension 6 5 is a simplex.
Thus for 0 6 k 6 2, we can define a map of Z[SL(4,Z)]-modules

θk : Wk → Shk

that takes the Voronoi cell σ(v1, . . . , vk+4) to θk((v1, . . . , vk+4)) := [v1, . . . , vk+4].
This allows us to realize Voronoi cycles in these degrees in the sharbly complex.

In the current setting, in which M ∼= F2 with trivial Γ-action, all torsion orders
in Γ are of course not invertible in M . Hence what we actually compute is more
subtle. Let K denote either W• or Sh•. It is necessary to distinguish between
H∗(K) = H∗(Γ,K ⊗Z M), i.e. the homology of Γ with coefficients in the complex
K⊗ZM and H1(K⊗ΓM), which is the homology of the complex K⊗ΓM and which
is the bottom line of a spectral sequence that computes H∗(K). The Hecke algebra
H acts on both of these homologies when K = Sh•, and the spectral sequence just
mentioned is H-equivariant.

Thus our computation begins by computing a basis {xi} of the homology group
H1(W• ⊗Γ F2). We then compute elements yi = θ1,∗(xi) ∈ H1(Sh• ⊗Γ F2). Let T
be a Hecke operator. We compute each Hecke translate Tyi and then find a sharbly
cycles zi such that zi = Tyi in H1(Sh• ⊗Γ F2) and such that zi is in the image of
the map θ1,∗. The inverse images θ−1

1,∗(zi) can be written as linear combinations of
the cycles xi, which gives a matrix representing the action of T from which we can
find eigenclasses and eigenvalues.

Unfortunately, as indicated in [AGM12, Section 6], we don’t know if the map
θ1,∗ is injective. Thus this raises the question of what these eigenvalues mean. The
answer is provided by Theorem 13 in [AGM12], which guarantees that if we find a
cycle v representing a nonzero class in H1(W⊗ΓF2) such that θ1(v)T is homologous
to aθ1(v) in Sh• ⊗Γ F2 (for a Hecke operator T ), then there exists an eigenclass in
H1(Sh•) with eigenvalue a for T . Hence eigenvalues we find in this way do occur in
the sharbly homology and conjecturally are associated with Galois representations
as in Conjecture 5 above.

3.2. Next we turn to the actual computation of the Hecke operators. Assume for
the moment that Γ is torsionfree. Let ξ =

∑
n(x)x be a 1-sharbly cycle mod Γ,

where all multiplicities n(x) are taken to be nonzero. We also assume for the
moment that 2 is invertible in the coefficient module. As described in [Gun00], we
can encode ξ as a collection of 4-tuples (x, n(x), {y}, {L(y)}) of the following data:

(1) The 1-sharbly x appears in ξ =
∑
n(x)x with multiplicity n(x).

(2) {y} is the set of 0-sharblies appearing in the boundary of x.
(3) For each 0-sharbly y in (2), the matrix L(y) is a lift of y to M4(Z). In other

words, the rows of the matrix L(y) equal the entries of y, up to permutation
and scaling by {±1}.

We further require that the lift matrices in (3) are chosen Γ-equivariantly: suppose
that for x, x′ in the support of ξ there exist y (respectively y′) appearing in the
boundary of x (resp., x′) with y = y′γ for some γ ∈ Γ. Then we require L(y) =
L(y′)γ. Thus we have written ξ as a collection of 1-sharblies with multiplicities and
with extra data that reflects the cycle structure of ξ mod Γ.

The congruence groups Γ we treat are not torsionfree in general, and we must
modify the above data. When Γ has torsion, it can happen that a given 0-sharbly
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y is taken to itself by a element of Γ that reverses orientation. In the language of
[AGM02, Section 3.8], such Voronoi cells are nonorientable; in that paper and its
sequels [AGM08, AGM10, AGM11] these cells are discarded when one computes
H1(W). Unfortunately, these cells are not discardable when one computes Hecke
operators using the ideas in [Gun00]: after applying a Hecke operator, such 0-
sharblies must themselves be “reduced” to rewrite the Hecke translate in terms of
cycles in the image of θ1.

The point for the current discussion is that, when encoding ξ as a 4-tuple, any
nonorientable 0-sharbly y must effectively have more than one lift matrix cho-
sen for it. In particular, if y is nonorientable then we can find an orientation-
reversing γ in the stabilizer of y with yγ2 = y, and we must replace the tuple
Φ = (x, n(x), {y}, {L(y)}) in our data with a pair of tuples Φ′,Φ′′. These tuples
are the same as Φ except that (i) if Φ has multiplicity n(x), then Φ′, Φ′′ each have
multiplicity n(x)/2, and (ii) if Φ′ has a lift matrix L(y) for y, then Φ′′ has the lift
matrix L(y)γ for y in the same position.

Hence we “split” the contribution n(x)x to ξ into a contribution of two 1-
sharblies, each of multiplicity n(x)/2, so that we can encode it as two 4-tuples
that can maintain the Γ-equivariance of the data. Of course there may be more
nonorientable 0-sharblies in the boundary of x than just y. If so we continue to
split tuples as needed, dividing multiplicities by 2 along the way. Since x has at
most 5 0-sharblies in its boundary, our original x gives rise to at most 25 tuples.

We now return to the case at hand, in which 2 is not invertible in the coefficients.
Clearly we cannot apply the above construction to encode ξ as a collection of
tuples, since we cannot replace n(x) by n(x)/2 if a 0-sharbly is taken to itself by its
stabilizer. Fortunately we are saved by an observation of Dan Yasaki: since −1 = 1
in the coefficients, there is no distinction between orientable and nonorientable
Voronoi cells! All Voronoi cells are orientable; none are discarded when one builds
the complex W•. The consequence is that a sharbly chain never becomes a cycle
mod Γ because of orientation-reversing self-maps on 0-sharbles in its boundary.
Hence we never have to divide by 2 in building the tuples Φ to encode ξ.

4. Finding attached Galois representations

4.1. Suppose we have a finite-dimensional F2-vector space V with a Hecke action.
We now describe how we find Galois representations that are conjecturally attached
to Hecke eigenvectors in V ⊗F2

F2. Our Galois representation finder is a Python
script built on the mathematical software package Sage [S+12].

4.2. We start by using the algorithm in [Gun00] to compute explicitly the Hecke
operators T (`, k) for k = 1, 2, 3 and for ` ranging through a set L of small odd
primes. The operator is U(`, k) rather than T (`, k) if ` | N . The L we use depends
on N as in Table 1. We use a larger L when N is smaller, because the computations
are faster for smaller N .

Let F be the field generated over F2 by the eigenvalues of the Hecke operators
we have computed. F is a finite extension of F2. We replace V with its extension
of scalars V ⊗F2

F for the rest of the discussion.
For each operator we have computed, we decompose V into eigenspaces under

that operator. Then we take the common refinement of all the decompositions. In
other words, let E have the form

⋂
(`,k)E`,k, where E`,k is any one of the eigenspaces

for the operator at (`, k), and the intersection is over all ` ∈ L and k = 1, 2, 3. We
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Table 1. We compute T (`, k) and U(`, k) at level N for the `
shown in L.

N L
3–10, 17 {3, 5, 7, 11, 13}
11 {3, 5, 7, 11, 13, 17}
13 {3, 5, 7, 11}
other {3, 5, 7}

find all the non-zero E of this form, and call each a simultaneous eigenspace. The
E’s are pairwise disjoint, and together they span a subspace of V . By construction,
the Hecke eigenvalues a(`, k) are constant on each E and characterize it. The
function (`, k) 7→ a(`, k) is the Hecke eigenpacket of E.

To a simultaneous eigenspace E we now attach a family of polynomials. Let
L′ = {` ∈ L | ` - N}.

4.3. Definition. The polynomial system F(E) is the mapping that sends ` ∈ L′
to the Hecke polynomial with eigenvalues a(`, k) defined in (1).

The Hecke polynomials have coefficients in the field of eigenvalues F, but they
do not necessarily split into linear factors over that field. We enlarge F if necessary
so that all the Hecke polynomials for ` ∈ L′ split into linear factors in F[X], and
again we replace V with its extension of scalars V ⊗F2

F. The largest F we have
had to work with is F64 at level N = 59, a very small field from the computational
standpoint.

4.4. We will be using various Galois representations ρ that have been defined clas-
sically. Each ρ is a continuous, semisimple representation of GQ unramified outside
2N . It takes values in GL(n′,F) for n′ = 1 or 2, where F is the particular finite
extension of F2 described above. The characteristic polynomial of Frobenius for ρ
is known and is of degree n′ for each ` - 2N .

4.5. Definition. The polynomial system F(ρ) is the mapping that sends ` ∈ L′ to
the characteristic polynomial of Frobenius for ρ at `.

Before we say which ρ we consider, let us describe how we conjecturally attach
a sum of ρ’s to a simultaneous eigenspace E. Say that F(ρ) divides F(E) if, for
each ` ∈ L′, the polynomial at ` for ρ divides the polynomial at ` for E. When one
polynomial system divides another, define the quotient system in the obvious way.

For a given E, let F = F(E) be its polynomial system. We run through a list of
Galois representations ρ in some fixed order. The first time we find a ρ (call it ρ1)
whose system divides F , we replace F by the quotient system. If the system for ρ1

divides F more than once (say n1 times), we take the quotient n1 times. After
that, we continue running through the rest of the ρ’s in our fixed order. When we
find a ρ2 whose system divides the new F , say n2 times, we again replace F with
the quotient system. We stop with success when F becomes the trivial system,
meaning all polynomials have degree zero. We stop with failure when we run out
of ρ’s before F becomes trivial. In the successful cases, we say that the Galois
representation apparently attached to E is

ρ⊕n1
1 ⊕ ρ⊕n2

2 ⊕ · · · .
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The word “apparently” means that this Galois representation matches our Hecke
data as far as our data extends.

4.6. Now we describe the Galois representations ρ we use. We have two different
lists of Galois representations, ρ2,4 and ρ2,3. With either list, we always successfully
find a Galois representation that is apparently attached to one of our simultaneous
eigenspaces E. Specific results are in Section 5. The lists ρ2,4 and ρ2,3 are ordered,
and the order matters in the following sense. When we split the first representation,
ρ1, off of E, we want ρ1 to be as simple as possible. ρ2 should be the second simplest,
and so on.

In this subsection, we define ρ2,4 and ρ2,3. In (4.7)–(4.9), we give the motivation
behind the definitions.

ρ2,4 begins with a list of one-dimensional Galois representations χ. These are
Dirichlet characters with value in F, which we identify with one-dimensional repre-
sentations as usual. Let M be the odd part of N . The definition is that a Dirichlet
character χ belongs to ρ2,4 if and only if the conductor N1 of χ is a divisor of M .
Following the intuition that a Dirichlet character with smaller conductor is simpler
than one with a larger conductor, we put the Dirichlet characters into ρ2,4 in order
of increasing N1. For instance, χ = 1 comes first. Sage’s class DirichletGroup

enumerates the χ for a given N1 automatically. The characteristic polynomial of
Frobenius at ` for χ is 1 + χ(`)X, for all ` - 2N .

After the Dirichlet characters, we put into ρ2,4 certain Galois representations ρ
coming from classical cusp forms for congruence subgroups of SL(2,Z). We em-
phasize that the cusp forms are in characteristic zero, though the ρ take values in
characteristic two. The characteristic polynomials of Frobenius for the cusp forms
are naturally defined over number fields, so, as we describe which cusp forms we
use, we must also describe how we reduce to get Galois representations defined
over F.

Let N1 be a divisor of M . Let f be a newform of weight 2 or 4 for Γ0(N1). The
coefficients of the q-expansion of f generate a number field Kf , with ring of integers
OKf

. Let p be a prime of Kf over 2. If F is of high enough degree over F2, then the
finite field OKf

/p has an embedding αp into F. In every case we have computed,
F is indeed large enough so that this embedding exists. Then the pair (f, p) gives
rise to a Galois representation ρ into GL(2,F), by reduction mod p composed with
αp. For any ` - 2N , the characteristic polynomial of Frobenius is 1−αp(a`)X+X2,
where a` is the `-th coefficient in the q-expansion of f .

By definition, ρ2,4 contains the representation ρ for (f, p), for all N1 |M and all
newforms f of weight 2 or 4 for Γ0(N1). The order is as follows. The outermost
loop is over weight 2 first, then weight 4. For a given weight, we let N1 run through
the divisors of M in increasing order. We find the newforms f for Γ0(N1) and the
given weight. Sage’s class CuspForms, with its method newforms, makes this last
step automatic. For each newform f , we find the number field Kf . If there is more
than one f for the given weight and N1, we sort these f ’s by two keys; the primary
key says the degree [Kf : Q] should be increasing, and the secondary key says that
the absolute value of the discriminant of Kf should be increasing.

We now turn to the definition of ρ2,3. It begins with the same Dirichlet characters
as ρ2,4, in the same order. Next, let N1 |M . Let ψ be a character on Z/N1Z. Let
f be a newform of weight 2 or 3 with level N1 and nebentype character ψ. Let
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Kf and p be as before. The pair (f, p) gives rise to a Galois representation ρ into
GL(2,F) as above.

By definition, ρ2,3 contains the representation ρ for (f, p), for all N1 |M , all ψ,
and all newforms f of weight 2 or 3 of level N1 and nebentype character ψ. The
order is as follows. The outermost loop is over weight 2 first, then weight 3. For a
given weight, we let N1 run through the divisors of M in increasing order. For a
given N1, we run through the ψ in the order Sage uses, which is to fix generators of
the character group and raise them to powers in lexicographic order, starting with
0-th powers. In particular, the trivial ψ comes first. We find the newforms for the
given weight and ψ, again using Sage’s class CuspForms. For each newform f , we
find the number field Kf , and sort the f ’s by degree and discriminant as before.

4.7. The definitions of ρ2,4 and ρ2,3 present two different perspectives on how
Galois representations would be attached to our homology classes.

Our construction of ρ2,4 reflects a guess based on an analogy with our first papers
in this series, which studied homology in characteristic zero [AGM02, AGM08,
AGM10]. In them, we found that, for small levels, all the homology appeared to be
accounted for by classes supported on the Borel-Serre boundary, and that it was
always related to Dirichlet characters and classical cuspforms of weights 2 and 4.
Although with this guess we might expect to need newforms of even level dividing
N , in practice we did not.

By contrast, the list ρ2,3 reflects the conjecture found in [ADP02]. Here we seek
mod 2 Galois representations which the conjecture would associate to a homology
class of level N , weight k and trivial nebentype. In particular, the Serre conductor
of such Galois representations would divide the odd part M of the level N . We
never get to test this for more than two-dimensional Galois representations, not all
the way to four dimensions, because we keep splitting off the Dirichlet characters.
Our guesses for two-dimensional representations are that they are mod 2 Galois rep-
resentations which Serre’s conjecture would attach to a homology class of level M ,
weight k and trivial nebentype. But we don’t have a good way to construct these
mod 2 objects, except by reducing characteristic-zero modular forms mod 2. Kevin
Buzzard tells us that we are guaranteed to find all such two-dimensional mod 2
Galois representations by looking at modular forms of level M , weights 2 or 3, and
a range of nebentypes. In (4.8) let us explain this guarantee.

4.8. We thank Kevin Buzzard for much of the information in this subsection. Let σ
be a mod 2 Galois representation which Serre’s conjecture (now a theorem of Khare-
Wintenberger [KW09a, KW09b]) would attach to a homology class of level M ,
weight k and trivial nebentype. The following arguments are valid for all p prime
to M , including p = 2 [Edi92, Thm. 4.3]. First of all, we do not have to worry about
k = 1, because by multiplying by the Hasse invariant we can move to k = p = 2.
Thus we may assume k > 2. Any eigenform will show up, up to a twist, in weight at
most p+ 1. Thus for p = 2, where there are no twists at all, we need only compute
in weights k = 2 and 3. All the mod 2 eigenforms lift to characteristic zero, because
k > 2. Because p 6 3, we cannot guarantee that the nebentype character lifts to
the character we expect; however, we know that it lifts to some character. Since the
eigenforms lift to characteristic zero, well-known work of Deligne attaches p-adic
representations to them. In turn, these reduce to mod p representations, one of
which is the given σ.
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In practice, there are a large number of nebentypes ψ, and often a large number
of cusp forms for a given nebentype. We cut down on the amount of computation
as follows. Our desired four-dimensional Galois representation must have deter-
minant 1. In every case where we use a cusp form, we have already split off two
Dirichlet characters; that is, the four-dimensional representation is χ1 ⊕ χ2 ⊕ ρ3

where χ1, χ2 are Dirichlet characters and ρ3 is from a cusp form of nebentype ψ.
Thus det ρ3 = δ, where we define δ = det(χ1χ2)−1. Furthermore, det ρ3 = detψ.
When we construct the list ρ2,3 is our program, we already know χ1 and χ2, so we
make the list smaller by only including ψ that are congruent to δ mod 2.

4.9. Let ∆ be the group of characters ψ : (Z/MZ)× → C that are congruent to 1
mod 2. The ψ we need to use are the coset of ∆ translated by δ, so we would like
to understand ∆. Let µ be the exponent of the group (Z/MZ)×. All our ψ take
values in Q(ζµ), the cyclotomic field of µ-th roots of unity, and “mod 2” means
modulo a prime ideal pµ over 2 in Q(ζµ). Let ν be the power of 2 dividing µ, and
let o be the odd part, so that µ = νo. As usual, Q(ζµ) is the compositum of Q(ζν)
and Q(ζo), and pµ can be understood by studying the primes pν , po over 2 in their
respective fields.

4.10. Lemma. ∆ is the group of characters whose image lies in Q(ζν). Equiva-
lently, it is the group of characters whose orders are pure powers of two dividing ν.

To prove the lemma, first consider ν. In Q(ζν), 2 is totally ramified, and pν =
(2, 1 − ζν) is the only prime over 2. Any Dirichlet character is 1 mod 2, because
ζν and all its powers are congruent to 1 mod pν . Second, consider o. For an odd
prime q that divides o, let o′ be maximal power of q that divides o. In Q(ζo′), 2 is
unramified. Under the mapping to the residue class field, the o′ distinct powers of
ζo′ map to o′ distinct values, so only the trivial power ζ0

o′ = 1 maps to 1 mod 2.
That is, only the trivial Dirichlet character is 1 mod po′ . The lemma follows from
the Chinese remainder theorem. �

5. Results

For the list ρ2,4, subsection (5.1) contains a table of results for several levels N .
For each level N , we first give the overall dimension of the H1 we compute. Each
succeeding row describes a simultaneous eigenspace E. The first two columns in
the row give the type of E, a Roman numeral to be defined below, followed by
dimE.

Let 1 be the trivial one-dimensional Galois representation. Roman numeral I
means that the Galois representation apparently attached to our Hecke eigenspace
is the sum of four trivial representations, 1⊕4. The symbol Im means the represen-
tation is the sum of two trivial and two non-trivial representations, 1⊕1⊕χm⊕χ̄m.
The non-trivial representations go to F4 rather than F2. More precisely, χm maps
(Z/mZ)× surjectively to F×4 , and χ̄m is its conjugate under Gal(F4/F2). These
statements characterize χm and χ̄m up to conjugation.

Roman numerals II and IV mean that the Galois representation apparently at-
tached to our Hecke eigenspace is the sum of two 1’s and the Galois representation
attached to a cuspidal newform from ρ2,4. The newform has weight 2 or 4, re-
spectively. The congruence subgroup is Γ0(N), where N is the level where the
representation first appears in the tables.
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In subsection (5.2), we present data for ρ2,3, but list only the representations
where ρ2,4 and ρ2,3 give different results. Roman numeral III stands for the sum
of two 1’s and a cuspidal newform of weight 3 from ρ2,3.

Our tables do not give the Hecke polynomials of the T (`, k). This is because
the Hecke polynomials can easily be recovered from the Galois representation. For
example, all the T ’s for a type I representation have Hecke polynomial (x + 1)4.
The Hecke polynomials for the U(`, k) are described below. The list of `’s used for
a given N was given in Table 1.

For types II, III, and IV, we give details about the cusp form in the third column
of each row. The coefficients of the q-expansions are in Q unless the number field
is indicated. We write i =

√
−1 as usual.

We observe that the results for types I, Im, and II are always the same at a given
level for ρ2,4 and ρ2,3. The only differences we see are when type IV changes to
type III. It is somewhat surprising that the type II representations never change
between ρ2,4 and ρ2,3. For ρ2,4 and weight 2, we always searched for cusp forms
on Γ0(N1), which means Γ1(N1) with trivial nebentype. For ρ2,3 and weight 2, we
searched for cusp forms of all nebentypes. The observation is that our program
produced a weight 2 cusp form for some nebentype if and only if that nebentype
was trivial.

The same cusp form can appear at the same level N for different simultaneous
eigenspaces. This reflects the different embeddings of the number fields into F. For
example, in the last table of (5.1), with ρ2,4 and N = 59, the same weight-2 cusp
form appears four times, in all four of the type II representations. The cusp form
is defined over a quintic extension of Q. We find that 2 factors in the quintic field
as a product p1p2 of prime ideals, where p1 is unramified and has residue class field
F8, while p2 has ramification index 2 and residue class field F2. The first three
occurrences of the cusp form belong to p1. Let $ be a root of x3 +x+ 1 = 0 in F8.
The Hecke polynomials for the first representation are

(x+ 1)2 · (x2 +$2x+ 1) (` = 3)

(x+ 1)2 · (x2 +$x+ 1) (` = 5)

(x+ 1)2 · (x2 + ($2 +$)x+ 1) (` = 7)

The Galois group Gal(F8/F2) permutes $, $2, and $4 = $+$2 in a three-cycle.
Checking the Hecke polynomials of the second and third Galois representations,
we see that these three representations (those with eigenspaces of dimension 4) are
permuted in a three-cycle by the Galois group. The fourth occurrence of the cusp
form (dimension 15) is for p2; here the coefficients of the Hecke polynomials are
down in F2.

For a given N , the sum of the dimensions of the simultaneous eigenspaces is
often less than the dimension of the full H1. This is because many Hecke operators,
both T (`, k) and U(`, k), turn out not to be semisimple.

Every level N we have computed has some representations of type I. A few have
type Im. To avoid cluttering the tables, we list these representations here. The
notation (N, d) means level N has a representation with corresponding eigenspace
of dimension d. When the same N occurs in more than one pair, there are simul-
taneous eigenspaces where the T (`, k) act the same but the U(`, k) act differently.

• The type I representations that appear to be attached to our data are
(3, 1), (4, 1), (5, 1), (6, 5), (7, 3), (8.6), (9, 1), (9, 4), (10, 7), (11, 1), (12, 19),



MOD 2 HOMOLOGY FOR GL(4) AND GALOIS REPRESENTATIONS 13

(13, 1), (14, 13), (15, 14), (16, 17), (17, 6), (18, 5), (18, 16), (19, 1), (20, 30),
(21, 16), (22, 5), (23, 3), (24, 55), (25, 1), (25, 9), (26, 7), (27, 1), (27, 3),
(27, 4), (28, 43), (29, 1), (30, 59), (31, 3), (32, 40), (33, 14), (34, 29), (35, 18),
(36, 19), (36, 50), (37, 1), (38, 5), (39, 21), (41, 8), (43, 10), (47, 3), (53, 1),
(59, 1).
• We find one type I9 representation of dimension 2 at level 27.
• We find one type I7 representation of dimension 4 at level 35.

We use the operators U(`, k) to divide up the simultaneous eigenspaces as finely
as possible, and we compute their Hecke polynomials, but we do not consider the
U(`, k) when attaching Galois representations. Again, to avoid cluttering the tables
with U(`, k) data, we summarize their Hecke polynomials here. The general rule is
that, when ` is an odd prime dividing N , the Hecke polynomial of U is x4 + x3 +
x2 + x+ 1. We list the exceptions in the format (N , U`, d), which means that for
all the representations with a d-dimensional eigenspace we have found at level N ,
the operator U(`, k) has the Hecke polynomial described.

• The Hecke polynomial is (x2 + x+ 1)2 for (9, U3, 4), (18, U3, 16), (25, U5,
2 or 9), (27, U3, 2 or 4) and (36, U3, 50).
• The Hecke polynomial is x4 + x3 + 1 for (27, U3, 3).
• Let ω be a primitive cube root of unity in F4. At level N = 33, the Hecke

polynomial for U3 is x4 + ωx3 + x2 + ωx + 1 on one of the 4-dimensional
eigenspaces; for the other 4-dimensional eigenspace, it is the polynomial’s
conjugate under Gal(F4/F2), namely x4 + (ω + 1)x3 + x2 + (ω + 1)x + 1.
At level N = 39, the same pair of conjugate Hecke polynomials occur for
U3 and the pair of 2-dimensional eigenspace, for both types III and IV.
• The Hecke polynomial is x4 + x+ 1 for (33, U3, 9), and also for (39, U3, 4)

for both types III and IV.

5.1. Here are the results of types II and IV for ρ2,4. (Types I and Im were described
above.)

Level 11. Dimension 5.
II 4 ρ2,11 = q − 2q2 − q3 + 2q4 + q5 +O(q6)

Level 13. Dimension 5.
IV 2 ρ4,13 = q − 5q2 − 7q3 + 17q4 − 7q5 +O(q6)

Level 19. Dimension 9.
II 4 ρ2,19 = q − 2q3 − 2q4 + 3q5 +O(q6)
IV 2 ρ4,19 = q − 3q2 − 5q3 + q4 − 12q5 +O(q6)

Level 23. Dimension 12.

II 9 q + b0q
2 + (−2b0 − 1) q3 + (−b0 − 1) q4 + 2b0q

5 +O(q6), with b0 = (−1 +
√

5)/2.

Level 25. Dimension 14.
IV 2 q − q2 − 7q3 − 7q4 +O(q6)

Level 26. Dimension 25.
IV 10 ρ4,13

Level 27. Dimension 20.
II 4 q − 2q4 +O(q6)

Level 29. Dimension 17.

II 5 q + b0q
2 − b0q3 + (−2b0 − 1) q4 − q5 +O(q6), with b0 = −1 +

√
2.
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Level 31. Dimension 16.

II 9 q + b0q
2 − 2b0q

3 + (b0 − 1) q4 + q5 +O(q6), with b0 = (1 +
√

5)/2.

Level 33. Dimension 35.
II 4 ρ2,11

II 4 ρ2,11

II 9 ρ2,11

Level 37. Dimension 21.
II 12 q − 2q2 − 3q3 + 2q4 − 2q5 +O(q6)

IV 2 ρ4,37 = q + b0q
2 +

(
− 1

8b
3
0 − 9

8b
2
0 − 13

4 b0 −
11
4

)
q3 +

(
b20 − 8

)
q4

+
(

13
8 b

3
0 + 85

8 b
2
0 + 25

4 b0 −
93
4

)
q5 +O(q6), with b40 + 6b30 − b20 − 16b0 + 6 = 0.

IV 2 ρ4,37

Level 38. Dimension 40.
II 15 ρ2,19

IV 10 ρ4,19

Level 39. Dimension 41.
IV 2 ρ4,13

IV 2 ρ4,13

IV 4 ρ4,13

Level 43. Dimension 26.

IV 2 ρ4,43 = q + b0q
2 +

(
1
8b

3
0 + 1

8b
2
0 − 7

2b0 −
13
4

)
q3 +

(
b20 − 8

)
q4 +(

− 9
8b

3
0 − 33

8 b
2
0 + 19

2 b0 + 5
4

)
q5 +O(q6), with b40 + 4b30 − 9b20 − 14b0 + 2 = 0.

IV 2 ρ4,43

Level 47. Dimension 25.

II 9 ρ2,47 = q+b0q
2+
(
b30 − b20 − 6b0 + 4

)
q3+

(
b20 − 2

)
q4+

(
−4b30 + 2b20 + 20b0 − 10

)
q5+

O(q6), with b40 − b30 − 5b20 + 5b0 − 1 = 0.
II 9 ρ2,47

Level 53. Dimension 33.
II 8 q − q2 − 3q3 − q4 +O(q6)

IV 2 q+b1q
2+
(

1
14b

3
1 − 3

14b
2
1 − 37

14b1 −
3
2

)
q3+

(
b21 − 8

)
q4+

(
− 5

14b
3
1 − 13

14b
2
1 + 31

14b1 + 3
2

)
q5+

O(q6), with b41 + 4b31 − 16b21 − 42b1 + 49 = 0.

Level 59. Dimension 36.

II 4 ρ2,59 = q + b0q
2 +

(
− 1

4b
4
0 + 5

4b
2
0 − 1

2b0
)
q3 +

(
b20 − 2

)
q4

+
(

3
4b

4
0 + 1

2b
3
0 − 23

4 b
2
0 − 3b0 + 7

)
q5 +O(q6), with b50 − 9b30 + 2b20 + 16b0 − 8 = 0.

II 4 ρ2,59

II 4 ρ2,59

II 15 ρ2,59

IV 4 q+b1q
2 +(−3b1 + 1) q3 +(b1 − 4) q4 +(3b1 − 17) q5 +O(q6), with b1 = (1+

√
17)/2.

5.2. Here are the results for ρ2,3, where they differ from ρ2,4.

Level 13. Dimension 5.
III 2 ρ3,13 = q+b0q

2 +((i− 1) b0 − 3) q3 +((−2i− 2) b0 − i) q4 +(b0 + 3i+ 3) q5 +O(q6),
for Γ1(13) with nebentype mod 13 mapping 2 7→ i, with coefficients in Q(i)[b0]/(b20+
(2i+ 2) b0 − 3i).
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Level 19. Dimension 9.
III 2 ρ3,19 = q + b1q

2 − b1q
3 − 9q4 + 4q5 + O(q6), for Γ1(19) with nebentype mod 19

mapping 2 7→ −1, where b1 =
√
−13.

Level 25. Dimension 14.
III 2 q + b0q

2 + ib0q
3 − iq4 + O(q6), for Γ1(25) with nebentype mod 25 mapping 2 7→ i,

with coefficients in Q(i)[b0]/(b20 − 3i).

Level 26. Dimension 25.
III 10 ρ3,13

Level 37. Dimension 21.

III 2 ρ3,37 = q+ b0q
2 +

(
1
4 ib

4
0 +

(
1
4 i−

1
4

)
b30 + 11

4 b
2
0 +

(
5
4 i+ 5

4

)
b0 − 3i

)
q3 +

(
b20 − 4i

)
q4 +(

− 1
4 ib

5
0 +

(
− 1

2 i+ 1
2

)
b40 − 13

4 b
3
0 + (−5i− 5) b20 + 17

2 ib0 + 6i− 6
)
q5 +O(q6),

for Γ1(37) with nebentype mod 37 mapping 2 7→ i, with coefficients in
Q(i)[b0]/(b60 + (3i+ 3) b50 − 10ib40 + (−34i+ 34) b30 − 5b20 + (−59i− 59) b0 − 24i).

III 2 ρ3,37

Level 38. Dimension 40.
III 10 ρ3,19

Level 39. Dimension 41.
III 2 ρ3,39 = q+b0q

2 +((i− 1) b0 − 3) q3 +((−2i− 2) b0 − i) q4 +(b0 + 3i+ 3) q5 +O(q6),
for Γ1(13) with nebentype mod 13 mapping 2 7→ i, with coefficients in Q(i)[b0]/(b20+
(2i+ 2) b0 − 3i).

III 2 ρ3,39

III 4 ρ3,39

Level 43. Dimension 26.

III 2 ρ3,43 = q + b1q
2 +

(
− 1

4b
5
1 − 15

4 b
3
1 − 25

2 b1
)
q3 +

(
b21 + 4

)
q4 +

(
1
4b

5
1 + 11

4 b
3
1 + 9

2b1
)
q5 +

O(q6), for Γ1(43) with nebentype mod 43 mapping 3 7→ −1, with coefficients in
Q[b1]/(b61 + 20b41 + 121b21 + 214).

III 2 ρ3,43

Level 53. Dimension 33.

III 2 q + b0q
2 +

(
− 39

578 ib
7
0 +

(
− 91

578 i+ 91
578

)
b60 − 649

578b
5
0 +

(
− 1499

578 i−
1499
578

)
b40 + 2233

578 ib
3
0 +(

2666
289 i−

2666
289

)
b20 + 219

578b0 + 861
289 i+ 861

289

)
q3 +

(
b20 − 4i

)
q4

+
(
− 15

578b
7
0 +
(
− 35

578 i−
35
578

)
b60 + 383

578 ib
5
0 +
(

621
578 i−

621
578

)
b40 + 2993

578 b
3
0 +
(

1181
289 i+ 1181

289

)
b20−

6131
578 ib0 −

220
289 i + 220

289

)
q5 + O(q6), for Γ1(53) with nebentype mod 53 mapping 2 7→

i, with coefficients in Q(i)[b0]/(b80 + (3i+ 3) b70 − 16ib60 + (−52i+ 52) b50 − 48b40 +
(−207i− 207) b30 − 26ib20 + (122i− 122) b0 − 7).

Level 59. Dimension 36.

III 4 q+b1q
2+
(

1
4b

4
1 + 9

2b
2
1 + 65

4

)
q3+

(
b21 + 4

)
q4+

(
1
4b

4
1 + 11

2 b
2
1 + 93

4

)
q5+O(q6), for Γ1(59)

with nebentype mod 59 mapping 2 7→ −1, with coefficients in Q[b1]/(b61 + 27b41 +
215b21 + 509).
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