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Math 233 PRACTICE FINAL EXAM, SET # 2 UMass

DISCLAIMER: This practice exam is intended to give you an idea about what a two-hour final exam is
like. It is not possible for any practice exam to cover every topic, and the content, coverage and format
of your actual exam could be different from this practice exam.

Part I: Multiple Choice Problems. You only need to give the answer; no justification needed.

1. Determine which of the following vector fields is conservative.
(a) ⟨−y, x, 0⟩ (b) ⟨xy, yz, zx⟩ (c) ⟨2xy, x2 + 2yz, y2⟩

(d) ⟨y2, z2, x2⟩ (e) ⟨x2y, y2z, z2x⟩ (f) ⟨x, x, x⟩

ANS: c

SOLUTION: Note that we may disqualify any vector field with nonzero curl. In particular, we
see that curl⟨−y, x, 0⟩ = ⟨0, 0, 2⟩, curl⟨xy, yz, zx⟩ = ⟨−y,−z,−x⟩,
curl⟨y2, z2, x2⟩ = ⟨−2z,−2x,−2y⟩, curl⟨x2y, y2z, z2x⟩ = ⟨−y2,−z2,−x2⟩ and
curl⟨x, x, x⟩ = ⟨0,−1, 1⟩. On the other hand, one can check that curl⟨2xy, x2 + 2yz, y2⟩ = 0⃗ and
find that f(x, y, z) = x2y + y2z + C is a potential function.

2. Let z = x2y and let x, y be functions of t with x(1) = 1, y(1) = 2, x(2) = 3, y(2) = 4, x′(1) = A,
y′(1) = B, x′(2) = C, y′(2) = D. Find dz

dt when t = 1.

(a) 4A+D (b) 4A+B (c) 4C+D (d) A+2D (e) 4C+2D (f) A+4B

ANS: b

SOLUTION: Here we invoke the chain rule:

dz

dt
=

dz

dx

dx

dt
+

dz

dy

dy

dt

Now zx = 2xy and zy = x2, in particular at t = 1 we have zx(1) = 2(1)(2) = 4 and zy(1) =
(1)2 = 1. So now dz

dt (1) = 4A+B. The other given information is extraneous.

3. Find the minimum speed of the particle whose position function is r⃗(t) = ⟨t2, 1− 2t, t⟩.
(a) 0 (b) 1 (c)

√
2 (d)

√
3 (e)

√
5 (f) 6

ANS: e

SOLUTION: The speed (at time t) is given by the quantity |r⃗′(t)|. Since r⃗′(t) = ⟨2t,−2, 1⟩,
we have |r⃗′(t)| =

√
5 + 4t2. This function’s only critical point at t = 0 corresponds to a local (in

fact, global) minimum with value
√
5.

4. Find the value of the gradient vector field of the function z = x2y3 at the point (1, 1).

(a) ⟨2,−3⟩ (b) ⟨2, 3⟩ (c) 1√
11
⟨3,−2⟩

(d) ⟨2,−3, 1⟩ (e) 1√
11
⟨2, 3⟩ (f) 1√

14
⟨3,−2, 1⟩
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ANS: b

SOLUTION: ∇z = ⟨2xy3, 3x2y2⟩ and so ∇z(1, 1) = ⟨2(1)(1)3, 3(1)2(1)2⟩ = ⟨2, 3⟩.

5. The figure depicts a 2-dimensional vector field F⃗ as well as five oriented paths. Place in order, from
smallest to largest, the five values.

A =

∫
C1

F⃗ · dr⃗ B =

∫
C2

F⃗ · dr⃗ C =

∫
C3

F⃗ · dr⃗ D =

∫
C4

F⃗ · dr⃗ E =

∫
C5

F⃗ · dr⃗

smallest largest

ANS: E < C < B < D < A

SOLUTION: Take note of the antisymmetry across the x-axis in this vector field. Observe that
C = 0 since the value integrating along the top half of the circle will be the negative of the value
integrating along the bottom half. Next note that E < 0, since the entirety of the associated
curve is in the negative tangent direction to F⃗ . B and D are both positive since their curves
(predominantly) form acute angles with F⃗ along their lengths, however B should be smaller as
its curve’s steeper slope implies a smaller tangential (to F⃗ ) component. Lastly, A is entirely in
the tangent direction to F⃗ and the clear winner in terms of magnitude.

6. Find a non-zero vector perpendicular to the plane that passes through the points (1, 0, 0), (5, 4, 0)
and (0, 4, 1).

(a) ⟨1,−4,−5⟩ (b) ⟨1,−4, 5⟩ (c) ⟨−5, 1, 4⟩

(d) ⟨4,−4, 20⟩ (e) ⟨4, 1, 5⟩ (f) ⟨4, 4, 20⟩

ANS: d

SOLUTION: This is no different than asking for a normal vector to the specified plane. The
difference vectors ⟨5 − 1, 4 − 0, 0 − 0⟩ = ⟨4, 4, 0⟩ and ⟨5 − 0, 4 − 4, 0 − 1⟩ = ⟨5, 0,−1⟩ lie on the
plane, so then ⟨5, 0,−1⟩ × ⟨4, 4, 0⟩ = ⟨4,−4, 20⟩ is a normal vector to the plane.
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PART II: Written Problems. To earn full credit for the following problems you must show your work.
You can leave answers in terms of fractions and square roots.

1. Find an equation for the plane consisting of all points that are equal distance from the two points
(1, 1, 0) and (0, 1, 1)

ANS: z = x

SOLUTION: First, we can consider the line segment between these points given by (t, 1, 1− t)
for 0 ≤ t ≤ 1. The midpoint at t = 1

2 given by ( 12 , 1,
1
2 ) must be on the desired plane by

definition. Furthermore, the direction vector ⟨1, 0,−1⟩ of this line segment must be orthogonal
to the plane, otherwise there would be points on the plane closer to (1, 1, 0) than (0, 1, 1) and
vice versa. (Think projection vectors) This is all the data we need to have the equation of the
plane: (1)(x− 1

2 ) + (0)(y − 1) + (−1)(z − 1
2 ) = 0, which simplifies to x− z = 0.

2. Find the maximum and minimum values of the function f(x, y) = x2 − y2 subject to the constraint
x2 + y2 ≤ 1.

ANS: Max is 1, min is −1

SOLUTION: The extreme values of f on a closed region must occur either at a critical point
within the region or on the boundary of the region. So, we first look at critical points: ∇f =
⟨2x,−2y⟩ which is the zero vector only at (0, 0). This point is in the region since (0) + (0) ≤ 1,
and we have f(0, 0) = (0)2 − (0)2 = 0. Now we look at the boundary x2 + y2 = 1. We
can optimize f with input restricted to this circle by noting the optimizing inputs must satisfy
⟨2x,−2y⟩ = λ⟨2x, 2y⟩ for some constant λ. The first component of this equality tells us either
x = 0 or λ = 1. In the former case, we have 0 + y2 = 1 =⇒ y = ±1 giving the candidate
points (0, 1) and (0,−1); now f(0,±1) = 0 − (±1)2 = −1. On the other hand, if λ = 1, then
the second component of the equality above forces y = 0. So we get two more candidates at
(1, 0) and (−1, 0), and f(±1, 0) = (±1)2 − 0 = 1. Comparing all the candidates, we find that the
minimum is −1 at (0,±1) and maximum is 1 at (±1, 0).

3. Consider the 2-dimensional vector field F⃗ (x, y) = ey sin x⃗i+ ey cos x⃗j.
(a) Is this vector field conservative?

(b) Compute the work done by F⃗ along the line segment from (0, 0) to (π, 1).

(a) Is this vector field conservative? ANS: No

SOLUTION: Let us see if we can get a potential function.
∫
ey sin(x) dx = −ey cos(x) +

f(y) whereas
∫
ey cos(x) dy = ey cos(x) + g(x). Since −ey cos(x) is a term in the first

antiderivative but not the second and it depends on both x and y, it cannot be part of f(y)
and so no potential function for F⃗ can exist.

(b) Compute the work done... ANS: (e+ 1)(π2 − 1)(π2 + 1)−1 Joules

SOLUTION: We parametrize the line segment by r⃗(t) = ⟨πt, t⟩ for 0 ≤ t ≤ 1. Then
r⃗′(t) = ⟨π, 1⟩ and we have∫

C

F⃗ · dr⃗ =

∫ 1

0

F⃗ (r⃗(t)) · r⃗′(t) dt =
∫ 1

0

⟨et sin(πt), et cos(πt)⟩ · ⟨π, 1⟩ dt

=

∫ 1

0

et(π sin(πt) + cos(πt)) dt.
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This is actually a very nonobvious integral, but here follows the usual argument.

Integration by parts tells us
∫
v du = uv−

∫
u dv. Set du = et dt and v = π sin(πt)+cos(πt).

Then u = et and dv = π(π cos(πt)− sin(πt)) dt, so that the integral above becomes

[
et(π sin(πt) + cos(πt))

]1
0
− π

∫ 1

0

et(π cos(πt)− sin(πt)) dt

and the bracketed portion on the left evaluates as −(e+ 1). For the remaining integral, we
apply the same integration by parts trick to get

−(e+ 1)− π

([
et(π cos(πt)− sin(πt)

]1
0
+ π

∫ 1

0

et(π sin(πt) + cos(πt)) dt

)
The bracketed part here evaluates as −π(e+1). Since this expression is equal to the original
integral, we can rearrange algebraically to get

(1 + π2)

∫ 1

0

et(π sin(πt) + cos(πt)) dt = π2(e+ 1)− (e+ 1)∫ 1

0

et(π sin(πt) + cos(πt)) dt = (e+ 1)

(
π2 − 1

π2 + 1

)

4. Determine the flux of the vector field F⃗ = yez
2

i⃗ + y2j⃗ + exyk⃗ across the cylinder S defined by
x2 + y2 = 9 and 0 ≤ z ≤ 4, with positive orientation.

ANS: 0

SOLUTION: Our surface here is closed and positively oriented, so the standard form of diver-
gence theorem applies. (Below, E is the solid cylinder associated to S.)∫∫

S

F⃗ · dS =

∫∫∫
E

div(F⃗ ) dV

=

∫∫∫
E

2y dV

The natural way to complete this computation is to use cylindrical coordinates:∫∫∫
E

2y dV = 2

∫ 2π

0

∫ 3

0

∫ 4

0

r sin(θ) rdzdrdθ

= 2

(∫ 2π

0

sin(θ) dθ

)(∫ 3

0

r2 dr

)(∫ 4

0

dz

)
= 0

since the integral with respect to θ is 0.

5. Evaluate
∫
C

F⃗ ·dr⃗ where F⃗ = ⟨x2z, xy2, z2⟩ and C is the curve of intersection of the plane x+y+z = 1

with the cylinder x2 + y2 = 9, oriented counterclockwise as viewed from above.

ANS: 81π
2

SOLUTION: Observe that C is also a boundary curve for the part of the plane z = 1− x− y
contained within the cylinder x2 + y2 = 9. Furthermore, curl(F⃗ ) = ⟨0, x2, y2⟩ is a simpler vector
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field to work with. This suggests we should apply Stokes’ theorem. We can parametrize the
surface of the part of the plane precisely as s⃗(x, y) = ⟨x, y, 1− x− y⟩ and then calculate

s⃗x = ⟨1, 0,−1⟩
s⃗y = ⟨0, 1,−1⟩

s⃗x × s⃗y = ⟨1, 1, 1⟩

and verify visually that the direction of this normal to the surface is in agreement (by right hand
rule) with the counterclockwise orientation of the boundary curve. So:∫

C

F⃗ · dr⃗ =

∫∫
S

curl(F⃗ ) · ds⃗

=

∫∫
R

⟨0, x2, y2⟩ · ⟨1, 1, 1⟩ dA

=

∫∫
R

x2 + y2 dA

To complete the calculation, observe that the region of integration in parameter space is just a
disk of radius 3. So it is natural to use polar coordinates here.∫∫

R

x2 + y2 dA =

∫ 2π

0

∫ 3

0

(r2) rdrdθ

= 2π

∫ 3

0

r3 dr

= 2π

[
1

4
r4
]3
0

=
81π

2

In theory you could avoid Stokes’ theorem and calculate the line integral along the intersection
curve C directly using θ as a parameter, but you’ll be giving yourself a lot more calculations.


