- 1. Find all the critical points of $f(x, y) = x^2y y^2 2y x^2$ and classify them as local max, local min or saddle points.
- 2. Find the point on the cone $x^2 + y^2 = z^2$ that is closest to the point (4, 2, 0).
- 3. Find the max and min of $f(x, y) = e^{xy}$ over the region $x^2 + 4y^2 \le 2$.
- 4. Use upper right Riemann sum with 4 squares $(\Delta x = \Delta y = \pi/2)$ to approximate $\int \int_R \cos(x) \sin(y) \, dA$ with $R = [-\pi/2, \pi/2] \times [0, \pi]$.
- 5. Evaluate the integral $\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, \mathrm{d}y \, \mathrm{d}x$.
- 6. Rewrite the integral $\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} x \sin((x^2+y^2)^{3/2}) \, \mathrm{d}y \, \mathrm{d}x$ using polar coordinates.
- 7. Find the area of the region enclosed by $r = \cos(2\theta)$.
- 8. Let D be the region inside $x^2 + y^2 = 1$, lies above y = -x and below y = x. Find the surface area of $z = \sqrt{x^2 + y^2}$ above D.
- 9. Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside $z = x^2 + y^2$.
- 10. Compute the triple integral of f(x, y, z) = z in the region bounded by $x \ge 0, z \ge 0, y \ge 3x, y^2 + z^2 \le 9$.
- 11. Express the solid enclosed by y = 0 and $y = 4 x^2 4z^2$ in the order of dz dx dyand dx dy dz.
- 12. Find the volume of the solid enclosed by $z = x^2 + y^2$ and $z = 4 x^2 y^2$.
- 13. Evaluate $\int \int \int_{R} \int_{R} (x^2 + y^2) \, dV$ with R the region between $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.
- 14. Rewrite $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y$ in spherical coordinates.