Last Name		_ First	Name		
ID #	# Signature				
Lecturer			Section		
E	UNIVERSITY OF DEPARTMENT OF 1				
Math 233	Exa	m 1	-	Practice Exam - S2	
		Instruction	5	$\langle \rangle$	
	cell phones! Pu , laptops, tablets et		lectronic devi	ices such as smartphones,	
• There are five	e(5) questions in the	nis exam.			
	n this exam bookle ou do so indicate cle			to the blank page at the or the grader.	
• Calculators an information.	re \mathbf{not} allowed, nor	are formula sł	neets or any of	ther materials with helpful	
• Organize you	r work in an unam	oiguous order.	. Show all ne	cessary steps.	
your answe				ork to obtain credit for swers to their simplest	
• Be ready to s	how your UMass II	Card when y	you hand in y	vour exam booklet.	
• By signing a	my name above, I	I pledge tha	t I have nei	ther given nor received	
any aid on	this exam.				
	\setminus \vee				
	QUESTION	POINTS	SCORE		
	1	20		—	
	2	15			
	3	15			
	4	15			
	5	15			
	TOTAL	80		—	

1. (20 points) For each question, select the best response. Please clearly indicate your choice; ambiguous answers will not receive credit. In this problem, there is no partial credit awarded and it is not necessary to show your work.

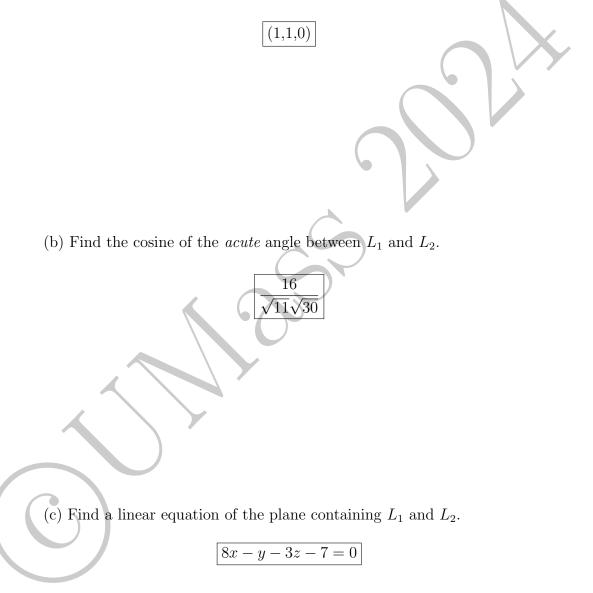
- (a) (4 points) For what values of t are the vectors $\vec{u} = \langle t+2, t, t \rangle$ and $\vec{w} = \langle t-2, t+1, 1 \rangle$ orthogonal?
 - (i) t = -1, t = 2(ii) t = 0, t = 3(iii) t = 1, t = -1, t = -1,
- (b) (4 points) A vector function, $\vec{r}(t)$, representing the curve of intersection between the cylinder $x^2 + y^2 = 1$ and the plane y z = 1 is given by:

 - (i) $\langle \cos^2(t), \sin^2(t), \sin^2(t) 1 \rangle$ (ii) $\langle \sin(t), \cos(t), \sin(t) + 1 \rangle$ (iii) $\langle \cos(t), \sin(t), \sin(t) + 1 \rangle$ (iv) $\langle \cos(t), \sin(t), \sin(t) 1 \rangle$
 - (v) $\langle \sin^2(t), \cos^2(t), \cos^2(t) 1 \rangle$ (vi) None of the above

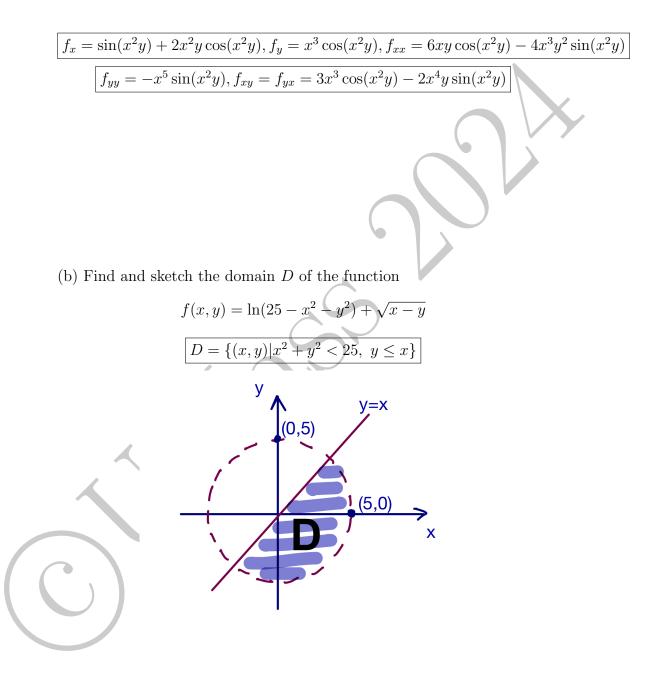
(c) (4 points) Let z = f(x, y), where f is differentiable, x = g(t), y = h(t), $g(1) = 3, h(1) = 4, g'(1) = -2, h'(1) = 5, f_x(3,4) = 7 \text{ and } f_y(3,4) = 6.$ Find $\frac{dz}{dt}$ when t = 1. (i)18(ii) 23(iii) 44 32 (iv)(v) 13 (vi) 16

Continued on next page \rightarrow

Continuation of question 1.


- (d) (4 points) Compute the volume of the parallelepiped formed by the vectors $\vec{a} = \langle 1, 0, 2 \rangle$, $\vec{b} = \langle 2, -1, 0 \rangle$ and $\vec{c} = \langle 4, 1, 1 \rangle$.
- (i) 15(ii) 14 (iii) 13(iv)11 9 (v)10 (vi) (e) (4 points) Identify the surface represented by the equation $x^2 + 2y^2 + 3z^2 = 4$. (i) (ii) Ellipsoid. Sphere.
 - (iii) Paraboloid.

- (iv) Hyperboloid of one sheet.
- (v) Hyperboloid of two sheets. (vi)
 - (vi) Cone.


2. (15 points) Consider the following lines:

$$L_1: x = 1 + t, \ y = 1 - t, \ z = 3t$$

 $L_2: x = 7 - 2s, \ y = 4 - s, \ z = 15 - 5s$

(a) Do these lines intersect? If so, find the point(s) of intersection of L_1 and L_2 .

3. (15 points) (a) Find the partial derivatives f_x , f_y , f_{xx} , f_{yy} and f_{xy} of the two variable function $f(x, y) = x \sin(x^2 y)$.

4. (15 points)

(a) Find a linear equation of the tangent plane to the graph of the function $f(x, y) = \ln(1 + xy)$ at the point $(1, 2, \ln 3)$.

$$z = \frac{2}{3}x + \frac{1}{3}y - \frac{4}{3} + \ln(3)$$

(b) Using your answer from question (a), find the linearization L(x, y) of f at (1, 2) and use it to approximate the value of f(1.1, 1.9). Simplify your answer.

$$L(1.1, 1.9) = \frac{1}{30} + \ln(3)$$

5. (15 points)

(a) Find the position of a particle at time t = 1, if the acceleration at time t is given by $\vec{a}(t) = \langle 2t, 0, 3t^2 \rangle$, the initial velocity is $\vec{v}(0) = \langle 1, -1, 0 \rangle$ and the initial position is $\vec{r}(0) = \langle 0, 0, 1 \rangle$.

$$\left(\frac{4}{3}, -1, \frac{5}{4}\right)$$
(b) Find the length of the curve $r(t) = \langle \cos^3(t), \sin^3(t) \rangle$, where $0 \le t \le \frac{\pi}{2}$.

$$\frac{3}{2}$$

This page was intentionally left blank for scratch paper.