MATH 233 SECTION 1 ATTENDANCE PROBLEMS

These are the quick problems given in class to (randomly) take attendance.

- (1) Let $\mathbf{v} = \langle 1, 1, 1 \rangle, \mathbf{w} = \langle 1, 0, -1 \rangle.$
 - (a) Compute $\mathbf{v} \cdot \mathbf{w}$. Answer: 0.
 - (b) Is $\mathbf{v} \perp \mathbf{w}$? **Answer:** Yes. Since both aren't 0 and the dot product is 0, they are perpendicular.
- (2) Let $\mathbf{v} = \langle 0, 1, -1 \rangle$, $\mathbf{w} = \langle -1, 0, 1 \rangle$. Compute $\mathbf{v} \times \mathbf{w}$. Answer: $\mathbf{v} \times \mathbf{w} = \langle 1, 1, 1 \rangle$. You can check that $\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{v} \times \mathbf{w}) = 0$.
- (3) Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$. Answer: Integrate to get $\mathbf{r}(t) = \langle t^2/2, t^3/3, t^4/4 \rangle + \mathbf{c}$. Then since $\mathbf{r}(0) = \langle 1, 1, 1 \rangle$ we get $\mathbf{c} = \langle 1, 1, 1 \rangle$ and the answer is $\langle t^2/2 + 1, t^3/3 + 1, t^4/4 + 1 \rangle$
- (4) Let $\mathbf{r}(t) = \langle t+1, 4t+1, 8t+1 \rangle$. Find the arc length from t = 0 to t = 1. Answer: We need to compute

$$\int_0^1 |\mathbf{r}'(t)| \, dt$$

We find $|\mathbf{r}'(t)| = 9$, so after integration we get 9.

Date: February 21, 2025.