NOTES ON TOPOLOGICAL STABILITY

by

John Mather

Harvard University

July 1970

Thene notea are pert of the firat chepter of a eeries of lecturee givan by the author in the epring of 1970. The ultimate alm of thete motes will be to prove the theorem thet the et of topologically atable mapplage form e dence aubeat of $C^{(}(N, P)$ for eny finle dimensional manifolde N and P where N is campect. The firat chepter is a atudy of the Thom-Whitney theory of etratited eate and atratified mapplinge. The connection of the material In theee notee with the theoram on the density of topologically atable mapplage appeare in \& H, where we tive Thom'e second teotopy lemms. This realt give eufficient conditione for two mappitge to be topologically equivalent
81. Condition a We begin by Introfuclag aome nothone that are tue to whitney ([5] and [6]).

Lat μ be a pooltive number pr ∞. Which Wll be flad throushout thie chapter. By "中mooth" we mll moan differeatiable of clase c^{μ}.

Let M be a amooth (1.e. . C^{μ}) n-menifold whout boundery. By - mmooth (l.e., C^{μ}) aubmapifold of M, we Wll mean a eubet X of M wuch that for overy $\bar{x} \in X$ there oxdeta a coordinate chart (o, U) of clane C^{μ} wuch that $x \in U$ and $\psi(X \cap U)=\mathbb{R}^{k} \cap q(U)$, fore aitable coordinate plane R^{k} in $\mathrm{R}^{\mathbf{n}}$. In the definition of eubmanifold, we do not anoume that X is closed. Howerer, it followa from the definition of submanfold that X le locally cloned t.e., each point in S havenotighborhood U in M ach that $X \cap U$ is clooed in U.

If X Is an x-dimenatoial submantfold of M and $x \in X$, then the tangent apace TX_{X} of X at x in a polnt in the Grasamannian bundle of r-planes in TM_{x}. In what followe "convertence" means convergence in the tienderd topology on thit bundle.

Let X and Y be amooth eubmanifolde of M and let $Y \in Y$. Set $r=d \operatorname{dm}$.
 y If the following holde. Given any aequence X_{1} of pointe in X euch that $y_{1}-Y$ and $T X_{Y}$ convergeato some x-plane $+E T M_{y}$, we have $\mathbf{T Y}_{\boldsymbol{r}} \subseteq \mathrm{F}_{\mathrm{P}}$.

Example 1.2. (Whitacy \{ 6]). Lat $\mathrm{x}, \mathrm{y}, \mathrm{E}$ denote coordinates for C^{3}. Let Y be the s-ande and let X bethe eot $\left\{a x^{2}-y^{2}-0\right\}$ with the E-ande deleted. (ln Figure 1, we have aketched the intereection of x whe R^{3}.) Then X and Y are complay analytic submanifolds of \mathbb{C}^{3}. It le easily sean that (X, Y) eatisfier condition a at all pointe of Y axcept the orify, and that it does not eatlafy condtion a there.

We will asy that the palr (X, Y) eatiofles condition a if it antiafies condition at every polnt of \mathbf{Y}.

In Example 1. 2, the pair (X, Y) does not entisfy condition a. If we etet $Z=(0)$ and $Y^{*}=Y-Z$, then the $p=1 r=\left(X, Y^{\circ}\right),(X, Z)$, and $\left(Y^{\prime}, 2\right)$ do astiaty condition a.
12. Condition b. W. will begtin by definlat Whitacy'e condtion b for qubmenlfolde of R^{n}. Then we extend thie definition to eubmanifolde of an arbitrary manlfold, ualnt the defialtion $\mathrm{In}_{\mathrm{E}} \mathrm{R}^{\mathbf{n}}$. We will also thow thet condition b implies condition a .

If $x, y \in \mathbb{R}^{n}$ and $x+y$, then the necant X will denote the line In \mathbb{R}^{n} which la parallal to the Ilne jolalat x and y and paeaes throuth the orlctin. For any $x \in R^{n}$ weldentify $T_{X} R^{D}$ with R^{n} in the atandard wey.

Let X, Y be (amooth) aubmanifolde of $\mathbb{R}^{(b}$. Lat $Y \in X$. Lot $r=\operatorname{dim} x$.

DEFINITION 2.1. We aty that the pelr (X, Y) antiafien condition b at Y if the following holde. Let X_{1} be a nequence of pointa in X. convaring to Y and Y_{I} a equitnce of polnt, in Y, alsocomverging to Y. Suppoge $T X_{M}$ convergen to nome T-plane $\subseteq I^{n}$ and that $x_{1}+y_{i}$ forall and the necente y_{1} convarielin projective apace P^{n-1}) to nome IIne $t \subseteq R^{n}$. Then $t \subseteq+$.

Let $\left(X^{*}, Y^{\prime}\right)$ be a tecond palr of aubmantifold of \mathbb{R}^{n}, and let $y^{\prime} \in \mathbf{Y}^{\prime}$.

LEMMA 2.2. Suppose there exlat open neighborhoode U and U^{*} of y and r^{\prime} In \mathbb{R}^{n} and a (emooth)dilfoomornhlam $p: U \rightarrow U^{\circ}$ nuch
that $\phi(U \cap X)=U^{\prime} \cap X^{\prime}$, $\phi(U \cap Y)=U^{\prime} \cap Y^{\prime}$ and $\phi(y)=y^{\prime}$. Then (X, Y) antiofion condition b at Y if and only if $\left(X^{\prime}, Y^{\prime}\right)$ astiofien condition b at Y°.

Proof: Obvious.

DEFINITION 2.2. Lat M beamanifold and X, Y eubrandfolde
 nome coordinate chart (φ, U) about Y, whave that the patir ($\Phi(U \cap X)$, $\varphi(U \cap Y)$) gatiaflea condition b at $\varphi(Y)$.

In wew of Lemma 2.2, if (X, Y) satiufiet condition b at Y, then for evary coordinate chart ($(\boldsymbol{D}, \mathrm{U})$ about Y, whave that $(\mathbb{P}(\mathrm{U} \cap \mathrm{X})$. $\mathrm{q}(\mathrm{U} \cap \mathrm{Y})$ eatlafen condition b at y.

For the reat of thia section, let M be manifold and X and Y eubmanifolde and let $Y \in Y$.

PROPOSITION 2.4. If (X, Y) atiafles condition b it y then it eatiofies condition at Y.

Proof: Since both conditiona a and b are purely local, we may suppose that X and Y are submanifolde of \mathbb{R}^{n}. Let x_{i} bea equence of polnte in X such that $X_{i}-Y$ and $T X_{x_{1}} \rightarrow T$, for some $\mathbb{C} \subseteq T \mathbb{R}_{y}^{n}=\mathbb{R}^{n}$. Yo muat show that $T Y_{y} \subseteq \boldsymbol{T}$. Suppose otherwife.

Then thera existe a line $\mathcal{E} \subseteq \mathbb{R}^{\mathbf{n}}$, pasalncthrough theofisin, uch that
 $y_{i} \in Y$ wich that $y_{i} \neq x_{i}, y_{i} \rightarrow Y$ and ${\underset{y}{1}}^{x_{i}} \rightarrow 1$. But aince $1 \pm T$, this contradicte condltion b. D. E. D.

We ary (X, Y) antifles condtion b If atiaflee condition bet every polnt $Y \in Y$.

Example 2.5. Let X be the epiral in \mathbb{R}^{2} doffned by the condition that the tangent of X makes conatant angle with the radal vactor, and let Y be the orlgin. In polar coordinates, thie aplral le given by $r-\beta \theta=$ conetant. Then the palr (X, Y) doas not atetiofy condition b. For, by definition, the engle α between the line $T X_{x}$ and the aecant Ox la independent of x. If $x_{1} \in X$ te a equence converging to 0 , then the tangente $T X_{X_{1}}$ convergeton line $T \subseteq \mathbb{R}^{2}$, and OX_{L} convergee to alne 1 . which makean angle a with T.

Example 2.6. (Whitney $\left[6\right.$]). Let x, y, s be coofdinate for \mathbb{c}^{3}. Lat Y he the z-axis. Lat X be the of $\left\{y^{2}+x^{3}-x^{2} x^{2}=0\right\}$ with the z-axit deleted. (ln Figure 2 wo have oketched the Intersection of X with \mathbb{R}^{3}.) It in ouslly eoon that the pair (X, Y) atiofien condition a, and the pair (X, Y) satiofies condition b at all pointe of Y oxcept the orign and thet it doee not eatiofy condition b there.

PROPOSITION 2.5. Suppane $Y E \overline{X-Y}$ and (X, Y) natiaflan condition b at Y, Then $\operatorname{dim} Y<\operatorname{dim} X$.

Proof: It ia enough to conalder the case when $M=\mathbb{R}^{m}$. Slnce $Y \in X=Y$, there exdote a sequence X_{Y} In $Y-Y$ which converges to Y. By the compactnese of the Grasamannian, we may auppose, by pasaing to a abbequence if neceasary, that TX_{x} (convergan to an r plane $T \subseteq \mathbb{R}^{\mathbf{m}}$ (where $r=d i m X$). Since condition b imples condition
 point y_{i} on Y which minimixes the diutance to x_{I}. By paesing to a ubbequence if neceseary, we may suppowe the aecant. $x_{i} y_{i}$ converge to a line $\left\{\subseteq \mathbb{R}^{n}\right.$. Since y_{i} minimizes the diatance to x_{i}, the eacent $Y_{i} X_{i}$ le orthogonal to $T Y_{y_{i}}$; hence i le orthogonal to $T Y_{y}$ " Since (X, Y) atiafiea condition b at Y, woheve $\mathbb{I} \subseteq$ shown $T Y_{Y}+i f+$ and f ie orthogonal to $T Y_{Y}$; hence $\operatorname{dim} X=\operatorname{dim} T>\operatorname{dim} T Y y=\operatorname{dim} Y . \quad$ O.E.D.
43. Blowing up. In the next wection, we will give en intrinaic
formulation of condition b which will be useful later on. Thif formulation
depende on the notion of blowing up a manlfold along a numanlfold, which we define in thie eection.

Lat N be a manlfold and U a closed oubmanifold. By the manifold $B_{U} N$ obtained by blowing $u p N$ along U, will math the manifold deflined in the following way. Aa a eet $\mathrm{B}_{\mathbf{U}} \mathrm{N}$ fothe difojint union $(N-U) U P \eta_{U}$, where $P \eta_{U}$ denotes the projective normal bundle of U in N.

By the natural projection $*: B_{U} N \rightarrow N$, we mean the mapping defined by letting $\quad \| P_{U} P_{U}$ bethe projection of $P P_{U}$ on U and letting * N - U be the includion of $N-U$ into N.

To define the differentiable structure on $\mathbf{B}_{\mathrm{U}} \mathbf{N}$, wa firat consider the care when N Ia open $I n \quad \mathbb{R}^{n}$ and $U=\mathbb{R}^{n} \cap N$, where \mathbb{R}^{r} la the coordinate plane defined by the vanishing of the lant $n-r$ coordinaten. Then we have a mapping $a: P_{U} N \rightarrow \mathbb{P}^{n} \times \mathbb{R}^{P^{n-r}-1}$ dofined an followe. Firat, $\alpha \mid P \eta_{U}$ is the atandardidentification of $P^{P r}{ }_{U}$ with $U \times \mathbb{R} P^{n-r-1} \subseteq \mathbb{R}^{n} \times \mathbb{R} P^{n-r-1}$. Secondly, $\mathbb{H} x=\left(x_{1}, \cdots, x\right) \in \mathbb{R}^{n}=\mathbb{R}^{\mathrm{I}}$, then $O(x)=(x, \theta(x))$. where $\theta(x)$ la the polnt $\ln \mathbb{R}^{P^{n-2-1}}$ with homogeneous conrdinates $\left(x_{r+1} \ldots, x_{n}\right)$.

It le eeselly verified that of $\left.\mathrm{B}_{\mathrm{U}} \mathrm{N}\right]$ to a C^{Co} unbmanifold of $\mathbb{R}^{a} \times R P^{n-r-1}$, followe. Let $\left|x_{1}, \cdots, x_{n}\right|$ denote the coordinatee of
 For $r+1 \leq 1 \leq a$, let z_{1} denote the qubeot of $R p^{n-r-1}$ deflned by $x_{1} \neq 0$, and let $x_{j 1}$ be the rasl valued function $x_{j i}=x_{j} / x_{i}$ on z_{i}. Then the interection of $\left.d B_{U} N\right]$ with $N \times Z_{i}$ is the eet defined by

$$
x_{j}=x_{j l}^{x_{1}} \quad r+1 \leq j \leq n, j \neq 1
$$

Therefore of $\left.\mathrm{B}_{\mathrm{U}} \mathrm{N}\right]$ lea submantiold of $\mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{P^{-r-1}}$.
Slince the mapplng of le lnjectivt, we may define a manifold structure
on ${ }^{B_{U}} \mathrm{~N}$ by pulling back the manifold atructure on $d\left[{ }_{\mathrm{U}} \mathrm{N}\right]$.
Now, let N^{\prime} be a eacond open aubeat of \mathbb{R}^{n}, lot U^{\prime} a $\mathcal{H}^{r} \cap N^{\prime}$. ond let $\rho:(N, U) \rightarrow\left(N^{\circ}, U^{\prime}\right)$ bee C^{μ} diffeomorphiam. Let $\varphi_{0}: D_{U}{ }^{N} \rightarrow B_{U}, N^{\prime}$ be the induced mappling, delined by lutting $\varphi_{0} \mid P_{\eta_{U}}: P \eta_{U} \rightarrow P \eta_{U}$, be the mapping Induced by the differential, and letting $\varphi_{*} \mid \mathrm{N}-\mathrm{U}: \mathrm{N}-\mathrm{U}-\mathrm{N}^{+}-\mathrm{U}^{\bullet}$ be the restriction of φ. Then φ_{*} 10: diffeomorphlam of cleos $\mathrm{C}^{\mathrm{H}-1}$.

To show this, we frat obeerve that φ_{*} It a blfection and $\left(\varphi_{\psi^{\prime}}\right)^{-1}=\left(\varphi^{-1}\right)$. Therefore, it sufficen to show that φ. le of clane $C^{\mu-1}$. Tinshowthic. it Is ennugh to show that $x_{i} \cdot \varphi_{*}$ is of clase $c^{\mu-1}, 1 \leq i \leq n$, that $\left(\varphi_{*}^{-1}\right)\left(L_{i}\right)$ is reme $r+1 \leq i \leq n$, fond that $X_{j 1} \cdot \varphi_{0}$ fo of clane $C^{\mu-1}$ for $r+1 \leq j \leq n$ and $j \neq 1$. Since

$$
E_{i} \cdot \phi_{6}+\xi_{i} \cdot \varphi \cdot \square
$$

where : $\mathrm{B}_{\mathrm{U}} \mathrm{N} \rightarrow \mathrm{N}$ if the natural projection, the firat atatement is obvioun.

To prove the remeining two abtemente, we at $I_{1}-\varphi$ and obeerve that there exiat functions for of clese c^{N-1}, for $r+1 \leq 1$, $\alpha \leq n$, uch that

$$
\begin{equation*}
\varphi_{1}=\sum_{a \pi r+1}^{n} x_{a} \phi_{i a} \tag{+}
\end{equation*}
$$

This ie proved en follown. Since for $r+1 \leq 1 \leq n$, we have that \boldsymbol{q}_{1} venlehee on $U=N \cap \mathbb{R}^{r}$, we get that

$$
\begin{aligned}
\varphi_{1}\left(x_{1}, \cdots, x_{n}\right) & =\int_{0}^{1} \frac{d}{d t} \varphi_{1}\left(x_{1}, \cdots, x_{r}, t x_{r+1}, \cdots, t x_{n}\right) d t \\
& =\sum_{\alpha=r+l}^{n} x_{\alpha} \int_{0}^{1} \frac{\partial \varphi_{1}}{\partial x_{\alpha}}\left(x_{1}, \cdots, x_{r}, t x_{r+1}, \cdots, t x_{n}\right) d t
\end{aligned}
$$

so that holde, where

$$
t_{i \alpha}=\int_{0}^{1} \frac{\partial \varphi_{1}}{\partial x_{\alpha}}\left(x_{1}, \cdots, x_{r} \cdot t x_{r+1} \cdots, t x_{n}\right) d t
$$

In viow of ($(*)$. $\phi_{4}^{-1}\left(7_{1}\right) \cap z_{k}$ is the aubect of z_{k} defined by

$$
\sum_{a=r+1}^{n} x_{\alpha k} \phi_{l o} \neq 0
$$

and hence la open. It followe that $\psi_{1}^{-1} Z_{1}$ Is open, It also followi from
*) that
on $p_{k}^{-1}\left(z_{i}\right) \cap z_{k}$, and hence is of clane $c^{\mu-1}$ there.

Thie complaten the propl that of le alffeomorphiem of clese $\mathrm{c}^{\mu-1}$.

Now te return to the general altuation where N le monifold, and U In a closed eubmanifold, both of clane C^{μ}. In vew of what we have Junt done, we can conntruct a differentiable atructure on the part of $\mathrm{B}_{\mathrm{U}} \mathrm{N}$ which liea above any coordinate patch, and the differentinble atructurea ahove different coordinate patchea are $c^{\mu-1}$ compatible. Thus, we obtaln the etructure of a manifold of cless $\mathrm{C}^{\mu-1}$ on $\mathrm{B}_{U^{N}}{ }^{\text {. }}$.

Note thet the natural projection : $\mathrm{B}_{\mathbf{U}} \mathrm{N} \rightarrow \mathrm{N}$ is differentiable of clans $C^{\mu-1}$.

Since we have deffined a atructure of a manlfold of clage $\mathrm{C}^{\mu-1}$ on
$\mathrm{B}_{\mathbf{U}}{ }^{N}$, we have also defined a topology on $B_{U} N$. In the lacal cape,
When $N=\mathbb{R}^{n}$ and $U=\mathbb{R}^{T}$, this topology mey be described more
directly. Let $\left\{x_{1}\right\}$ be a eaquence of pointe in $\mathbb{R}^{n}-\mathbb{X}^{r}$, and euppose $x_{1} \rightarrow x \in \mathbb{R}^{r}$. Lat $t \in \mathbb{B R} P^{n-r-1}$, nothat (x, f) to a member of $B_{U} N$,
 above. Then it la osetly soen that x_{1} converges (in $B_{U} N$) to ($x, 1$) If and only if the eecante $x_{1} x_{1}^{\prime}$ converge to 1 , where x_{i}^{\prime} denotes the projection of x_{i} on R^{r}.

Thie euggeate that it should be poselble to reformulate condition b In terme of 'blowing up'. Wa do this in the next section.
14. An Intrinsic formulation of condition b . Lot N be a amooth manifold, Let a_{N} denote the diagonal in N^{2}. By the fat equare of N . -0 will maan the manifold $F(N)$ obtalned by blowing up N^{2} alons d_{N}.

The normal bundie n of a_{N} in N^{2} ean be identifled with the tangent hunde $T N$ in acanonical way, af followe. If $\times \in_{A_{N}}$, then by definition

$$
\Pi_{x}=\left(\mathrm{TN}_{x} \odot \mathrm{TN}_{x}\right) / \text { diagoatel }
$$

The mapping of $\mathrm{TN}_{\mathrm{x}} \mathrm{O}_{\mathrm{X}} \mathrm{TN}_{\mathrm{x}}$ into TN_{x} which sends O O to F Induces an inomarphiem of η_{x} with TN_{x}. We unc this fiomorphiam to Identify Π_{x} with $T N_{z}$.

From this Identification and the definition of the proceas nf blowing up a manifold along a submanifold, it follow that

$$
F(N)=P T(N) \cup\left(N^{2}-A_{N}\right) \quad(d i \text { ajoint union })
$$

Where PT(N) dennten the projective tangent bundie of N. Thus, pointe of $F(N)$ arenftwokinde: paira (x, y) with $x, y \in N$ and $x \neq y$ and tengent directinge on N.

It followe from the provious nection that $F(N)$ le a mandfold of cleat $c^{\mu-1}$.

Roughly apoaking, a aequance $\left\{\left(x_{i}, y_{i}\right)\right\}$ of pointe in $N^{2}-A_{N}$ converges to a tangent direction $\&$ on N if the aequancen $\left.f_{x_{1}}\right\}$ and (y_{i} \} converese to the ame point x In N and the direction from x_{i} to y_{i} converces to l. In the cace $N=\mathbb{R}^{n}$, the can be made prectes: $\left\{\left(x_{1}, y_{1}\right\}\right\}$ conversee to $(x, f) \in \mathbb{R}^{n} \times M P^{n-1}$ if both $\left\{x_{1}\right\}$ and $\left\{y_{i}\right\}$ converse to $x_{\text {a }}$, and the eecente $x_{1} y_{i}$ converce to 1 .

Now let X and Y be amooth oubmanifolfa of N and let $Y \in Y$. Suppnie Y If cloned. In vew of the provioue paragraph, we obtaln the follnwing renult.

PROPOSITION 4.1. The palir (X, Y) eatiphen condition b at y if and only if the following condition bolds. Lat $\left\{X_{1}\right\}$ beany eguence of polnte in X and $\left\{y_{1}\right\}$ any sequence of polntein Y auch that $x_{i} \neq y_{1}$.
 and $\left\{T X_{x_{1}}\right\}$ convergen (in the Grasemannian of T planes in $T N$, where $r=d i m X)$ to an r-plane $r \subseteq T N_{y}$. Then $t \subseteq T$.
45. Whltioy pre-atratificatione. Let N be amooth (t.e. . c^{μ}) manifold whorut boundary. Let S be eubent of M. By a pre-atratification 3 of S, we will mean a cover of S by palrwied diajoint emboth aubmanifolde of M. which lie in S. We will aay that g le locally finite if eneh point of M hav a nelghborhoed which meete at moat finitely many atrath. We aly s satioflon the condition of the frontler if for each -tratum X of 8 ite frontier $(X-X) \cap S$ lo unton of atrate.

We will ay 8 lo whitney pra-Etratification if it is locally finite. astiefles the condition of the frontier, and (X, Y) atisfien condition b fir any palt (X, Y) of otrata of g.

Let A be Whitnay pre-atratification of a subset S of a mantfold M. Suppose X and Y are atrata. Wewrite $Y<X$ if Y la in the frontier of X. In view of Propoaltion 2.5, if $Y<X$ then dim $Y<d i m X$. lt follown eaplly that the relation "く" definem a partial nrier an 8.

Remark. Let M he manifold, S a cloced subeet of M, and g : Whitney pre-atratiflation of S. Let x and x° be two polate In the ame connected component of atratum of 8 . Then there exioto a homeomnrphim h of M onto Iteelf which precervee S and g euch thet $h(x)=x^{\prime}$. Thle follows from Thom'e theory [4] and wa will prove ft below. In the case g has ouly two strata, it is quite easy to
prove by en argument due to Thomi [4 . p.242].

Wo oketch Thom's argument for the two atrate ceee here. The only non-trivial cace $1 s$ when the two atrata catiafy $X<Y$ and the two pointe

For simpliclty, we will euppose that M In compact, though it is not difflcult to modify the argument to make it work in the caee M Is non-complect.

Let N be amall tubular netghborhood of $X \ln M$, let $: N \rightarrow X$ be amooth retraction, and let P be amooth function on M auch that $p \geq 0, x=\{p=0\}$, and at polnt $x \in X, p$ in non-degenarate on the normal plane to X in the senee that the Hessian matrix of P at
x hae rank equal to the codimension of X.

Now let x and x^{\prime} be two pointe In the ame connected component of X. Let v_{X} be amooth vector fleld on X auch thet the trajectory of v starting at x arrivecat x^{\prime} at timet $=1$.

For $<>0$ sufficiently emall, the aboet $M_{c}=\{p=r\}$ of N la compact, and w: $M_{f} \rightarrow X$ le ubmeralon. Furthermore, $Y_{f}=M_{f} \cap Y$ Is compact, and it follawe from condition b that $\pi: Y_{c} \rightarrow X$ is a aubmaralon for eufficlently amatl. It followa asally that there is a vector field v on $M-X$ and an $c_{i}>0$ wheh that v iveangent

along Y, and the following hold,

From * and the compectaces of M, it followe that the trajectory of atarthe at any polnt of $\mathrm{M}-\mathrm{X}$ In defined for all time. Hence senerntes a one-parameter (group $\left(h_{t}^{0}, \in \in \mathcal{R}\right)$ of diffeomorphisme of M-X. Clearly ${ }^{\mathbf{r}} \mathrm{X}$ coneraten one-parameter croup $\left\{\mathrm{h}_{\mathrm{t}}^{\mathrm{X}}: t \in \mathbb{R}\right)$ of diffeomorphieme of X. Let $h_{t}: M \rightarrow M$ be deflned by $h_{t} \mid M-X=h_{t}^{0}$ and $h_{t} \mid X=h_{t}^{X}$. It follows from (e) and (ea) that $h_{t}^{X}(m)=\nabla h_{t}^{0}(m)$ if $m \in M-X$ and $p(m)<f_{1}$. Hence h_{t} te a homeomorphiom of M. Clearly b_{t} preeerves X, and furthermore h_{i} preserven Y. elnce V le tancont along Y. Flanily $h_{1}(x)=x^{*}$ slnce trajectory of $\quad \mathrm{X}$ atarting at x arriven it x^{*} at timetel.

Thus $h=h_{1}$ te the required homeomorphiem of M.
16. Tubular nolghborhoode. In thit eection, whefle the notion of a tubular netghborhood of a aubmanifold of a manifold, and prove an extatence and unlqueneen theorem for tubuler nel ghborhoods. Our eadetence and uniquenese theorem ie slightly more general than the otendard one (cf. , Leng [2]). The method of proof we uee wae euggeeted to ut by A. Ogue.
W. eracall that a vector bundle E ovar a amooth manifold M is aeld to be amooth if the coordinate tranaltion functione which define \boldsymbol{E} art emooth functions. By a amooth Inner_product on a vector tundle E, we will mean a rule which aselgne to ench fiber E_{u} of E an inoer product (. IG on E_{u} and whech hee the followint property: if U te any open
 mapping $u \rightarrow\left(H_{1}(u), u_{2}(u)\right)_{u}$ is amooth. From now on, wo will adoume all vector bundlea and lnner producte on vector tundled ard amooth, unleat the contrary is explicitly etated. By a (tmooth) Lnner product bundle, we moan a pair conuletint of a (ernooth) vactor bundle E and a (amooth) Inner product on E

If $\quad \mathrm{E} \rightarrow \mathrm{M}$ la an Inner product bundle over a manifold, and fact ponitive function on M, then the open -ball bundte $B_{\text {of }} \mathrm{E}$ will be defined as the eet of e in E such that $\|\in\|<\mathbb{\|}(\pi e)$. where $\|\in\|$ la defined as $(e, \varphi)^{1 / 2}$.

Let M be manifold and X submanifold.

DEFINITION. A tubular nolghborbood T of X in M it atriple ($E,(, \varphi$), where $w: E \rightarrow X$ is an inner product bundie, if is a poitive mooth function on X. and φ le a diffeomorphiem of B onto an open subeet of M which commutes witb the saro sectlon C of E :

We eet $|T|=p\left(B_{f}\right)$. By the profection assoclated to T. we mean the mapping $T_{T}=\pi \cdot \varphi^{-1}:|T|-X$. By the tubular function anaociated to T, we mean the non-negative real valued function

$$
\rho_{T}=\rho \cdot \rho^{-1}:|T| \longrightarrow R \quad \begin{aligned}
& \text { where } \rho(e)=\|c\|^{2} \\
& \text { for al eE|T}\left.\right|^{2}
\end{aligned}
$$

It followa from the ee deflitions that T le retraction of $|T|$ on X, i.e., the compoetion

$$
x \xrightarrow{\text { inclusion }}|T| \xrightarrow{\text { T} T} X
$$

is the identity. Also, X is the 0 -set of P_{T}, the differential of P_{T} vanishee only on X, and (in the case $\mu \geq 2$) at a point $x \in X, \rho_{T}$ is
non-degenerate on the normal plane to X in the eanee thet the Hearian metriz of ρ at x has rank equal to the co-dimension of X.

If U is a aubeet of X. the rentriction $T \mid U$ of T to U is defined as $\{E \mid U,(U, \varphi|U|$.

If $T=(E, C, \varphi)$ and $T^{\prime}=\left(E^{\prime}, \mathcal{C}^{\prime}, \varphi^{\prime}\right)$ are two tubular neighborhoode of X In M. on inner product bundle isomorphiom \quad : $E \rightarrow E^{*}$ will be eald to be an icomorphiem of T with T^{+}if there existe a poaitive

 write $T \sim T^{\prime}$ If there exdata an deomorphism from T to $T^{\prime \prime}$.

A amooth mepping $f: M \rightarrow P$ will be said to be aubmeration $1 f$ $d f: M_{x} \rightarrow T P_{f(x)}$ in onto for each $x \in M$.

Throughout the rest of this section, let $f: M=P$ be a smooth mepping, and X aubmanifold of M.

A tubular neighborhood T of X in M will be aid to be compatible
 to be compatibie with f if $f \cdot h=1$. A homotopy $H: M \times I \rightarrow M$ of M into iteelf will be said to be compatiblewith if if $H_{t}=f$ for ali $t \in I(=[0,1])$. By an lsotopy of M, we will mean a omooth mapping
$H: M \times I \rightarrow M$ ouch that $H_{0}=1 d: M \rightarrow M$ and $H_{t}: M \rightarrow M$ is a diffoomorphiam for $\boldsymbol{i l l} t \in \mathbb{L}$. If h te adiffeomorphiem of M into itealf, the eupport of h will mean the clonure of $(x \in M: h(x) \neq x)$. Likewieo. If $H: M \times 1 \rightarrow M$ is an isotopy, the eupport of H will mean the closure of $(x \in M: t \in I, H(x, t) \neq x)$.

If M° le a accond manifold and X^{\prime} la a submantifold of M°, and $h:(M, X) \rightarrow\left(M^{\prime}, X^{\prime}\right)$ is a diffeomorphism, then for any tubuler nelghborhood $T=(E, C, p)$ of X we define a tubular nelghborhood $h_{p} T$ of X^{*} by $\left.h_{*} T=\left(h^{-1}\right)^{\bullet} E, C h^{-1}, h: p\right)$.

Wo will hegln by atating and provig a unlquanese theorem for tubuler nelghborhoode, and then we wlll derive an exdetence theorem from the uniqueneet theorem. Thle procedure of deducing the exdetence theorem from the unlqueneen theorem wat auggested to ue by A. Ogue.

The almpleat unlquenene theorem for tubular neighborhoode statea that If X in closed and T_{0} end T_{1} are tubular nelghborhoode of X in M, then there exiete a diffeomorphitem h of M onto iteelf which leaver X polnt-wiec fixed such that $h_{*} T_{0} \sim T_{1}$. Moreover, h can bechosen eo that there le an leotopy H of M with $h_{1}=H$ which leaves x point whee fixed. We congenerallee this reault in varioue waye.

Firat, under the hypotheoie that T_{0} and T_{1} arecompatible with and $f \mid X$ ta aubmersion, wan choose h and H to be compatible wh 1. Secondly, if $T_{0}\left|U \sim T_{1}\right| U$ for some open ent U in X, and Z la closed subset of M auch that $Z \cap X \subseteq U$. then we can choose M and H to leave Z polnt-wise flxed.

The following proposition implee these ataternents, and hea nome other wrinkles oe well. We will ued it in ite full generality.

PROPOSITION 6.1 (Upiguenene of mbular naighborhoode). Supposethe aubmanifold X of M in cloned, and $t \mid X: X \rightarrow P$ les abmoralon. Let U be an open aubat of X, let U° and v^{\prime} becloned aubanta of X. Lef V bean open aubset of M, and auppose $U^{\prime} \subseteq U$ and $V^{*} \subseteq V$. (See Figure 3.) Lot T_{0} and T_{1} be tubuler netghborhoode of X in M which are compatible with \mathcal{C} and auppone there in en leomorphiam
 whth 1 , Leaving X polnt-wiat fixed, and wh oupport in V, uch that $h_{H_{0}}\left|V^{*} U U^{\prime} \sim T_{1}\right| V^{\prime} U U^{\prime}$. Where $h=H_{L}$ Moreover, If N in any noighborhood of the diegonal in $M \times M$. we can choose H guch that $\left(H_{t}(x), x\right) \in N$ for ony $t \in I$ and $x \in M$ Also, wecanchoose H eothat there in an inomorphiam $\phi: h_{\mathbf{H}_{0}} T_{0}\left|V^{*} U U^{*} \rightarrow T_{1}\right| V^{*} U U^{*}$ ouch that $\phi\left|U^{*}=\phi_{0}\right| U^{*}$.

Abstract

Proof. Let $m=\operatorname{dim} M, c=\operatorname{cod} X$, and $P=\operatorname{dim} P$. For $k<m$, lot R^{k} he ombedded as $R^{k} \times O_{m-k}$ in R^{m}. We will asy that we are

 in the local case when V^{\prime} is compact and there eniste a diffeomorphiam Φ of M onto an open eubset of R^{m}. such that $\Psi(X)=R^{m-c} \cap \Phi(M)$, and * diffeomorphiem Ψ of P onto an open subset of \mathbb{R}^{P} such that the following diagram commutes, where w ie given by $w\left(x_{i} " \cdots, x_{m}\right)=\left(x_{1}, \cdots, x_{p}\right)$

There are two etepa in the proof:

Step 1. Reduction to the local cage. From the hypotheata that $f \mid X$ is - ubmernion, it foliows that for each $x \in X$ there exiate an open neighborhood W_{x} of x in M, diffeomorphiam Φ_{x} of W_{x} onto an open aubuet of $\mathbb{R}^{\boldsymbol{m}}$ such that $\phi\left(W_{x} \cap X\right)=\phi\left(W_{X}\right) \cap \mathbb{R}^{m-c}$, and a diffeomorphiam Ψ_{x} of

Furthermore, we may suppoan each W_{n} is rolatively compect, and that
(*)

$$
\begin{aligned}
& w_{x} \cap V^{\circ} \neq 0 \Rightarrow w_{x} \subseteq V \\
& w_{x} \cap U^{*} \neq \phi \Rightarrow w_{x} \cap X \subseteq U
\end{aligned}
$$

Then $\{M-X\} \cup\left\{W_{n}\right\}$ is a cover of M, so that there axdate locelly finite refinement of it, which we may take to be of the form $\{\mathrm{M}-\mathrm{X}\} \cup\left\{\mathrm{w}_{\mathrm{t}}\right\}$. where ench W_{i} ta contained in $W_{(i)}$ for some $\pi_{i} \in X$. Since M han a countable batia for ite topology, the collection \{ $\left.w_{i}\right\}$ it countable. Now wo diecardau W_{i} for which $W_{i} \cap U^{*} \nsubseteq \Phi$ or $W_{i} \cap V^{\circ}=0$, and we
index the remsining $W_{l}{ }^{\prime}$ 'by the poitive Integers. Then we have $V^{*} \subseteq \cup \cup W_{1} \cup v_{2} \cup \cdots$, and $W_{1} \subseteq V$ for all 1 , by .

We can choose closed ate $W_{i}^{\prime} \subseteq W_{i} \cap X$ such that $V^{\prime} \subseteq U U W_{i}^{\prime} U W_{i}^{\prime} U \cdots$. Since $W_{i}^{\prime} \leq W_{n(1)}$, and the letter is roiedvely compact, it followe that W_{i}^{\prime} is compact.

Now we conatruct by induction a sequence $H^{0}, H^{l}, H^{2}, \ldots$ of isotopies of M Into iteelf and eequence $\hat{~}_{0} \cdot \phi_{1}, \phi_{2}, \cdots$ of inomorphisme of tubular nelghborhoode. Welet H^{0} bedefined by H_{i}^{0} - identity, $0 \leq t \leq 1$. and let Po beas glven in the aftement of the proposition.

For the inductive atep, we auppose that $H^{0}, H^{1}, \ldots, H^{t-1}$ and $由_{0} \cdots, 由_{\text {fll }}$ have been constructed, are compatible with I and leave X point-wiee flxed. We let σ^{\prime} be the isotopy of M defined by $\sigma_{t}^{J}=H_{t}^{j} \cdot H_{t}^{j-1} \cdots \cdot H_{t}^{0}$. We eet $J^{j}=G_{1}^{J}$. Welet $U_{j}=U U W_{1} U \cdots U W_{j}$ and tuppose supp G^{i-1} 됴 $U_{1-1} \cap V$. Furthermore, we suppose $\left(G_{i}^{1-1}(x), x\right) \in N$ for all $x \in M$ and $t \in[0,1]$. and that ϕ_{1-1} is an
 is an optrn natghorhood of $U^{\circ} U W_{i}^{\prime} U \cdots U W_{I-1}^{\prime}$ in x.

Then it followa from the local case of the proposition that H^{i} and ϕ_{i} can be chosen so that the conditiond of the induction are satiened. For, let W_{i}^{0} be an open auberet of w_{i} euch that $w_{i} \subset w_{i}^{0}$ and w_{i}^{0} terelatively compact in W_{i}, and lat U_{i}^{*} be an open nolghborhood of $U^{*} U W_{i}^{*} U \ldots U W_{i}^{\prime}$ in X whose closurelies in $U_{L-1}^{*} U W_{L}^{0}$. From the local case, lt followe that we can construct an ieotopy H^{i} of w_{i}. compatible with 1 , leaving $\times \cap w^{i}$ point-wiec $f(x e d$, and with aupport in w_{i}^{0} auch that $h_{i}^{i}{ }_{0}^{i-1} T_{0}\left|\bar{U}_{i}^{*} \cap W_{1} \sim T_{1}\right| \bar{U}_{i}^{*} \cap W_{i}$. where $h^{i}=H_{i}^{i}$. (This is

choose $H^{\text {L }}$, othet H_{t}^{t} is arbitrarily close to the identity for all t, and so there is an inomosphiem

$$
\phi_{1}: h_{d}^{1} \dot{b}_{0}^{1-1} T_{0}\left|\bar{U}_{1}^{*} \cap w_{1} \longrightarrow T_{1}\right| \bar{U}_{i}^{0} \cap W_{1}
$$

such that

$$
\phi_{i}\left|\bar{U}_{i}^{*} \cap w_{1} \cap \bar{U}_{i-1}^{*}=\phi_{i-1}\right| \bar{U}_{i}^{*} \cap w_{i} \cap \bar{U}_{i-1}^{*}
$$

Since mupp H^{i} Is in a compact aubest of H_{i}, wemay extend H^{i} to an isotopy of M whose upport liee in W_{i}. Likewiee, we may extend ψ_{i} to all of U_{i}^{*} by letting $\psi_{i}\left|U_{i-1}^{*}=\phi_{i-1}\right| U_{i-1}^{*}$. Then H^{i} and ψ_{i} aatiefy the condition of the induction.

Now If it is true that the eequence $G_{i}^{i}(x)$ is eventually conetant in a neighborhood of any point $x \in M$, we can eet

$$
H_{t}(x)-\lim _{i \rightarrow \infty} G_{t}(x)
$$

and

$$
\phi(x)=\lim _{i \rightarrow \infty} \phi_{i}(x)
$$

(since the latter is oventually comatint in a nighborhood of any point). If we choose N so that the projection $T_{2}: \bar{N} \rightarrow M$ ia proper (where ${ }_{2}$ denotes the projection on the esond factor), then It is easily seen that the eequence $G_{i}^{(}(x)$ is eventually conetant in a nelghborhood of any point $x \in M$, and that H and have the required properties.

Thit completes the reduction to the local case.

Proof in the local cane. Let $T_{0}=\left(E_{0, ~} \mathcal{C}_{0}, \varphi_{0}\right)$ and $T_{1}=\left(E_{1}, \varphi_{1}, \varphi_{1}\right)$. We wll firat conatruct an leomorphiem : $\mathrm{E}_{\mathbf{0}} \rightarrow \mathrm{E}_{1}$ of inner product bundies which extends $\psi_{0} \mid U^{*}$, and then conatruct the laotopy H to have the required properties.

The tubuler nel ghborhood $T_{i}(1=0,1)$ givea a naturalidentlfication α_{1} of E_{i} with the normal bundle v_{X} of X in M. Explleitly, if $\pm \in X$, the reatriction of α_{1} to the fiber $E_{1, x}$ la the compoaition $\mathrm{E}_{1, x}=\mathrm{T}\left(\mathrm{E}_{1, X}\right)_{0} \xrightarrow{\mathrm{~d} \varphi_{1}} \mathrm{TM}_{x} \xrightarrow{\text { proj. }} \mathrm{TM}_{\mathrm{x}} \mid \mathrm{TX}=\nu_{X, x}$. Let $\theta=\alpha_{1}^{-1} \alpha_{0}: E_{0} \rightarrow E_{1}$. We may conalder β as a aection of loo($\left.E_{0}, E_{1}\right)$, whare the latter la the bundle whone fiber over $*$ ta the apace of Leomorphiams of $E_{0_{1} x}$ Into $E_{1_{1}: \times}$. In general, β will not he of claae $\boldsymbol{C}^{\boldsymbol{\mu}}$, only of clase $C^{\boldsymbol{\mu}-1}$; however, we may approximate β arbitrarily cloaely on any compact aubat of X by a aection β_{1} of claaa c^{μ}.

To conatruct , we will need the following well known lemma in linear algebra.

LEMMA. Let V and W bevector pacea, provided whth inner producta 1 and j. Lat $L: V-W$ beavector apace inomorphiam.

Then there exista a unlque poaltive definite nelf-adiaint line日r mapping $H: W \rightarrow W$ auch that $H \cdot L: V \rightarrow V$ pronerveeinnor producte.

Remark 1. It if easily meen that this is equivalent to the aesortion that any Invertble matrix L of real numbera hat a unique decompoaition $L=H^{-1} U$ where M la a pooltive definite aymmetric matrix and U is an orthogonal matrix.

Ramark 2. Similerly, it le oally verified thet there exiote a unique positive definite aelf-adjoint linear mapping $H_{1}: V \rightarrow V$ auch thet $L \cdot H_{L}: V \rightarrow W$ preservea Inmer producte, and that $H_{L}=L^{-1} H L$.

Proof of the lemms. Existence. Lat $E_{L^{\prime}} \cdots,{ }_{0}$ be on orthonormel basia for V, and let $A=\left(\alpha_{i j}\right)$ be the matrix given by $\alpha_{i j}=\left(L_{i}, L_{i j}\right)_{j}$. Then $a_{i j}$ la aymmetric and posituve dofinite. It followa from the apectral theorem for aymmetric positive definite matricen that we may chooe the beala $\operatorname{c}_{1}, \cdots, \theta_{n}$ so thet $\left(\alpha_{i j}\right)$ la a diagomal matrlx: $\alpha_{i j}=\lambda_{i}{ }_{i j}$ where $d_{i j}$ ta the Kronecher delta eymbol). Let $\left.f_{i}=L e_{i}\right) / \sqrt{\lambda_{i}}$. Then f_{1}, \cdots, f_{n} la an orthonormal basia of V. Let $H: W \rightarrow W$ begiven by $H\left(f_{i}\right)=f_{i} / \sqrt{x_{i}}$. Then H has the required propertien.

Uniquencal. If there weratow, H and H^{*}, we would have thot $U=(H L) \cdot\left(H^{\prime} L\right)^{-1}$ ia orthogonal. Then $U H^{\prime} L \neq H L$ so $U H^{\prime}=H$. Taking adjointa, we then obtain $H^{\prime \prime} U^{-1}=H$ so that $H^{\prime 2}=H^{\circ} U^{-1} \mathrm{UH}^{\circ}=H^{2}$

Thi implleat $H^{\prime}=H$, ince a poiltive definite eelf-adjoint mapping has only one positive deflnite eelf-adjoint equare rook, Q.E.D.

Now we return to the proof of the unlquanese of tubuler neighborhoods. For anch $x \in X$. let η_{π} be the unique eelf-adjoint positive definite ltaear automorphiam of $E_{1_{1}}$ wuch thet $y_{x}=\eta_{x} * \mathcal{H}_{1, x}: E_{0, x} \rightarrow E_{1, x}$ preserves inner producta. Cloarly. $\psi=\left\{\phi_{x}\right\}$ it a mooth inomorphiem of E_{0} unto E_{1}, and it preaerves lnner producte. From the fact that η_{x} is poaltive definite and alf-adfoint it follown thet ($1-t$) idenctiy $+t \eta_{x}$ is an atomorphiem of $E_{1, x}$ for $0 \subseteq t \subseteq 1$. Hence If $\&_{1}$ is choeen sufflelently close to β. it follows that

$$
\left(1-t \mid \theta+4: E_{0} \longrightarrow E_{1}\right.
$$

It an isomorphiem for $0 \leq t \leq 1$. Moreover, if we choose β_{1} so that $F_{1}=\beta$ in a noighborhood of U^{\prime} (which we may do oince $\beta \mid U=\phi_{0}$ by definition of f^{\prime}, then $\eta=i d e n t i t y$ in a neighborhood of U_{1}, so that $\phi\left|U^{*}=\phi_{0}\right| U^{*}$.

Since we are In the locai cane. wo may auppose without lose of generality that M le open $\ln \mathbb{R}^{m}, P$ is open in $\mathbb{R}^{P}, X=\mathbb{R}^{m-c} \cap M$, and $f=\pi \mid M$, Le is easily aeen that there exinta a neighborhood V_{1} of v^{\prime} in v wuch that for all me V_{1}, we have that

$$
g_{t}(m)=\varphi_{1} \cdot\left((1-t) \beta+t() \cdot \varphi_{0}^{-1}(m)\right.
$$

is defined, Since $V^{\prime} \subseteq X$, whave $g_{f} \mid V^{\prime}=$ inclusion, Since V^{\prime} te compaet there exdeta an open naighborhood v_{2} of v^{*} in v_{1} euch that $g_{f}\left(V_{2}\right) \subseteq_{g_{i}}\left(V_{1}\right)$ for $0 \leq e . t \leq 1$. Let p be c^{∞} function on M which is identealiy 1 In anighborhood of $V^{\text {e }}$ and which hate compact eupport $E V_{2}$. Lat $G_{0, t}: M-M$ be defined by

$$
\begin{array}{ll}
G_{1, t}(m)=(1-\rho(m)) m+\rho(m) g_{t} g_{0}^{-1}(m) & m \in v_{2} \\
G_{0,}(m)=m & m \in M-v_{2}
\end{array}
$$

Then $G_{\text {e, }}$ in amooth mepping for $0 \leq e, t \leq 1$, and lit deponde amoothly on and t. Since $G_{t, t}$. Identity and thereto a compact set which containe the support of $G_{3, t}$ for all and t. It followe that there axdete $\delta>0$ such thet $G_{s, t}$ ie a diffeomorphiem for $\mid=-1<8$. Lat n be a poeftive integer euch that $\frac{1}{n}<8$ and sot

$$
H_{t}=G_{0 \frac{t}{L}} \cdot G_{\frac{t}{n}, \frac{2 t}{n}} \cdot G_{\frac{n-1}{n t} t, t}
$$

Then H_{t} is an isotopy of M into M, and it follown from the deflaition of H that $H_{1}=g_{1}$ in eufficiently emall neighborhood of V^{*}. Also, it followe from the definitions that g_{t} and H_{t} is the identity in a sufficiently amell neighborhood of $U^{\text {, }}$ for all t. Thum $H_{1}=E_{1}$ in a muffiefently smail neighborhood of $U^{*} U V^{\prime}$. Clearly $\operatorname{supp} H \subseteq V_{2} \subseteq V$.

Furthermore, $H_{1} \cdot \varphi_{0}=g_{1} \cdot \varphi_{0}=\varphi_{1} \cdot \phi \quad$ in a aufficiently amall nelghborhood of $U^{*} U V^{*}$. Thue wiean leomorphiom of $H_{1}{ }^{*} T_{0} \mid U^{*} U V^{*}$ with $T_{1} \mid U^{\circ} U V^{*}$.

It is clear from the construction that H is compatible with f and leaven X polat-wise fixed. Finally, by chooning the function D ueed in the conatruction of \mathbf{G} to heve support in a very small netghborhood of v^{\prime}. we mayarrange for H_{t} to be at close to the identity (in the compact-open topolo(y) an wo like. O.E.D.

Now we atate and prove the exiatence theorem for tubular netgbborhoods.
PROPOSITION 6.2. Suppone $f \mid X: X \rightarrow P$ ienaubmeraion. Let U be an open gubaet of X and let T_{0} beatubular noighborhood of U in X. Let U^{\prime} besoubset of U which is closed in X. Tben thero oxiate a tubular nolghborhood T of X in M nuch that $T\left|U^{\prime} \sim T_{0}\right| U^{\prime}$.

Proaf. It is enough to conalder the cane when X in closed in M. For, in general, there is an open aubset M_{0} in M euch that X la a closed subeet of M_{0}, aince X in locally closed in M. Ciearly a tubular neighborhood of X in M_{0} ia a tubular neighborhood of X in M .

The local case of this proposition is trivial.

To prove the propoaition in general, we take a locally finite family \{ W_{i} \} of open seta in M having the following propertien:
(a) For each 1 , there le a coordinate cbert $\varphi_{i}: W_{i} \rightarrow R^{D}$ ouch that $\varphi_{1}\left(w_{i} \cap X\right)=\varphi_{1}\left(W_{i} \mid \cap \mathbb{R}^{n-c}\right.$ (where $\left.c=\operatorname{cod} X\right)$ and auch that there la coordinate chart $\phi_{1}: f\left(W_{i}\right) \rightarrow R^{p}$ ouch that the following diagram commutes

(b) each $\overline{W_{i}}$ if compact, and
(c) $\left\{w_{1} \cap X\right\}$ in a cover of X.

Furthermore, we can choose closed seta $w_{i} \subseteq w_{i}$ euch that $\left\{w_{i}{ }^{\circ}\right\}$ if a cover of X. Since M has a countable batia for te topology, the farmily $\left\{W_{i}\right\}$ is countable. We wid 11 euppose that it in Indexed by the poaitive integern. For each ponitive integer we let $U_{i}=U U W_{1} U \cdots V_{i}$ and $U_{i}^{*}=U^{\circ} U W_{i}^{\prime} u \cdots U w_{i}^{p}$. Wo let $U_{0}=U$ and $U_{o}^{\prime}=U^{\circ}$.

Now wo construct by induction on 1 an open neighborhood $U_{i}^{\text {e" of }}$ U_{i}^{\prime} in X and a tubular neighborhood T_{i} of $U_{i}^{\prime \prime}$. We take $T_{0} *$
given. For the incluctive otep, tre appoes $U_{i-1}^{\text {en }}$ and T_{i-1} heve been constructed. We let $U_{i}^{\text {e }}$ be any open nelghborhood of U_{i}^{*} in X which id rolativaly compect in $W_{I} U_{U_{1-1}}^{\infty}$.

Since $U_{1}^{\infty} \subseteq W_{1}-U_{i-1}^{\prime}$. there arlet open aeta A and B in U_{i}^{*} such that $U_{i}^{\prime n}=A \cup B, \bar{A} \leq W-U_{1-1}^{\prime}$ and $E \leq U_{i-1}^{\infty}$. Since the existence theorem for tubular neighborboods is true in the local case, we may choose a tubular neigbborhood T_{i}^{\prime} of $W_{i} \cap X$ in W_{i}. Then we hive two tubular noifhborhoode of $U_{i-1}^{\prime \prime} \cap W_{i}^{\prime} \cap X$ in M, nonely the reatrictione of $T_{i}^{\prime \prime}$ and T_{i-1}. Since $A \cap B$ in relatively compect $\ln \left(U_{i}^{\infty}-U_{i-1}^{\prime}\right) \cap v_{i} \cap X$. we may find a diffeomorphiem h of m onto iteelf leaving X pointwie flxed euch that $h_{*} T_{i-1} A \cap B \sim T_{i}^{\prime} \mid A \cap B$. Furthermore, we may euppose i fe compatible with f and b ie the Identity outaide an arbitrarly emall nelghborhood of $\overline{\mathrm{A}} \boldsymbol{\mathrm { B }}$; In particular, that b ie theidentity in a neighborhood of U_{i-1}^{\prime}. Since $h_{1} T_{i-1}\left|A \cap B-T_{i}^{*}\right| A \cap B$ there is a tubuler netghborhood T_{i} of $U_{i}^{\prime \prime \prime}=A \cup B$ in M nuch that $T_{i}\left|A \sim T_{i}^{\prime}\right| A$ and $T_{1}\left|B \sim h_{1} T_{i-1}\right| B . \operatorname{Clearly} T_{i}$ is compatibie with 1.

Furthermore, $T_{i} \sim T_{1-1}$ in anelghborhood of $\mathbf{U}_{\mathbf{i}-1}$. It follows eanlly that there is a tubular nelghborhood T of X in M such that $T \sim T_{i}$ in a neighborhood of U_{i}^{*} for all 1 , and that thit tubular neighborhood is compatible with f. Q.E.D.
67. Control data. Throughout this section, lat M be a manlfold and 8 Whitody pre-atratification of a nubeet S of M .

Suppose thet for ench atratum X of 8 we are diven a tubular neighborhood T_{X} of X in M. Let $T_{X}:\left|T_{X}\right| \rightarrow X$ denote the projection ansociated to T_{X} and $\rho_{X}:\left|T_{X}\right|-R$ the tubular function aspociated to $\mathbf{T}_{\mathbf{X}}$.

DEFINITION. The family $\left\{T_{X}\right\}$ of tubular nol bborhaoda will be called control datefor forme followng commution relationa are matiod: If X and Y are atrata and $X<Y$, then

$$
\begin{aligned}
& W_{X} Y_{Y}^{(m)}=W_{X}^{(m)} \\
& P_{X^{W}} Y^{(m)}=o_{X}(m)
\end{aligned}
$$

for all m such that both ildes of the equation fro dofined, h.e., all $m \in\left|T_{X}\right| n\left|T_{Y}\right|$ such thet $\sigma_{Y}(m) \in\left|T_{X}\right|$.

If f mape M into P, then the family $\left\{T_{X}\right\}$ will be atd to be compatible with 1 if for all $X \in g$ and all $m \in\left|T_{X}\right|$. we have $f X^{(m)}=\mathbf{f}(m)$.

PROPOSITION 7.1. If $f: M \rightarrow P$ In a pubmergion then there exdele afamily $\left\{\mathrm{T}_{\mathrm{X}}\right\}$ of control data for g which is compatible with i .

For the proof of the propoaition, we will need Lemmin 7. 3 below. The proof of Lemmat.3dopends on Letrma 7.2maich eeye (roughly speaking) thet every tubular neighborhood is locelly like a atanderd example.

DEFINITION. By the etanderd tubuler nelgbborhood $T_{m, c}$ of
 trlvial bundle over $R^{m=c}$ with Aber R^{C} (provided with ite atendard laner product), $=1$, and $\Phi: B, R^{m}$ in the routriction map of the Identlicetion mapping $\quad R^{m-c} \times R^{c} \rightarrow R^{m}$.

Moregenerally tf U ia open in \mathbb{R}^{m-c}, the standerd tubular nelghborbood of U in R^{m} will men $T_{m, e} \mid U$.

LEMMA 7.2. If X it a ubmenifold of M, T_{X} in a tubular nedphborhood of X, and $x \in X$, then there oxiste a coordinete chart $\varphi: U \rightarrow R^{m}$, where U inopen $\ln M$ and $x \in U$, auchthat $\varphi(X \cap U)=\mathscr{O}(U) \cap r^{m-c}$ (where $\left.c \equiv \operatorname{cod} X\right)$ and auch that

$$
\varphi_{*}\left(T_{X} \mid X \cap U\right) \sim T_{m, c}|d X \cap U\rangle
$$

Proof. Immediate from the definitions.

If $T=(E, f, 0)$ ta a tubuler neighborhood of X in M and e° ie any emooth poitive function on X, we let $|T|_{c}=0\left(B, n \overline{B_{c}}\right.$,

- $: E-X$ denoten the projection. Clearly $|T|$. $I s$ a mooth menifold with boundary $a|T|$, and Intertor $|T|^{0}$, We will asy ${ }^{0}$ is
 is a proper mapping

LEMMA 7. 3. Let X and Y be dfoioint aubmanifoldg of M auch that the pair (X, X) antioflon condition b. Lot T be atubular
neighborbood of X in M. Thon there exiete a ponteive smooth function - on x such that the mapplas

$$
\left(\rho_{T^{\prime}} \mathrm{T}^{\prime}: Y \cap|T|_{c}^{0} \longrightarrow \mathbf{R} X\right.
$$

is a nubmersion

Proof. Let Σ be the oet of $y \in|T|$ uch that the rank of the mapping

$$
\left(P_{\mathbf{T}^{\prime}} \bar{T}\right): \mathbf{Y} \cap|\mathbf{T}| \longrightarrow \mathbb{R} \times \mathbf{X}
$$

at Y is $<\operatorname{dim}(\mathbb{R} \times X)$. The lemma le equivalent to the asererton that for any $x \in X$ there exinte notghborhood N of x in M uch that $N \cap \Sigma=0$. Since thic le e purely local atatement, followif from Lemma 7.2 that it is enough to prove the proposition when $M=\mathbb{R}^{m}$. $X=\mathbb{R}^{m-c} \times 0_{c}$, and T ta the standard tubuler noighborhood $T m, c$
of $\mathrm{R}^{\mathrm{m}-\mathrm{C}}$ in m^{m}. In thle cape T^{T} is the orthogonal projection of \mathbb{R}^{m} on $\mathrm{R}^{\mathrm{m}-\mathrm{c}}$, and P_{T} ta the function which la given by $\rho(y)=\operatorname{dict} .\left(y, R^{m-c}\right)^{2}$.

Let $Y \in|T|-R^{m-c}$, The kernel of the differebtial of $\left(T_{T}, \rho_{T}\right)$ at y le the orthogonal complement of $\left(R^{m-e} \times O_{e}\right) \theta Y_{T} T^{(Y)}$ In R^{m}. The hypothate that condition b la eatiofied implles that for y bear $\mathbf{R}^{\mathrm{m}-\mathrm{c}}$,
 in m epace to a m-c+lplate which lien In TY_{y}. Hence for y near enough to $\mathbb{R}^{\mathrm{m}-\mathrm{C}}$, We have thet TYy letraneverdal to the kernel
 at Y. 1.0., Y \&

Proof of Propogition_7. Let s_{k} denote the famlly of etrata of 8 of dimenslon $\leq k$, and let S_{k} denote the union of all etrata $\ln g_{k}$. V will ohow by induction on that the proposition latruefor s_{k} and S_{k} In place of 8 and S.

For the Inductive atep, we ouppose that for each atraturn X of dimenaion <k, we are given a tubular neighborhood T_{X} of X. and thin fomily of tubular nelghborhoode atiafiea the commutation relationa.

By ahrinking the T_{X} If necesaary, we may appose that $I f \quad X$ and Y are atrata of dimention $<k$ which are not comparable li.e., neither
$\mathbf{Y}<\mathbf{X}$ nor $X<\mathbf{Y}$ holde), then $\left|T_{X}\right| \cap\left|T_{Y}\right|=0$. To conatruct the T_{X} on the etrata of dimenslon k. wemay do Lt one etratumat a time, alnce there are no commutation relations to be setisfled among the atrate of the same dimenalon. Let X be atratum of dimenalon k For ench $\leq \leq k$, wolet U_{t} denote the unlon of all $\left|T_{Y}\right|$ for $Y<X$ and dim $Y \geq 1$. Wolot $X_{1}=U_{1} \cap X$. In the firtetop, wo conetruct a tubular oelghborhood T_{t} of $X_{\text {, }}$ by decreaning laduction on 1 . In the Inductive atep, we whll ehrink verlous $\left|T_{Y}\right|$, but thin la permitted, alnce we do it only a flalte number of tlmes. Then in the eecond step, we entend T_{0} to a tubular nelghborhood T_{X} of X .

Firat atep. For $f=k$, we have $x_{k}=0$, so there le nothing to construct. For the Inductive atep, we euppose that $T_{\mathcal{1}+1}$ haebeen conetructed and that the following apectsl casen of the commutetion relatione areantiafied: if $Y<X, \operatorname{dim} Y \geq 1+1, m \in\left|T_{i+1}\right| \cap\left|T_{Y}\right|$

(181)

$$
\rho_{Y}{ }_{\ell+1}(m)=\rho_{Y}(m)
$$

We conatruct the tubular nelghborhoode T_{X} lntwo atape, anfollowe.

$$
\Psi_{Y} \bar{\nabla}_{i l l}(m)=Y^{(m)}
$$

By replecing $T_{\ell+1}$ with a emaller tubular nelghborhood if neceasary, we may suppose that for $m \in\left|T_{i+1}\right|$ thereis $Z<X$ with dim $Z>1$ such
that $m \in\left|T_{z}\right|$ and $m_{i+1}(m) \in\left|T_{z}\right|$.

To conatruct T_{1} it in enough to conetruct T_{1} on $\left|T_{Y}\right| n X$ for each atratum $Y<X$ of dimenaion ℓ eeperatoly, oince if Y and Y^{*} are two atrata of dimenaion 1 , we have $\left|T_{Y}\right| \cap\left|T_{Y}\right|=0$, eince Y and Y^{\prime} arenot comperable.

Thum, wo wh to conetruct atubuler moighborhood $T_{X, Y}$ of $\left|T_{Y}\right| \cap X$ whone reatriction to $\left|T_{Y}\right| \cap X_{f+1} \mid d$ dwomorphic to the reatriction of T_{f+1}, auch that the following commutation relation is entinfed: if $m \in\left|T_{X, Y}\right| \cap\left|T_{Y}\right|$ and ${ }_{X} X, Y(m) \in\left|T_{Y}\right|$, where ${ }^{\mathbf{W}} \mathbf{X}, \mathbf{Y}={ }^{\mathbf{W}} \mathbf{T} X, Y$, then

$$
\begin{aligned}
& \rho_{Y} \Psi_{X, Y}(m)=a_{Y}(m) \\
& \Psi_{Y}{ }^{\pi} X_{, Y}(m)=\bar{m}_{Y}(m)
\end{aligned}
$$

By bhrinking $\left|T_{Y}\right|$ if necenamy, we mivarrange that if $m \in\left|T_{f+1}\right| \cap\left|T_{Y}\right|$ and $T_{f+1}(m) \in\left|T_{Y}\right|$, then thi commutation relation in already atiafied (with f_{i+1} in place of $X_{X, Y}$) for the following reason. Since $m \in\left|T_{\ell+1}\right|$, there exiats $Z<X$ with dim $z>\&, m \in\left|T_{z}\right|$ and $\pi_{f+1}(\mathrm{~m}) \in\left|T_{Z}\right|$. Since $\boldsymbol{m}_{f+1}(\mathrm{~m}) \in\left|T_{Y}\right| \cap\left|T_{Z}\right|$. the lant named opace ia not empty; hence Y and Z are comparable, and by dimenation rentrictions $Y<Z$. Therefore

$$
\begin{aligned}
& P_{Y}{ }_{l+1}(m)=P_{Y}{ }^{\pi} z^{\pi} \ell_{t+1}^{(m)} \neq P_{Y} z^{(m)}=P_{Y}(m)
\end{aligned}
$$

(V omay have to ohrink $\left|T_{Y}\right|$ to guarantee that thoee equalition hold for all me| $T_{i+1}|\cap| T_{Y}|$.

Furthermore, by ahrinking T_{Y} further $1 f$ necoasary, we may suppose thet

$$
\left(p_{Y}, \bar{W}_{\mathbf{Y}}\right):\left|T_{Y}\right| \cap X \longrightarrow \mathbf{R} X \mathbf{Y}
$$

in a submeraion. The commutation relation that we must verlfy is precisely the condition that T_{X}, Y be compatible with the mapping
 neighborhood theorem, wo got that if X_{l+1}^{0} in an opon aubset of X whone cloaureliea in X_{i+1}, then there oxitete $T_{X, Y}$ which astisfied the commutation relations and whose reatriction to $\left|T_{Y}\right| \cap X_{i+1}^{0}$ le lsomorphic to the reatriction of $T_{\ell+1}$. Now we replace T_{Z} for $Z<X$ by emaller tubular netghborhoods $T_{\mathbf{Z}}^{0}$ uch that $X_{\ell+1}^{0} \subseteq X_{\ell+1}^{0}$. where $X_{\ell+1}^{0}$ is defined analogously to $X_{\ell+1}$, but whth T_{Z}^{\prime} ln place of T_{Z}. Then $\mathbf{T}_{\mathrm{X}, \mathrm{Y}}$ hae the required properties.

Thia comploten the firat atep: wo conclude that there oxiate a tubuler neighborhood T_{0} of X_{0} astiafying $\left({ }_{0}\right)$ forany $Y<X$.
 compatible with f. For, by roplecing T_{0} with a emaller tubuler nelghborhood if necoseary, we may aeoume that if $m \in\left|T_{0}\right|$, then for some $Y<X$. we have $m \in\left|T_{Y}\right|$ and $\nabla_{0}(m) \in\left|T_{Y}\right|$. Then

$$
f_{\Gamma_{0}}(m)=f T_{Y} \nabla_{0}(m)=f F_{Y}(m)=f(m)
$$

Since T_{0} is compatible with f, we mey extend a oultable restriction of T_{0} to a tubular netghborhood T of X which is compatible with
f. by the generalifed tubular nelghborhood theorem. Then, by replacing the T_{Y} with posetbly ameller tubular neighborhoode (ae in Step 1), we get that the compatibility conditione are atiofled.

This complete the conatruction of T_{X}, and therofore also completea the proof of the propolition.
88. Abotract pro-otratified eet. If V to cloeed subset of a manifold M which admite a Whitney presetratification (in the cenae defined in Section 5) then we can find control date for this pra-atratification by the previous eection. Thie provides V with conolderable etructure. The purpose of thi section to to extomatise the sort of atructure which occure. We deptirt only elighty from Thom'e notion of abotract atratifed at ([3] and [4]).

DEFINITION 1. An abotract pra-atratified oot is a triple (V, s, J) allinfying the following axiome, Al - A9.
(Al) V Is a Heuedorff, locally compact topological apece with a countable beale for ite topology.

The axiom implien that V lo metrixable. For. ince V iv locally compact. te is reguler. so the metrizabllity of V followit from Urymohn metrization theorem (Kelly [1]). SLnce V If matrizable, ovary aubeat X of V is normal (In the eense thet any two diejoint closed subsete of X can be eoparated by open eota). We will often uee thle fact without explleit mention.
(A2) 8 In a family of locally cloeed aboete of V, auch that V te the disjoint union of the members of 8 .

The membera of 8 will be called the gtrate of V.
(A) Eech atratum of V it a topological manifold (in the Incuced topology), provided with a moothnene atructure (of claen c^{μ}).
(A4) The femily 8 la locally finite.
(A5) The famly g netiaflea the antom of the fronter: If $X, Y \in g$ and $Y \cap \bar{X} \neq \sigma$. then $Y \subseteq \bar{X}$.

If $Y \in \bar{X}$ and $Y \neq X$, warlte $Y<X$. Thie relation le obviounly trameitive: $Z<Y$ and $Y<X$ imply $Z<X$.
(A6) 3 le atrlple $\left\{\left\{T_{X}\right\},\left\{T_{X}\right\},\left\{\rho_{X}\right\}\right\}$, wherefor each $x \in s$. T_{X} ia an open neighborhood of $X \ln V, \pi_{X}$ ia a continuous retraction of T_{X} onto X, and $P_{X}: X \rightarrow[0, \infty)$ is a continuous function,

We will call T_{X} the tubuler netghborhood of X (with respect to the given atructure of a pre-atratified ato on V), F_{X} the local retrection of T_{X} onto X and ρ_{X} the tubular function of X.
(AT) $x=\left\{v \in T_{x}: P_{X}(v)=0\right\}$.
If X and Y areany atrata, we let $T_{X, Y}=T_{X} \cap Y$,
$\pi_{X, Y}=\pi_{X} \mid T_{X, Y}$, and $\rho_{X, Y}=P_{X} \mid T_{X, Y}$. Then ${ }_{X} X_{X, Y}$ is a mapping
of $T_{X, Y}$ into X and $P_{X, Y}$ is mapping of $T_{X, Y}$ into ($0, \infty$). Of couree. $\mathbf{T}_{\mathrm{X}} \mathrm{X}, \mathrm{Y}$ may be empty, in which caee these are the empty mappinge.

(AB) For any atrata X and Y the mapping

$$
\left({ }^{(} X, Y, P_{X, Y}\right): T_{X, Y} \longrightarrow X \times(0, \infty)
$$

le amooth submersion. Thie implies $\operatorname{dim} X<d i m Y$ when $T X, Y \neq$
(A9) For any atrate X, Y, and Z, wo bave

$$
\begin{aligned}
& \rho_{X, Y^{\star}} Y_{,} Z^{(v)}=O_{X, Z^{(v)}}
\end{aligned}
$$

whenever both oldee of thle equation are deflned, l.e., whenever

DEFINITION 2. We say that two atratifted eete \{V.B.J\} and
($V^{\prime}, g^{\prime}, J^{\prime}$) are equivalent if the following conditiona hoid.
(a). $V=V^{*}, g=g^{*}$, and for oach stratum X of $g=3^{\circ}$, the two amoothness atructures on X given by the two atratificationa are the ame.
(b), If $J=\left\{\left\{T_{X}\right\},\left\{\pi_{X}\right\},\left\{o_{X}\right\}\right\}$ and $J^{\prime}=\left\{\left\{T_{X}^{\prime}\right\},\left\{\mathbb{X}_{X}^{\prime}\right\},\left(o_{X}^{*}\right\}\right\}$, then for each straturn X, there exinto a neighborhood T_{X} of X in
$T_{X} \cap T_{X}^{\prime}$ such that $P_{X}\left|T_{X}^{\prime \prime}=P_{X}^{\prime}\right| T_{X}^{\prime \prime}$ and $T_{X}\left|T_{X}^{\prime \prime} \cdot T_{X}^{\prime}\right| T_{X}^{\infty}$.
From the normallty of arbitiary aubsete of a atratifiad eet, it followa that any (abotract) pre-atratifed eot le equivelent to one which setialion the following conditions
(Al0) If X, Y are otram and $T X, Y \neq O$, then $X<Y$.
(AI) If X, Y areatrate and $T_{X} \cap T_{Y}+G$, then X and Y are comparable, 1.e. one of the following holda: $X<Y, Y<X$, or $X=Y$.

From (Al0). it followa that $X<Y$ if and only if $T_{X, Y}+0$, and from (All) that X and Y are comparable if and only if $T_{X} \cap T_{Y} \neq 0$.

Note that from (A8) it follow that the relation $X<Y$ deflneal a pertial order on 8 . It is enough to verify $X<Y$ and $Y<X$ do not hold almultianeouely. But (A8) implien $X<Y \Rightarrow \operatorname{dim} X<\operatorname{dim} Y$.

As an emaple of an (ebatract) pre-atratified eot, let V be a abbet of a manifold M and auppoie V admite a bitney pro-utratification 8. and let $\left(T_{X}^{e}\right)$ be iamily of control date for 8 , and let ${ }^{T} X: T_{X}^{\prime} \rightarrow X$ and $P_{X}: T_{X}^{\prime} \rightarrow(0, \infty)$. Set $J=\left\{T_{X}\right\}$. Then $\{V, 8,3\}$ ia mabatract pre-itratified atof, In this way, we amociate with any byatom of control data for a Whitney pre-diratified att V, atructure of an abatract pre-etratified aet on V.

Hence it followe from Propodition 7.1 that any Whating pre-atratifled at admita the atructure of an abotract pre-stratified eot.

If (V,s, si it a pre-stratiliod oot, V^{\prime} is any topological epace, and $\varphi: V^{*} \rightarrow V$ is a homeomorphitm, then the efructure of a stratified

- tit on V 'ppulle back" In an obvioud wey to tiva a otructure $\left(V^{\circ}, \varphi^{\circ} f, \varphi^{\bullet} J\right.$) of a atratified at on V^{*}.

If ($V^{*}, 8^{*}, \mathrm{~T}^{\prime}$) and (V, B, J) ereabotract pre-stratifled aete, then a homeomorphiem $p: V^{*} \rightarrow V$ is asid to be an ieomorphinm of atratified eete if ($V^{*}, B^{\circ}, J^{\prime}$) in equivalent to ($V^{*}, \varphi^{*} 8^{*}, \varphi^{*} J^{\prime \prime}$).

The uniquemese raeult that wo will prove below lmplies the following;
 ayatema of control date, then the abatract preatratifiod aete (V.8, J) and ($V, 8, \mathrm{~T}$) areinomorphic.
89. Controlled vector fielde. Throughout thls eection, we let (V, B, T) be an (abotract) pre-ntratfied aet. We euppoee $\mu \geq 2$.

DEFINITION, Bya etratifled vectorfield η on v, wemeana collection $\left\{\eta_{X}: x \in 8\right\}$, wherefor each atratum X, waheva that η_{X} In a smoth vector field on X.

By amooth vector fleld we mean a vector fleld of clana $C^{\mu-1}$.

Let $\bar{T}=\left\{\left\{T_{X}\right\},\left\{r_{X}\right\},\left\{\rho_{X}\right\}\right\}$, and for two atrata X and Y, lat $T_{X, Y}$, $\mathbf{W}_{\mathbf{X}, \mathbf{Y}}$, and $P_{X, Y}$ bedefined as in the previous section.

DEFINITION. A atratifed vector fleld η on V will be neld to be
controlled (by J) if the following control conditions are natiefied: for any
gtratum \mathbf{Y} there oxista a nodghborhood T_{Y}^{\prime} of Y in $\mathbf{T}_{\mathbf{Y}}$ nuch that for any aecond atratum $X>Y$ and any $v \in T_{Y}^{\prime} \cap X$, wehave
(9.1-a)

$$
\eta_{X} a_{Y} X^{(v)}=0
$$

(9.1-b)

$$
\left(\pi_{Y}, X^{\prime}, \eta_{X^{(v)}}^{(v)} \neq \eta_{Y}^{\left(\pi_{Y}\right.}, X^{(v))}\right.
$$

DEFINTION. If P in a mooth manifold and $f: V \rightarrow P$ ies continuou. mapping, we will asy that i le a controlled submersion if the following conditions aro astioflod.
(1) $\mathbf{f} \mid \mathrm{X}: \mathrm{X}-\mathrm{P}$ in a emooth submerslon, for oach atratum X of V .
(2). For any etratum X. there lo a nolghborhood T_{X}^{\prime} of X in T_{X} auch that $f(v)=f X_{X}(v)$ for all $v \in T_{X}^{*}$.

Note that both the notione that wo have fust introduced depend only on
 is a pre-stratfied eet which it equivalant to (V, B,J), then a controlled vector flold (or controlled submeraion) with respect to one of these pre-atratifled tetd is the ame at a controlled vector field (or controlled submeralon) with reapect to the other.

PROPOSITION 9.1. If $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{P}$ in a controlled nubmeralon, then for any mooth vector field C on P. therale a controlled vector fiold η on V nuch that $f, \eta(v)=\zeta(f v))$ for all $v \in V$.

Proof. By induction on the dimension of V (whera the dimenclon of V Le defined to be the suprermum of the dimentone of the strate of VJ. By the k akeleton V_{k} of V. we will mean the union of all atract of \mathbf{V} of dimension $\leq k$. Clearly V_{k} han the etructure of a atratified eet, whore the atrate of V_{k} are the atrata of V which lie in $\mathbf{V}_{\mathbf{k}}$, the tubular neighborhooda are the intersection with $\mathbf{V}_{\mathbf{k}}$ of the tubular nelghborboods (in V) of strate in V_{k} and the local retractione and tubulerfunction on V_{k} are the restrictions of the local retractiona and tubuler functione on V.

In the case dim $V=0$, the statement of the propoaltion is trivial. Hence, by induction, It ia enough to show that if the proposition is true whenever dimi $V \leq k$ then it ietrue when $d m V=k+1$. Thus, we may (and dol aboume that dim $V=k+1$ and that there is a controlled vector Gold η_{k} on V_{k} uch that $f_{f} \eta_{k}(v)=\zeta(f(v))$ for all $v \in V_{k}$. We will ohot that there exiets * controlled vector field η on V which extende η_{1} weh that $f, p(v)=\zeta(f(v))$ for all $v \in V$.

To conetruct η, It is enough to conotruct $\boldsymbol{T}_{\mathrm{X}} \mathrm{X}$ eeperately for each stratum X of V such that $d m X=k+1$, becaupe the condition that a vector fleld be controlled involved only atrate Y, X uch that $Y<X$.

Since by the Induction aesumption η_{k} Is.controlled, we can choose neifhborboods T_{Y}^{1} of Y in T_{Y} fonefor anch atratum $Y C_{k} V_{k}$, duch that if $Y<Z$ are atrata, then the control conditions (9.1) are eatiofied (with Z In place of X) for $v \in \mathbb{T}_{Y}^{1} \cap Z$. By the aseumption that f te controlled, we may choose the nelghborhoode T_{Y} such that $f(v)=f_{T}(v)$ for all $v \in T_{Y}^{l}$.

It is easily neen that we may choose nelghborhoode T_{Y}^{2} of Y in T_{Y}^{\prime} (one for each atratum $Y \subseteq V_{k}$) auch that the following hoide: if $Y<Z$ ere etrate in V_{k} then

$$
T_{Z}\left(T_{Y}^{2} \cap T_{Z}^{2}\right) \subseteq T_{Y}^{1}
$$

Yocenfurthermore choose the T_{Y}^{2} to that T_{Y}^{2} is closed ln $V-\partial Y$ (where ∂Y denoten the frontier of Y). since $V=\partial Y$ lemetrisable and therafore normal, and Y ie closed ln V. ∂Y. Finally, we can chooee the $T_{Y} \mathbf{Y}^{2}$ eo that If Y ie not comperable to Z, then $T_{Y}^{2} \cap T_{Z}^{2}=0$.

Now conalder the following conditions on vector field Π_{x} on X :
(9.2-4. The control condition (9.1) it matiafled for my $v \in T_{Y}^{2} \cap X$.
(9.2-h), $f_{\psi^{n}} r^{(v)}=\zeta(f(v))$ for all $v \in X$.
v - clalm thet there is a vector flold ηx on X entiofylng (9.2-b) and $\left(9,2-{ }_{Y}\right)$ for all atrate $Y<X$. To prove thle clalm will clearly be enough to prove the proposition.

Conolder a polmt $v \in X$. The eet s_{v} of atrata $Y<X$ wich that $v \in T_{Y}^{2}$ In totally ordered by inclusion, aince if Y and Z are not comparable then $T_{Y}^{2} \cap T_{Z}^{2}=0$, If s_{v} in not ompty, then there to a largeat member $Y=Y_{v}$.

Suppose for the moment thi 1 Is the caee and $\left(9.2-\boldsymbol{m}_{Y}\right)$ holde at v. Then (9.2-2 Z) holde for all $Z \in g_{v}$. For elther $Z=Y$ or $Z<Y$. In the latter caee $\Psi_{Y}(v) \in T_{Z}^{1}$ (by the cholca of the $T_{Y}^{2} Y^{\prime}$). Then

$$
\eta_{X} \rho_{Z, X} X^{(v)}=\eta_{X} p_{Z, Y} Y_{Y, X}(v)=0
$$

and

$$
\begin{aligned}
& =\eta^{\prime} z^{(\pi} z_{1} x^{(v))} \text {. }
\end{aligned}
$$

Thu ($9.2-2 z^{\prime}$ holde at v for all $z \in g_{v}$. Furthermore

$$
\begin{aligned}
f_{*} \eta_{X}(v) & =\left(f \cdot \eta_{Y}, X_{*} \eta_{X}(v)\right. \\
& =f_{*} \eta_{Y}\left(\eta_{Y}, X^{(v))}\right. \\
& \left.=\xi\left(f_{i} v\right)\right)
\end{aligned}
$$

Thue (9.2-b) holda at v.

This whow that to conatruct η_{X} eatisfying (9.2-b) and (9.2-a Y^{\prime}) for all $Y<X$, it is enough to conatruct η_{X} astisfying $\left(9.2-\mathbf{a}^{2}\right)$ at v for all $v \in X$ for which g_{v} is non-empty, and atiafying (9.2-b) at v for ail $v \in X$ for which g_{v} isempty. Cleariy, we can construct a vector field η_{x} in a neighborhood of each point v in x satinfying the appropriate condition $19.2-\mathbf{I}_{\mathbf{v}}$) or $(9.2-b)$. Since the eet of vectora natiofying the appropriate condition in $T X_{v}$ is convex, we may construct η_{X} globaliy by meana of a partition of unity.
Q.E.D.
810. One parameter_groups. Let V be a topological apace. By a one-parameter_group of homeomorphlema of V. we mean a continuous mapping $\alpha: \mathbb{R} \times v \rightarrow V$ auch that $\alpha_{t+0}(v)=\alpha_{t} \alpha_{0}(v)$ for all $t, \in \in \mathbb{R}$ and all $v \in V$. Now euppose V is a atratifled eet (V, \mathbb{E}, J) and a prese rves asch etratum. If $\boldsymbol{\eta}$ fis a stratified vector field on V, we say that η generater a if the following condition la satlefied. For any $v \in V$, the mapping $t-\alpha_{t}(v)$ of R into v is c^{l} (an a mapping into the stratum which contain: v) and

$$
\left.\frac{d}{d t}\left(\alpha_{t}(v)\right)\right|_{t=0}=\pi(v) .
$$

Note that this implles

$$
\left.\frac{d}{d t}\left(\alpha_{t}(v)\right)=\operatorname{ma}_{t}(v)\right)
$$

It in well known that any c^{l} vector field on a compact manifold without boundary generaten anique one-parameter group (aee, e.g., [2. p. 66]). It id alao known that to extend thit result to non-compact manifolde, we munt generalize the notion of one parameter group.

DEFINITION, Let V bealocallycompact apace. A local oneparameter group ion V) la apair (J, α), where J is an open aubeet of $\mathbb{I R} \times V$ and $a: J \rightarrow V$ in a continuous mapping such that the following hold.
(a). $0 \times V \in J$.
(b). If $v \in V$, then the eet $J_{\downarrow}-J \cap\{R \times v) \subseteq R$ If an opon interval ($\left.a_{v}, b_{v}\right)$.
(c). If $v \in V$, and t, and $t+a$ areln (a, b. then $a(t+s, v)=a(t, a(t, v))$.
(d). Fot any $v \in V$ and sny compact aet $K \subseteq V$, there exiets © >0 such that $~(v, t) \& K$ If $\in\left(a_{v}, a_{v}+d\right) U\left(b_{v}=\left(b_{v}\right)\right.$.

From now on in this section, we euppose (V, B, J) in an (abstract) pre-atratified get, and η le atratifled vector field on V.

DEFINTTION. If ($J, a)$ in a local one-parameter group (on V). تesar T generates α if the following conditone a erenatiofled.
(a). Each atratum X of V le inveriant under a, i.e., $a[J \cap(R x X)] \subseteq x$.
(b). For each $v \in V$, the mappint $t \rightarrow \alpha(t, v)$ of $\left(a_{v}, b,{ }_{v}\right)$ into the etratum which containg v is c^{1}.
(c). For any vev, we have

$$
\left.\frac{d}{d t} o(t, v)\right|_{t=0}=T(v)
$$

Since α fo a one-parameter croup, condition c to equivalent to:
(c*). For eny $(t, v) \in J$, we heve

$$
\frac{d}{d t} \alpha(t, v)=v(a(t, v))
$$

Thie seneralleed the ordinary notion of what lt menne for a vector field to generate a local one-parameter sroup.

Since (V, B, T) te a profetratilled set, tt makea wence to talk of a controlled vector Beld on V (Section 5).

PROPOSITION 10.1. If η is a controlled vector Aeld on V then η generates anlque local one-parameter roup (J, α).

Proof. For each atratum X, the reatriction ∇_{X} of η to X is
a mooth vector field on X (by the definition of atratified vactor field): hence $\mathbf{T}_{\mathbf{X}}$ generates ampoth local one-perameter group ($\mathrm{J}_{\mathbf{X}}, \mathrm{C}_{\mathbf{X}}$) of diffeomorphieme of X, by atanderd reault in differential geometry $[2,1 v, \& 2]$. Let (J, α) be defined by

$$
J=\bigcup_{x \in s}^{U J} X \quad \alpha=\bigcup_{x \in 8}^{U} \alpha_{X}
$$

We aesert that (J, α) ia a local one-parameter group generated by $\boldsymbol{\eta}$.

It If cleat that a, b, and c In the definltion of local one-parameter group hold, and that If α le a local one-parameter group. then it to generate by v. Unlquenean la obvlout. All that remaine to be verifled is that J Is open, a is continuous, and d holda.

We begin by showing that d holds. If not, there exiate $v \in V$ and a compact eat K in V uch that $o(t, v) \in K$ for values of t arbitrarlly clone to ${ }_{v}$ or b_{v}. Wemay appone that $a(t, v) \in K$ for valuen of t arbitrarlly close to b_{v}; the other case is treated almilarly. Then there exlate eequence $\left\{t_{1}\right\}$, converglag to b_{v} frombelow, uch that $y=\operatorname{llm} \alpha_{v}\left(t_{1}\right)$ exlate and lied In K. Let X (reep. Y)denote the etraturn of V which containg v (resp. y).

If $X=Y$, we get a contradiction to the fact that a_{X} la a one-paramate group. Otherwlee $Y<X$. For large 1, $A_{Y}, X^{\left(\alpha_{V}\left(t_{1}\right)\right)}$ and $\pi_{Y,} X^{\left(\alpha_{V}\left(t_{i}\right)\right)}$ aredefined, and the control conditlona are atiafied for $m_{i}=\alpha_{v}\left(t_{i}\right)$.

Thua, by taking 1 eufficiently large, we may uppone that there existe © $>t-t_{L}$ weh that $[0, C] \subseteq J_{Y_{I}}$, where $y_{L}=\pi_{Y}, X^{\left(m_{i}\right)}$, and $I f \quad T_{Y}$ is the tubular nelghborhood of Y, π_{Y} in the local retraction of T_{Y} onto Y and p_{Y} le the tubular function of Y, then $p_{Y, ~} X^{\left(m_{i}\right)<c_{Y} \quad \text { on }}$ $\alpha_{Y_{i}}([0, C])$ and the control conditions for the pair Y, X aresatibfied for $m \in\left\{\rho_{Y, X}=\rho_{Y,} X^{\left.\left(m_{i}\right)\right\} \cap \pi_{Y}} \mathcal{X}^{-1}\left(\alpha_{Y_{i}}([0, \epsilon]) \cap X\right.\right.$. Since
 $o_{Y}, X^{\left(m_{1}\right)<c_{Y}}$ on $\left.\alpha_{Y_{1}}([0, c])\right)$, and α_{V} ntaye in X (by defiaition),
it followe from the control conditione that

$$
\alpha_{v}(t, s) \in\left\{P_{Y}, X=P_{Y}, X^{\left.\left(m_{1}\right)\right\} \cap \pi_{Y}} X^{-1}\left(\alpha_{Y_{1}}(s)\right) \cap X \quad \text { for } \quad 0 \leq a \leq c\right.
$$

But thl contradicte the hypethesis that $\alpha_{v}\left(t_{j}\right) \rightarrow y$ ac $j \rightarrow \infty$. Thls contradletion proves d.

Now let $(t, v) \in J$. We will show that J is a nelghborhood of (t, v)
and α is continuoue at (t, v). Yewill suppose $t \geq 0$; the other cese
Ie treated aimilarly. As before, let X be the stratum which containa v. Since α_{X} la a local one-parameter group, there la a compact
nelghborhood U of v in X and an >0 wich that $[-r, t+\mathbb{C}] \times J$. Let $\mathbf{T}_{\mathbf{X}}$ denote the tubular nelghborhood of $\mathbf{X}, \mathbf{T}_{\mathbf{X}}$ the locel retisection of ${ }^{\prime} T_{X}$ on X, and P_{X} the tubular function of X. Since $\alpha_{X}([-¢, t+c] \times U)$ is compact, we may choose an $c_{1}>0$ such thet the following hald:
 Then Σ le complect.
(b). If $Y \in \Sigma$, then the control conditions for the pair X, Y hold at y, where Y is the etratum which containg y.

Clearly, the aet r_{0} of $y \in T_{x}$ ouch that $O_{x}(y) \leq c_{1}$ and $\nabla_{X}(y) \in U$ te a nelghborhood of v in v. if $y \in \Sigma_{0}$, it followe from the control conditione that

$$
\begin{aligned}
& a_{x}\left(\alpha_{y}(a)\right)=a_{x}(y) \\
& \sigma_{x^{(}}\left(a_{y}(a)\right)=a_{i_{x}}(y)^{(-)}
\end{aligned}
$$

for all $\in J_{y}$ such that $\alpha_{y}\left(0^{*}\right) \in \Sigma$ for $0 \leq 0^{\circ}<$. From thesefacta and d, followe that $[-C, t+c] \times \Sigma_{0} \subseteq J$: thu J containa a metchborhood of (t, v).

 aft, x) we may choose $\geqslant 0$ and a noighborhood Σ_{1}. Hence α ia continuoua at (t, v). Q, E,D.

COROLIARY 10.2. Let P be amenifold, and $f: V \rightarrow P$ bea proper, controlled aubmoralon. Then f la alocally trivial fibration.

Proof. It is enough to concider the case whon $P=R^{k}$ and show in thit case that there is a homeomorphlam $h: V \rightarrow \mathbf{V}_{0} \times \mathbb{R}^{k}$, where V_{0} denoted the fiber of V ovar 0 , uch that the tollowing diagram commutea:

Diagram 10. 1

where T_{2} denotee the projection on the eecond factor.
Conelder the coordinate vector fielde $\partial_{1} \ldots \ldots, \partial_{k}$ on $\mathbf{R}^{k}, B y$ Proposition 10.1 , for eech $1,1 \leq 1 \leq k$, there in a cootrolled vector field $\tilde{\partial}_{i}$ on V wuch that

$$
\left.f_{4} \delta_{i}(v)=\delta_{1}(4 v)\right) \quad v \in v \quad .
$$

By Propoaition 10.1, each ∂_{1} tenerates a locel one-perameter group $\left(J_{1}, a_{1}\right)$. Clearly $\left\{a_{1}\left(t_{\alpha}, v\right)\right)=(v)+\left(0, \cdots, 0, t_{n}, \ldots, 0\right)$, where the non-vaniohing oatry io In the th plece. Then from the aeoumption that f It proper and condition d ta the deflaltion of one perameter troup, it follown that $J_{1}=R \times V$. Let h be tiven by

$$
h(v)=\left(\alpha _ { 1 } \left(-t_{1}, \alpha_{2}\left(-t_{2}, \cdots, \alpha_{k}\left(-t_{k}, v\right) \cdots \| . f(v)\right)\right.\right.
$$

where we eet $(v)=\left(t_{1}, \cdots, t_{k}\right)$. It is earily seen that h mape v into $v_{0} \times \mathbb{R}^{k}$ and that Diagram 10.1 commutes. Let $\bar{h}: V_{0} \times \mathbb{R}^{k} \rightarrow V$ be defined by

$$
\bar{h}\left(v_{1}\left(t_{1}, \cdots, t_{k}\right)=o_{k}\left(t_{k} \cdots \cdots, \alpha_{2}\left(t_{2}, \alpha_{1}\left(t_{1}, v\right) b\right)\right.\right.
$$

From the fact that the $\alpha_{i}^{\prime \prime}$ are one-parameter groupe, it followe that hhe hh ridentity. Hence h la homeomorphlam, ae required. Q. E.D.

Note that V_{0} han anaral atructure of a pre-atratified aet $\left(V_{0}, s_{0}, J_{0}\right)$, where g_{0} and J_{0} are defined anfollowa. g_{0} ts the collaction $\left\{X \cap V_{0}: X \in S\right\}$. If $X \in s$ and $X_{0}=X \cap V_{0}$ if the correaponding member of s_{0}, than wa let $\mathrm{T}_{\mathbf{X}_{0}}=\mathrm{T}_{\mathrm{X}} \cap \mathrm{V}_{0}$,
 into X_{0} becaute I is a controllad eubmarition. Welet J_{0} be the triple $\left\{\left(T X_{0}\right\},\left\{\pi X_{0}\right\},\left\{p x_{0}\right\}\right\}$.

Furthermore $V_{0} \times \mathbb{R}^{k}$ has a atructure of a pre-atratlfied set (defined in an obvious way).

COROLLARY 10.3. If h is conatructed as in the proof of
Corollery 10.2, then h in an laomorphiam of pre-stratifled setp,

Proof. Immediate from the conatruction of h. (See the end of Section 8 for the definition of inomorphimm.)

COROLLARY 10.4. Let M beamanifold, let X beaclosed aubset of M and let 8 be Whitney pre-atratification of S. Let X and Y be itratawith $X<Y$. Let W be a abmanifold of M
which meat X transveranlly. Then $X \cap w \subseteq Y \cap W$.

Propl. Let $x \in X \cap W$. To ehow $x \in \overline{Y \cap W}$. it is enough to conelder whet happens in a neighborhood of x. By replecing M with a sfficiently emall open neighborhood of X, we may auppoee that X ir connected and cloned, and there oxista a tubular nelghborhood T_{X} of X in M uch that $w \cap T_{X}=\mathbf{x}^{-1}(W \cap X)$, where $\mathrm{w}_{\mathrm{X}}: \mathrm{T}_{\mathrm{X}}-\mathrm{X}$ le the projection asaciated to T_{X}. From Lemma 7.3, it followe that by choosing $\mathrm{T}_{\mathbf{X}}$ aufficiently amall, wo may suppose that there exdeta $c>0$ ach that $P_{X}<\varepsilon$ on T_{X}, where P_{X} is the tubular function asasociated to T_{X}, whera ($\left.\rho_{X},{ }^{\prime} X^{\prime}\right): T_{X} \rightarrow[0,6) x X$ is proper, and where for anch atratum 2 of 8 , the mapping

$$
\left(p_{x} \cdot{ }^{\prime} x\right) \mid z: 2 \cap T_{x} \longrightarrow(0, c) x x
$$

is a abmersion

$$
\text { Let } g^{\circ}=\left\{2 \cap\left(T_{X}-X\right): 2 \in 8\right\} \text {. Then } g^{\circ} \text { is a whitney }
$$ pre-atratification of $5 \cap\left(T_{X}-X\right)$. By Proposition 10.1, there le a family of control data for s which is compatible with ($\rho_{X},{ }^{\circ}{ }^{\prime}$) . Then $\left(S \cap\left(T_{X}-X\right), 8^{\prime}, J^{\prime}\right)$ is an abotract pre-atratifiad at and $\left(O_{X}{ }^{\prime \prime} X^{\prime}\right.$) is a controlled submersion. Hence by Corollary 10. $2, \mathrm{~S} \cap\left(\mathrm{~T}_{\mathrm{X}}-\mathrm{X}\right)$ to a locally trivial bundle over $(0,4) \times X$, and by Corollary 10. 3, the local trivializations reapect the stratification.

It follows that any atretum of st (e. E. $Y \cap\left(T_{X}-X\right)$ intersects
 for $0<e^{*}<e$. It follow thet $x \in \overline{Y \cap W}$. Q.E.D.

The next corollery asy that a pre-draticntion which astifies all the conditione of a Whitner pre-atratification except the condition of the frontier aleo entefles the condition of the frontier, provided thet ite otrata are conneeted.

COROLLARY 10.5. Lat M be a manifold and s be a locallyfinite pro-itratification of aclosed eubset V of M whose atrata are connected auch that any pair of otrata eatiefy condition b. Then s is a Whitney pra-etratification.

Proof. It sufficee to show thet the condition of the frontiar holde.
Suppose X and Y arestrata and $Y \cap \vec{X} \neq 0$. The proof of Corollery 10.4 shown that $Y \cap \bar{X}$ ie open in Y. Since $Y \cap \bar{X}$ ie clesrly cloeed in Y, and Y ie connected, this proven $Y \subseteq \bar{X}$.

The proof of Corollary 10.4 aldo ehown:

COROLLARY 10.6. Lot M be a manifold. s a Whltney
pro-atratiflcation of M, X a itraturn of M, and $T X$ a tubular nolghborhood of X in M auch that for any atratum Z of g, the
 $T_{x}=(E, \varphi d)$ and $x_{0}=\{t, x \in R \times x: 0<t<1(x)\}$. Then the bundle $\left(\left|T_{x}\right| \cdot x,\left(p_{x} \pi_{x}\right)^{\prime} x_{i}\right)$ if locally trivial and the local trivializatione can be choaen to reipact the atratification
811. The footopy Lemman of Thom. In thd soction, we will atate

Thom'a firat and etcond ifotopy lemman. We wll prove the firgt and - iketch a proof of the etcond.

Throughout thie section, we let M and P be emooth manifolde, $f: M \rightarrow P$ amooth mapping, end S a cloned aubeet of M which admite a Whitnoy pre-atratification.

Proponition 11.1. Thonte fratinotopy lemma. Suppose $f \mid S: S \rightarrow P$ i.f proper and $f \mid X: X \rightarrow P$ ia a submeration for each slratum X of Then the bundle (S, f, P) if localiy trivial.

Proof: By Proposition 7.1, we can find a ayatem of control data for S which is compatible with f. Thisprovide S wh a itructure of an abatract atratified eet in such e way that fial controlled aubmersion. Then the concluaion of the theorem is an immediate consequence of Corollary 10.2.
Q.E.D.

Remark: Thom conaidered the case $\mathbb{F}=\mathbb{R}$. If $\mathbf{a}, \mathrm{b} \in \mathbb{R}$, then the proof of Proponition 10.1 conatructa an isotopy from the fiber S_{a} to the fiber S_{b}, whence the name "isotopy lemma".

The econd inotopy lemma in an analogous reault for mappingo inatead of spacen. Consider a diagram of apacea and mappinga:

We alathat f id trivial over Z if there oxdete epaces X_{0} and Y_{0}. a mapping $f_{0}: X_{0} \Rightarrow Y_{0}$ and homeomorphiams $X \approx X_{0} X Z$, $Y \neq Y_{0} \times Z$ euch that the following diagram of epaces and mappinge io commutative:

We aly f is locally trivial over z ifforany $E \in \mathcal{Z}$, theredea neighborhood U of x in Z such that in the diagram

we have that f la trivial over U.

Local triviality of a mapping f over a ipace z hae a consequence
wht ch will be very important in what followe. We think of 1 at
Emily $\left\{f_{\mathrm{a}}: a \in Z\right\}$ of mapinga, where $f_{a}: X_{a} \rightarrow Y_{a}$ ia the mapplng obtelned by rentricting f to the nber x_{a} of X over a $1 f \quad z$ ia connected and f is locally trivial over Z, then for any and b in Z, the mappinge i and $i f$ are equivalent in the aonse that there andet homeomorphiame $h: X_{a} \rightarrow X_{b}$ and $h^{\prime}: Y_{a} \rightarrow Y_{b}$ euch that $h^{\prime} f_{a}=f_{b}$.

This is the relation of equivalence thet is used in the definition of topologically atable mapping, and a otep in the proof that the topologically etable mappinge form an open denee aet will be to show that certain families of mappings are locally trivial in the aenae deflined above, by an appilcation of Thom'e econd isotopy lemma.
Now auppose M^{*} te a smooth manifold and S^{*} It a cloted
ubset of M°. which admite a Fhitnoy pre-atratification g°.
Lat $g: M^{*} \rightarrow M$ be amooth mapping and auppose $g\left(S^{\prime}\right) E S$. Thom'a eecond leotopy lemme given auffictent conditiona for the following diagram to be locmly trivial:
diagram 11.1

To atate Thom'e eecond leotopy lemma, we must introduce Thom's condition g_{g}. Let X and Y be oubrianifolda of M^{2} and let Y be a point in Y. Suppose $E \mid X$ and $E \mid Y$ are of conatant rank, We may the pair (X, Y) athation condition ag at Y if the following holds:

Lot x_{i} be any eequence of polnta in X converging to y. Suppose that the sequence of planes $\operatorname{ker}\left(\mathrm{d}\left(\mathrm{g} \mid \mathrm{X}^{\prime}\right)_{y_{1}}\right) \leq T M_{X_{1}}$ converges to aplane $T \in T M_{X 1}$ In the appropriate Gramamanian bundle. Then $k e r\left(d f\left(Y^{\prime}\right) y^{\prime} \in T\right.$.

We ray that the pair (X, Y) atiofies condition a If it ratiofios condition at avery point y of Y.

Now, we return to the eftuation of Diagram 11.1. We will eay that g Le a Thom mapplng (over P) if the following conditione are eatisfied.
(a) f|S* and $I \mid S$ areproper.
(b) For sach atratum x of $8, f \mid x$ to a qubmerdion.
(c) For each otratum X^{*} of $s^{\prime}, g\left(X^{\prime}\right)$ lien Ina etratum X of g, and $B: X^{\prime} \rightarrow X$ is a submeraton (whence $g \mid X^{\prime}$ is of constant rank).
(d) Any palt (X^{\prime}, Y^{\prime}) of etrate of 8^{\prime} eatiafies condition ag (which makes aense in vew of (c)).

In the case P is a point, we will drop over P,

PROPOSITION 11. 2 ('Thom'a eecond lootopy lemma). if g 1a a Thom mapping over P, then g lalocally trivial over P.

The proof of this requires new machinery. Let \{T\} be a ayatem of control data for the atratilication 8 of S. Wo need the notion of a system $\left\{T^{\prime}\right\}$ of control data over $\{T\}$ for the stratification $g^{\text {. }}$ of S^{\prime}.

CAUTION: A system of control data over [T] is not a ayotern of control data an previously defined. If we wore to require that a gyotem of control data over (T) also be a syatem of control data tout court then the fundarnental exiatence theorem for control date over [T] (Propoaition 11. 3, below) would not be true.

DEFINITION: Suppoae g in a Thom mapping. A syatem $\left\{\mathrm{T}^{\prime}\right\}$ of control data for 3 over $\{T\}$ is a farnily of tubular neighborhoodg indexed by 3°, where T_{X}^{\prime} isatubular neighborhood of X in M^{*} with the following propertiea;
(a) If X^{\prime} and Y^{*} are atrata of S° and $X^{\circ}<Y^{\circ}$, then the commutation relation

$$
\pi_{X} \cdot \pi_{Y} \cdot(v)=\pi_{X} \cdot(v)
$$

holde for all v for which both aldea are deflned, l. e., all $v \in\left|T_{X}\right| \cap\left|T_{Y^{\prime}}\right|$ such thet $T_{Y}(v) \in\left|T_{X}\right|$.

Furthermore, If $g\left(X^{\circ}\right)$ and $g\left(Y^{\prime}\right)$ lle in the perne etratum 8 , then the commutation relation

$$
P_{X} \cdot \pi_{Y} \cdot(v)=P_{X} \cdot(v)
$$

holds for all v for which both sidea of thile equation are defined.
(b) If X^{\prime} is a stratum of s° and X ia a stratum of s which contains $g(X)$, then

$$
g^{m} X^{f}(v)=X^{g(v)}
$$

for all v for which both oldes of this equation are deflned, i, e, for alk vE $\left|T_{X}\right| \cap_{g^{-1}}\left|T_{X}\right|$.

Note that a weaker than the commutation relation for control data in the case $g\left(X^{\prime}\right)$ and $g\left(Y^{\circ}\right)$ are not \ln the vame stratum of 4.

PROPOSITION 11. 3. If g in a Thom mapping then for any aytem $\{T\}$ of control data for S there exiets a system \{ T^{\prime} \} of control data for 3° over $\{T\}$.

The proof of thit is dimilar to the proof of the exdetence theorem for control data (Proponition 7.1). We Will only outline it.

Proof (Outline): Let E be the Amily of all etrath of s^{*} of dimeneion $\leq k$, and let S_{k}^{\prime} denote the union of all strata in $8 \quad k$. We will thow by induction on k that the proposition in true for s : and S_{k}^{*} In place of s° and S°. This will muffice to prove the proponition.

The case $k=0$ in trivial. For the inductive stop, we suppose thet for each atratum X^{\prime} of 8° of dimension $<k$, we are given a tubular nedghborhood $T^{\prime} X^{*}$ of X^{*} and thet this famlly of tubular nelighborhoods satiafie conditions (a) and (b) above.

By shrinking the T_{X}, ifneconnary, wey auppone thet if X^{*} and Y° are strata of dmenalon $<k$ which are not comparabie. then $\left|T_{X}\right| \cap\left|T_{Y^{\circ}}\right|=0$. To construct the T_{X}. on the strate of dimenifion k, we may do it one otratum at a time, oince the relations (a) and (b) impone no conditions on pairs of atrate of the eame dimenalon. Lat X^{*} be a atratum of s° of dimenation k.

We conetruct the tubular nolghborhood T_{X}. in two etepana follows. For each $t \leq k$, we let U_{i}^{\prime} denote the union of all $\left|T_{Y}\right|$
 atep, we conatruct a tubular gelghborhood T_{i}^{*} of X_{i}^{*} by decreaning inctuction on 1 , elhrinking verious T_{Y}^{\prime} where neceseary.

Thin atep is carried out in edgentially the ame way at the frot ntep in the proof of Propoaition 7.1. We utert tho induction at $\mathcal{l}=k$, where there ie nothing to prove. For the inductive ntop, we appose T_{i+1}^{\prime} he been constructed. We obeerve that to construct T_{i}^{\prime} it if enough to construct T_{1}^{*} on $\left|T_{Y^{+}}\right| \cap X^{*}$ for ench stratum $Y^{*}<X^{*}$ of dimeneion eparately. Then there are two canea.

Cane 1. If $g\left(Y^{\prime}\right)$ and $g\left(X^{\prime \prime}\right)$ arein the amene atratum of, then the construction is carried out in the ame way an the correoponding construction in the proof of Proponition 7.1. In this way we define T_{1} on $\left|T_{Y^{\prime}}\right| \cap X^{*}$ so that the commutation rolatione (a) hold. (Note that condition (b) follown from (a) in thie case.)

Cane 2. In the canc $g\left(Y^{\prime}\right)$ and $g\left(X^{\prime}\right)$ are not in the game atratum of s, the proof munt be modified. Let X be the otratum which containe $g\left(X^{\prime \prime}\right)$ and let Y be the otratum which containa $g\left(Y^{\prime \prime}\right)$. Then $Y<X$. By ohrinking $\left|T_{Y}\right|$ if necessary, we may ouppone thet $B\left(\left|T_{Y}{ }^{\circ}\right|\right) \subseteq\left|T_{Y}\right| \cdot$ Let

$$
\mathbf{V}=\left(\left|T_{\mathbf{Y}}\right| \cap X\right) X_{\mathbf{Y}} \mathbf{Y}^{*}
$$

where the fiber product is taken with respect to the mappinga

$$
\begin{aligned}
& { }_{\mathbf{Y}}:\left|\mathbf{T}_{\mathbf{Y}}\right| \cap \mathbf{X} \longrightarrow \mathbf{Y} \\
& E: \mathbf{Y}^{\wedge} \rightarrow \mathbf{Y}
\end{aligned}
$$

Then the mapping

$$
G ■\left(E, \Psi_{Y^{*}}\right):\left|\mathbf{T}_{\mathbf{Y}^{+}}\right| \cap X^{*} \longrightarrow \mathbf{Y}
$$

is defined because the following tiagram commates:

by the inductive bypothesis that (b) is aatiofied for thone tubular neighborhooda which aro already defined.

LEMMA U.4. Therooxtete anoighborhood N of Y^{*} in $\left|T_{T}\right|$ euch that

$$
\mathbf{G} \mid \mathrm{N} \cap \mathrm{X}^{\prime}: N \cap \mathrm{X}^{+} \rightarrow \mathbf{v}
$$

ie a numersion.

Proof: Let L be the aet of points in $\left|T_{Y}\right| \cap X^{\prime}$ where the
differential of G la not onto. It ufficen to sbow that $Y^{*} \cap \bar{X}=0$.

Lot $x^{*} \in\left|T_{Y^{*}}\right| \cap X^{*}, x=G\left(x^{*}\right), y^{\prime}=Y_{Y}\left(x^{\circ}\right)$, and $y=G\left(Y^{\prime}\right)=\pi_{Y}(x)$. Then

By definition, $x^{\prime} \in \sum$ if and only if thin mapping is not onto. Shee

$$
d\left(g \mid X^{\prime}\right)_{x^{\prime}}: T X_{x^{\prime}}^{\prime} \longrightarrow T X_{x}
$$

is onto (by hypothesin), it followt that thit mapping le onto if and only if

$$
d\left(\Psi_{Y^{*}} X^{\prime}\right)_{X^{\prime}}: \operatorname{ker}\left(d\left(s\left|X^{\prime}\right|_{X^{\prime}}\right) \longrightarrow \operatorname{ker}\left(d\left(g \mid Y^{0}\right)_{Y^{\prime}}\right)\right.
$$

is onto. From condition $A^{\text {g }}$, it followe that Y, doem not meet the

ciosure $\bar{\Sigma}$ of the eet of pointe where this mepplig la not onto. Q.E.D.

Now we extend T_{i}^{\prime} over $\left|T_{Y}\right| \cap X$ in such a way that (a) holde (the weak (a)!) and (b) bolde. We may do this by the generallsed exdetence theorem for tubuiar nalghborhoods and Lamma LI. 4.

This completes the Inductivo etep.

Now the eecond stop (extension of Tín from U_{0}^{*} over all of $X^{\prime \prime}$) eneried out in exactly the eame way as in the proof of Proposition 7. 1

The rat of the proof of Propoaltion 11.2 will be carried out in three stepa. First, we define the notion of a controlled vector field
gever another controlled vector fiold. (WARNING: this is not a special case of the notion of a controlled vector field.) Then we prove a lifting theorem for controlled vector fields. Finally, we ahow thet every controlled vector fleld over another contralled vector field generated local one parameter group.

Now we suppose g in Thom mapplng. Ve ouppose that we are diven a syotem $\{T\}$ of control data for S and a astern \{ $\left.T^{\circ}\right\}$ of control date for S over (T\}. Lat $\eta=\left\{\eta_{X}\right\}_{\text {Xes }}$ be a controlled vector fleld on S.

DEFINITION: By a controlled vector fleld on S^{\prime} over η. we whll mean a collection $\left\{\eta_{X}{ }^{n} X{ }^{\circ} E_{g}\right.$ " where $\eta_{X}{ }^{\text {e }}$ in a vector field on X°, wuch that the following conditiona are attafled.
(a) For any $X^{*} \in g^{\prime}$ and $x^{*} \in X^{*}$, whelhe

$$
\left(g \mid x^{\prime}\right)_{0} \eta_{X} \cdot\left(x^{\prime}\right)=\eta_{X}\left(g\left(x^{e}\right)\right)
$$

(b) For any $X^{\circ}, Y^{\prime} \in 8^{\circ}$ with $Y^{*}<X^{\circ}$, thereis a neighborhood $N_{Y^{\prime}}$ of Y° in $\left|T_{Y^{\prime}}\right|$ auch that for $Y^{\circ} \in\left|T_{Y},\right| \cap X^{\circ}$, we have

$$
\left(\pi_{Y} X^{e}\right)+n^{\prime}\left(X^{*}\right)=\eta_{Y} \cdot\left(\pi_{Y} X^{p}\left(X^{0}\right)\right)
$$

and If $g\left(X^{\prime}\right)$ and $g\left(Y^{\prime}\right)$ are in the same atratum of $\&$ thom we have

$$
\eta_{X^{\prime}} P_{Y^{\prime} X^{\prime}}\left(x^{2}\right)=0
$$

(Note that condition b in weaker than the condition that we imposed on a controlled vector field in Saction 9 in the case $g\left(Y^{\prime \prime}\right)$ and $g\left(X^{\prime}\right)$ are not in the came atratum of 8 .)

PROPOSITI ON IL. 5. There adste a controlled vector Aeld on S^{\prime} over 7 .

The proof is complotely analogous to the proof of Proposition 9.1, and we omit it.

PROPOSITION 11.6. If η^{*} la a controlled vactor field on S^{\prime} over η, then η^{\prime} temerates a local one parameter \&roup, which commute with the ono-parameter group on S generated by η.

The proof of this it edeentally the eame me the proof of Proposition 10.1.
The only additional remark to be made ia that if X° and Y^{\prime} are etrata of with $Y^{*}<X^{*}$, and $g\left(Y^{\prime}\right)$ liewin Y and $g\left(X^{\prime}\right)$ Les in X, then, in the case $Y<X$, trajectory y^{\prime} of η^{\prime} atarting at a point of X^{*} cennot approach Y^{*} because the image of γ^{*} In a trajectory of η and therefore cmanot mpromeh paint of Y.

We omit the proof.

Proof of Proposition 11. 2. To prove that if locally trivial over P, It euffices to conoider the $c a s p=\mathbb{R}^{P}$ and prove that g if trichal over P in thifecanc. By Proponition 7.1 we can find a ayatem \{T\} of control deta for compatible with f, and by Proponition 11.3 there exdetis a aystem $\left\{\mathrm{T}^{\prime}\right\}$ of control data for 8° over $\{T\}$.
Lot $\partial_{1}, \cdots, \partial_{p}$ be the coortinate vector fielde on \mathbb{R}^{P}. By Proposition 9.1, we can lift a_{i} to $=$ controlled vector field \tilde{a}_{i} on 5 , and by Proposition 11.5 we can lift $\tilde{\delta}_{i}$ to a controlled vector field $\tilde{\partial}_{i}$ on 5^{*} over $\bar{\partial}_{i}$.

By Propositiona 10.1 and 11.6 the vector fielde \vec{a}_{i} and $\tilde{\partial}_{i}$ generate local one parameter groupa $\boldsymbol{\varphi}_{1}$ and $\bar{\varphi}_{i}$. Since the mapplnge i and s are proper and a_{i} gemerates a (global) one parameter group φ_{i}, it followe that $\bar{\varphi}_{i}$ and $\tilde{\varphi}_{i}$ are (global) one parameter groupe.

Let S_{0} (resp. S_{0}^{\prime}) denota the flber of S (reap. s°) over 0. To complete the proof, it is enough to conatruct local homeomorphame
h and $h^{\text {e }}$ such that the following dingram commutes.

We defing h and h^{\prime} af follows.

$$
\begin{aligned}
& h^{\prime}(x)=\left(\rho_{p,-t}^{\prime} t_{p} \cdot \varphi_{1,-f_{1}}^{\prime}(x), t\right) \text { where } t=\left(t_{1}, \cdots, t_{p}\right)=f \cdots g(x) \\
& h(x)=\left(p_{p,-t} \cdots p_{1,-f_{1}}(x), t\right) \text { where } t=\left(t_{1}, \cdots, t_{p}\right)=f(x) \quad
\end{aligned}
$$

It if eanily verifiod that the above diatram commutes and that h and h° are homeomorphiome. Q.E.D.

REFERENCES

[1] J. Kelley, General Topology, Van Nostrand Co., Inc., Princeton, N. J., 1955.
[2] S. Lang, Introduction to differentiable manifolds, Interacience, New York (1962).
[3] R. Thom, Local topological propertie of differentiable mappinge, "Colloquium on Differential Analysis", pp. 191-202. Tats Inst. Bombay, 1964, Oxford Univ. Preer, London and New York, 1964.
[4] \qquad Ensemblen et morphismen stratifiés, Bull. Amer. Math. Soc., 75 (1969) pp. 240-284.
[5] H. Whitney, Tangente to an analytic variety, Ann. of Math. . 81 (1964) pp. 496-549.
[6] \qquad Local propertice of analytic varieties, Differentiable and combinational topology, Princeton Univ. Preas, Princeton, 1965.

