
1. Sheaves: the lightning tour

1.1. Let R be a commutative ring (with 1). Let X be a topological space. A presheaf of R
modules on X is a contravariant functor

S : category of open sets and inclusions→ category of R-modules.

This is a fancy way to say that V ⊂ U gives S(U)→ S(V ) and W ⊂ V ⊂ U gives a commutative
diagram

S(U) - S(V )

S(W )
�

-

Also, U ⊂ U gives S(U)→ S(U) identity and S(ϕ) = 0. Elements s ∈ S(U) are called sections of
S over U (for reasons that will become clear shortly). If V ⊂ U and s ∈ S(U), its image in S(V ) is
denoted s|V and is called the restriction of the section s to V . A morphism S → T of presheaves
is a natural transformation of functors, that is, a collection of homomorphisms S(U)→ T (U) (for
every open set U ⊂ X) which commute with the restriction maps. This defines a category of
presheaves of R-modules, and it is an abelian category with kernels and cokernels defined in the
obvious manner, for example, the kernel presheaf of a morphism f : S → T assigns to each open
set U ⊂ X the R-module ker(S(U)→ T (U)).

More generally, for any category C one may define, in a similar manner, the category of presheaves
on X with coefficients in C. If C is abelian then so is the category of presheaves with coefficients
in C.

A presheaf S is a sheaf if the following sheaf axiom holds: Let {Uα}α∈I be any collection of open
subsets of X, let U = ∪α∈IUα and let sα ∈ S(Uα) be a collection of sections such that

sα|(Uα ∩ Uβ) = sβ|(Uα ∩ Uβ)

for all α, β ∈ I. Then there exists a unique section s ∈ S(U) such that s|Uα = sα for all α ∈ I. In
other words, if you have a bunch of sections over open sets that agree on the intersections of the
open sets then they patch together in a unique way to give a section over the union of those open
sets. [An essential point in this definition is that the index set I may have infinite cardinality. ]

The category of sheaves is the full subcategory of the category of presheaves, whose objects are
sheaves. [This means that HomSh(S, T ) = HompreSh(S, T ).]

1.2. The stalk of a presheaf S at a point x ∈ X is the R-module

Sx = lim−−→
U∋x

S(U)

This means, in particular, that for any open set U and for any x ∈ U there is a canonical mapping
S(U)→ Sx which we also refer to as “restriction” and denote by s 7→ s|Sx.
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The leaf space LS of S is the disjoint union

LS =
⨿

x∈X Sx
π−−−→ X

with a topology that is discrete on each Sx and that makes π into a local homeomorphism, namely,
each U open ⊂ X and each s ∈ S(U) defines an open set

Us = {(x, t)|x ∈ U, t ∈ Sx and t = s|Sx} ⊂ π−1(U) ⊂ LS.

Then π : Us → U is a homeomorphism.
Let Γ(U,LS) be the set of continuous sections of π over U , that is, the set of continuous mappings

h : U → LS such that πh = identity. The restriction maps of S are compatible, giving S(U)→ Sx

for any U ∋ x and therefore any s ∈ S(U) defines a continuous section h ∈ Γ(U,LS) by setting
h(x) = s|Sx.

1.3.Proposition. (exercise) The presheaf S is a sheaf if and only if the canonical mapping S(U)→
Γ(U,LS) is an isomorphism for every open set U ⊂ X. If S and T are sheaves then there are
canonical isomorphisms

HomSh(S, T ) ∼= HomX(LS,LT ) ∼= HompreSh(S, T )

where HomX(LS,LT ) denotes the R-module of continuous mappings LS → LT that commute with
the projection to X and that consist of R-module homomorphisms Sx → Tx for all x ∈ X.

1.4. An immediate consequence is that if S is a presheaf then we obtain a sheaf Ŝ by defining

Ŝ(U) = Γ(U,LS)

to be the R-module of continuous sections of the leaf space of S over the open set U . Then Ŝ is
called the sheafification of S. The category of sheaves is the full subcategory of the category of
presheaves whose objects satisfy the above sheaf axiom, in other words,

HomSh(A,B) = HomPreSh(A,B).

To simplify notation, if S is a sheaf we drop the notation LS and we write s ∈ S(U) = Γ(U, S)

1.5. Proposition. (exercise) Sheafification is an exact functor from the category of presheaves to
the category of sheaves. It is left adjoint to the inclusion functor i : Sheaves → Presheaves, that
is, if A is a presheaf and if B is a sheaf (on X) then

HomSh(Â, B)
∼=−−−→ HompreSh(A, i(B)).

Here is an application of this formula. Following the identity morphisms B → B through this
series of canonical isomorphisms

HomSh(B,B) ∼= HompreSh(i(B), i(B)) ∼= HomSh(î(B), B)

gives a canonical isomorphism î(B) → B, that is, if we take a sheaf B, look at it as a presheaf,
then sheafifity it, the result is canonically isomorphic to the sheaf B that we started with.
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1.6. Caution. If A,B are sheaves then the set of morphisms A → B is the same whether we
consider A,B to be sheaves or presheaves. However, care must be taken when considering the
kernel, image, or cokernel of such a morphism. If we consider f : A→ B to be a morphism in the
category of presheaves, then ker(f) is the presheaf which assigns to an open set U the kernel of
f(U) : A(U)→ B(U), and this turns out to be a sheaf. But the presheaf

U 7→ Image(A(U)→ B(U))

is (usually) not a sheaf, so it is necessary to define the sheaf Image(f) to be the sheafification of
this presheaf. Similarly for the cokernel. Consequently, a sheaf mapping f : A → B is injective
(resp. surjective) iff the mapping fx : Ax → Bx on stalks is injective (resp. surjective) for all
x ∈ X. In other words, the abelian category structure on the category of sheaves is most easily
understood in terms of the leaf space picture of sheaves.

1.7. Examples.
(a.) Let M be an R-module. The constant presheaf (let us denote it by M) assigns to every
(nonempty) open set U ⊂ X the module M . The leaf space is then LM = X ×M and the stalk
at each point x ∈ X is Mx = M .

(b.) Let C0(0, 1) be the presheaf that assigns to an open set U ⊂ (0, 1) the vector space of
continuous functions f : U → R. Then this is a sheaf because a family of continuous functions
defined on open sets that agree on the intersections of those sets clearly patch together to give a
continuous function on the union. Similarly, smooth functions, holomorphic functions, algebraic
functions etc. can be naturally interpreted as sheaves.

(c.) Let S be the sheaf on (0, 1) whose sections over an open set U are those C∞ functions f : U → R
such that

∫
U
f(x)2dx < ∞. This presheaf is not a sheaf because it is possible to patch (infinitely

many) L2 functions (defined on smaller and smaller subintervals) together to obtain a function
that grows too fast to be square integrable. In fact, the sheafification of this sheaf is the set of all
smooth functions on (0, 1).

(d.) Let X be a connected topological space with universal cover X̃. Let x0 ∈ X be a basepoint

and let π1 = πx(X, x0) be the fundamental group of X. This group acts freely on X̃ (from the
right) with quotient X. Let M be an R-module and let ρ : π1 → Aut(M) be a homomorphism.
(For example, if M is a vector space over the complex numbers then ρ : π1 → GLn(C) is a
representation of π1). Define

L = X̃ ×π1 M

to be the quotient of X̃ × M by the equivalence relation (yg,m) ∼ (y, ρ(g)m) for all y ∈ X̃,

m ∈ M , and g ∈ π1. The projection X̃ → X passes to a projection π : L → X which makes L

into the leaf space of a sheaf, which is called a local system, or bundle of coefficients. Its stalk at
x0 is canonically isomorphic to M and whose stalk other points x ∈ X is isomorphic to M but not
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in a canonical way. If U ⊂ X is a contractible subset then there exist trivializations

π−1(U) ∼= U ×M

which identify the leaf space over U with the constant sheaf. So the sheaf L is a locally constant
sheaf and every locally constant sheaf of R modules on a connected space X arises in this way. If X
is a simplicial complex then a simplicial r-chain with values in the local system L is a finite formal
sum

∑
aiσi where σi are (oriented) r-dimensional simplices and where ai ∈ π−1(xi) for some (and

hence for any) choice of point xi ∈ σi. So there is a chain group (or module) Cr(X;L). One checks
that the boundary map ∂r : Cr(X;L) → Cr−1(X;L) continues to make sense in this setting and
so it is possible to define the simplicial homology group Hr(X;L) = ker(∂r)/Image(∂r+1). In other
words, locally constant sheaves have homology.

(e.) Let R be a commutative ring (with 1). There is a topological space, Spec(R) which consists
of all prime ideals in R. The topology on this set was constructed by O. Zariski. For any subset
E ⊂ R let V (E) = {p|E ⊂ p} be the set of prime ideals, each of which contains E. These form
the closed sets in a basis for a topology, that is, the open sets in this basis are the sets X − V (E).
The topology generated by these open sets is called the Zariski topology. If M is an R-module
then it defines a sheaf on this space in the following way. [to be completed]

(f.) Let K ⊂ R be the Cantor set and let ZK be the constant sheaf (with value equal to the
integers, Z) on K. Let j : K → R be the inclusion. Then j∗(ZK) is a sheaf on R (see the definition
of f∗ below) that is supported on the Cantor set. So “bad” sheaves exist on “good” spaces.

(g.) Fix r ≥ 0. For any topological space Y let Cr(Y ;Z) be the group of singular r-dimensional
simplices on Y . (It is the set of finite formal sums of pairs (σ, f) where σ is an oriented r-
dimensional simplex and f : σ → Y is a continuous map.) Now let X be a topological space.
The presheaf of r-dimensional singular cochains Cr on X assigns to any open set U ⊂ X the
group Cr(U) := Hom(Cr(U ;Z),Z). If V ⊂ U then Cr(V ;Z) is included in Cr(U ;Z) which gives a
(surjective) restriction mapping Cr(U)→ Cr(V ). This presheaf is also a sheaf.

1.8. Sheaf Hom. If A is a sheaf on X with leaf space π : LA→ X and if U ⊂ X is an open set
let A|U be the restriction of the sheaf A to the subset U , in other words, the sheaf on U whose
leaf space is π−1(U) → U . In other words, If A,B are sheaves of R modules then Hom(A,B) is
again an R module that consists of all sheaf mappings A → B. However there is an associated
presheaf, perhaps we will denote it by Hom(A,B), which assigns to any open set the R module
of homomorphism

HomSh(U)(A|U,B|U))

of sheaf mappings A|U → B|U . This presheaf is a sheaf (exercise) for which the group of global
sections is the original module of all sheaf homomorphisms, that is,

Γ(X,Hom(A,B)) = HomSh(X)(A,B)
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1.9. Functoriality. Let f : X → Y be a continuous map, let T be a sheaf on Y , lert S be a sheaf
on X. Define f∗(S) to be the presheaf on Y given by

f∗(S)(U) = S(f−1(U)).

This presheaf is a sheaf (exercise). Define f ∗(T ) to be the sheaf on X whose leaf space is the pull
back of the leaf space of T , that is,

Lf ∗(T ) = f ∗(LT ) = X ×Y LT = {(x, ξ) ∈ X × LT | f(x) = π(ξ)} .

Then this defines a sheaf, and the sections of this sheaf are given by

Γ(U, f ∗T ) = lim−−−−−→
V⊃f(U)

Γ(V, T ).

(Although f(U) may fail to be open, we take a limit over open sets containing f(U).)
There is also a pushforward with proper support, f!S with sections Γ(U, f!S) consisting of all

sections s ∈ Γ(f−1(U, S)) such that the mapping

closure{x ∈ U |s(x) ̸= 0} → U

is proper (that is, the pre-image of every compact set is compact). It is not so clear what this means,
but if f : X → Y is the inclusion of a subspace then f!S(U) consists of sections s ∈ Γ(U ∩X,S)
whose support is compact. This implies, in particular, that f!(S) vanishes outside X, even if X is
open. So, in the case of an inclusion, the sheaf f!(S) is called the extension by zero of S.

1.10. Lemma. Suppose the space X is locally compact. If J : K ⊂ X denotes the inclusion of a
closed subset, and if S is a sheaf on K then j∗(S) ∼= j!(S).

1.11. Adjunction. Let f : X → Y be a continuous mapping, let A be a sheaf on X, let B be a
sheaf on Y . Then there exist natural sheaf morphisms

f ∗f∗(A)→ A and B → f∗f
∗(B).

To see this, for the first one, let us consider sections over an open set U ⊂ X. Then

Γ(U, f ∗f∗A) = lim−−−−−−→
W⊃f(U)

γ(f−1(W ), A).

If W ⊃ f(U) then f−1(W ) ⊃ U so we get a mapping from this group to Γ(U,A). One verifies that
these mappings are compatible when we shrink U , and so this gives a sheaf morphism f ∗f∗(A)→ A.
For the second morphism, again we look at sections over an open set V ⊂ Y . If t is a section of
LB over V then, pulling it back by f gives a section f ∗(t) of the leaf space of f ∗(B) over the set
f−1(V ), in other words, we have defined a map

Γ(V,B)→ Γ(f−1(V ), f ∗(B)) = Γ(V, f∗f
∗(B))

which again is compatible with restrictions to smaller open sets. In other words, this defines a
sheaf morphism B → f∗f

∗B.
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1.12. Proposition. The adjunction maps determine a canonical isomorphism

HomSh(X)(f
∗B,A) ∼= HomSh(Y )(B, f∗A)).

Given f ∗B → A, apply f∗ and adjunction to obtain B → f∗f
∗B → f∗A. Given B → f∗A apply

f ∗ and adjunction to obtain f ∗B → f ∗f∗A → A. This gives maps back and forth between the
Hom groups in the proposition. We omit the check that they are inverses to each other.
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2. Lecture 2

2.1. Two comments about categories. In a category C the collection of morphisms A → B
between two objects is assumed to form a set, HomC(A,B) and so we may speak of two morphisms
being the same. However the collection of objects do not (in general) form a set and so the
statement that “B is the same object as A” does not make sense. Rather, “the morphism f : A→
B is an isomorphism” is the correct way to indicate an identification between two objects. This
is especially important when the set of self-isomorphisms of A is nontrivial, for in this case there
will be many distinct isomorphisms between A and B.
If C,D are categories, f : C→ D and g : D→ C are functors, then f and g are said to be adjoint

if there are “natural” isomorphisms HomC(A, g(B))→ HomD(f(A), B) for all A,B objects of C,D
respectively (where “natural” means that these isomorphism are compatible with all morphisms
C1 → C2 and D1 → D2). We say that f is left adjoint to g and g is right adjoint to f . In this case,
f essentially determines g and vice versa, that is, given f and two adjoint functors g1, g2 then there
exists a natural equivalence of functors between g1, g2. In many cases, the functor f is something
simple, and the functor g is something surprising (or vice versa), so it is a fun game to pick your
favorite functor and ask whether it has an adjoint. For example, if H is a subgroup of a finite
group G then “restriction” is a more or less obvious functor from the category of representations
of G to the category of representations of H; its adjoint turns out to be “induction”, a much more
subtle construction, and the adjointness property is classically known as the Frobenius reciprocity
theorem. In the previous lecture we had two examples of adjoint functors: sheafification is the
adjoint of the inclusion (sheaves → presheaves). We also saw that if f : X → Y is a continuous
mapping then f ∗ is left adjoint to f∗. For example, one might ask whether there is an adjoint to
the functor f!. This turns out to be a very subtle question.

2.2. Simplicial sheaves. This is a “toy model” of sheaves. Let K be a (finite, for simplicity)
simplicial complex. Each (closed) simplex σ is contained in a naturally defined open set, Sto(σ),
the open star of σ. It has the property that σ < τ =⇒ Sto(τ) ⊂ Sto(σ). Using these open sets to
define a presheaf, and assigning the values of the presheaf to the simplex itself, gives the following
definition:

2.3.Definition. A simplicial sheaf S (of abelian groups, or R-modules, etc.) onK is an assignment
of an abelian group S(σ) for the interior of each simplex and a group homomorphism S(σ)→ S(τ)
whenever σ < τ , in such a way that whenever σ < τ < ω then the resulting triangle of groups
and morphisms commutes. To make some explicit notation, let jσ,τ : σ → τ denote the inclusion
whenever σ < τ and let Sσ,τ : S(σ) → S(τ) be the corresponding homomorphism (so that S
becomes a covariant functor from the category of simplices and inclusions to the category of
abelian groups).
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In this setting there is no distinction between a sheaf and a presheaf. However the leaf space of
S is easily constructed as the union

LS =
⨿
σ

σ0 × S(σ)

but as in the case of general sheaves, the topology must be constructed with some care so as to be
a local homeomorphsim.

2.4. Cohomology of simplicial sheaves. Let K be a finite simplicial complex and let S be a
simplicial sheaf (of abelian groups, or of R-modules). In order to define cohomology it is necessary
to choose orientations of the simplices. (An orientation of a simplex is determined by an ordering
of its vertices, two orderings giving the same orientation iff they differ by an even permutation.)
The simplest method of orienting all the simplices, is to choose an ording of the vertices of K and
to take the induced ordering on the vertices of each simplex. Assume this to be done.

Fix r ≥ 0. An r-chain with values in the simplicial sheaf S is a function F that assigns, to each
(oriented) r-dimensional simplex σ an element of S(σ). The collection of all r-chains is denoted
Cr(K;S). The coboundary δF ∈ Cr+1(K;S) is defined as follows. If τ is an r + 1 simplex with
vertices v0, v1, · · · , vr+1 (in ascending order) we write τ = ⟨v0, v1, · · · , vr+1⟩ and we denote its i-th
face by ∂iτ = ⟨v0, · · · , v̂i, · · · , vr+1⟩. Then

δF (τ) =
r+1∑
i=0

(−1)iS∂iτ,τ (F (∂iτ)).

One checks that δδF = 0 (it is the same calculation that is involved in proving that ∂∂ = 0
for simplicial homology), so we may define the cohomology, Hr(K;S) = ker(δ)/ Im(δ) to be the
cohomology of the cochain complex

· · · −→ Cr−1(K;S)
δ−→ Cr(K;S)

δ−→ Cr+1(K;S) −→· · ·
This combinatorial construction is easily implemented on a computer. By reversing the arrows
one has the analogous notion of a simplicial cosheaf and a similar construction of the homology of
a simplicial cosheaf.

2.5. Historical interlude. Many different techniques have been developed for exploring the prop-
erties of cohomology of sheaves, the most elegant being the methods associated with the derived
category. Any one of these methods may be used as a “definition” of the cohomology of a sheaf,
and although the historical methods are the most accessible, they are also the most cumbersome.
We will use the method of injective resolutions, prefaced by a brief tour through its historical
development.

(1873) B. Riemann and later, E. Betti, consider the number of “cuts” of varying dimensions that
are needed in order to reduce a space into contractible pieces.

(1892) H. Poincaré, in Analysis Situs constructs homology of a “variété” using cycles that consist
of the zeroes of smooth functions.



9

(1898) P. Heegaard publishes a scathing scriticism of Poincareś article for its lack of rigor.
(1900) H. Poincaré publishes Supplement to his Analysis Situs in which he essentially describes

simplicial homology for a space that has been decomposed into simplices.
(1912) F. Hausdorff publishes the general definition of a topological space and interpret continuity

purely in terms of the open sets.
(1925) H. Hopf develops the general notion of a chain complex.
(1926) Alexander, Hopf give precise definition of simplicial complex.
(1928) H. Hopf, E. Noether describe homology as a group.
(1930) E. Cartan, G. deRham formalize notion of differential forms, Poincaré lemma, de Rham

theorem.
(1933) The drive to develop singular homology theory, with contributions by Dehn, Heegard,

Lefschetz, others.
(1934) E. Čech develops his approach to cohomology using the open sets in a space; cohomology

with coefficients in a ring.
(1935) H. Whitney develops the general theory of differentiable manifolds (and their embeddings

into Euclidean space).
(1935) H. Reidemeister develops theory of homology with local coefficients.

(1935-40) Products in cohomology, modern formulation of Poincaré duality, Stiefel Whitney classes,
differential forms. (Until this period, differential forms were “expressions”.)

(1942) S. Eilenberg and S. MacLane: Category theory
(1945-46) J. Leray (while a prisoner of war): sheaves and their cohomology, spectral sequence of a

map
(1946) S. S. Chern: Chern classes
(1950) Čech cohomology of sheaves
(1956) A. Borel, J. C. Moore, the dual of a complex of sheaves; Borel-Moore homology
(1956) H. Cartan, S. Eilenberg: injective resolutions and derived functors
(1957) A. Grothendieck: Tohoku paper
(1958) D. Kan: notion of adjoint functors
(1961) J. L. Verdier, derived categories, Verdier duality (published in 1996).

Given the complexity of this history, we will describe several ways to define the cohomology of
a sheaf, and leave the proof that they all give the same answer until later when we have efficient
machinery for doing so.

2.6. Let X be a topological space and let S be a sheaf (of abelian groups, or of R-modules) on
X. Let σ ∈ Γ(X,S), and consider σ to be a section of the leaf space LS → X. The support
spt(σ) of σ is the closure of the set of points x ∈ X such that σ(x) ̸= 0. Let Γc(X,S) denote
the group of sections with compact support. If K ⊂ X is a closed subset, let ΓK(S) denote the
group of sections whose support is contained in K. This may also be identified with the sections
Γ(K, j∗(S)) where j : K → X denotes the inclusion.
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The sheaf S is injective if the following holds: Suppose f : A → B is an injective morphism of
sheaves. Then any morphism h : A→ S extends to a morphism h̃ : B → S.

B

A

f
∪

6

h
- S

h̃
...................-

The sheaf S is flabby if S(U)→ S(V ) is surjective, for all open subsets V ⊂ U . The sheaf S is soft
if Γ(X,S)→ ΓK(S) is surjective, for every closed subset K ⊂ X. The sheaf S is fine if, for every
open cover X = ∪α∈IUα there exists a family of morphisms hi : S → S such that spt(hα) ⊂ Uα and∑

α hα = I. (Usually the hα are just a partition of unity with respect to the coefficient ring.) For
completeness we include here the following definition, which actually requires having previously
defined cohomology: The sheaf S is acyclic if Hr(X,S) = 0 for all r ≥ 1.
The following fact will not be used

2.7. Proposition. For any sheaf S on a locally compact space X,

injective =⇒ flabby =⇒ soft =⇒ acyclic and fine =⇒ soft =⇒ acyclic.

Of these notions, injective and acyclic are categorical, and we will concentrate on them. However,
in order that a sheaf be injective, it must have certain topological properties and certain algebraic
properties. For example, if the ring R is an integral domain, then the constant sheaf on a single
point is injective iff R is a field. The ring Z is not injective but it has an injective resolution
Z→ Q→ Q/Z→ 0.

2.8. Definition. An injective resolution of a sheaf S on X is an exacT sequence

0→ S → I0 → I1 → · · ·
where each Ir is an injective sheaf.

A abelian category C has enough injectives if every object can be embedded in an injective.
In this case, every object A admits an injective resolution: just embed A → I0 and let K0 be
the cokernel of this map. Then embed K0 → I1 and let K1 be the cokenerl of this map. Then
embed K1 → I2 and so on. The resulting sequence 0 → A → I0 → I1 · · · is exact. The category
of modules over a commutative ring R has enough injectives, and the category of sheaves of R
modules on any topological space X has enough injectives. However, there is a canonical and
functorial injective resolution of any sheaf, namely the Godement resolution. It will be described
later.

First definition of cohomology Let S be a sheaf on a topological space X and let 0→ S →
I0 → · · · be the Godement injective resolution of S. Then the cohomology of the complex of
global sections

0→ Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2) · · ·



11

is called the cohomology of S, denoted Hr(X,S).
Second definition of cohomology In fact: You will get the same answer, up to unique

isomorphism, if you use any injective resolution, or any fine, flabby, soft, or acyclic resolution
instead of an injective resolution. (See Lecture 4: injectives and Čech cohomology)
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3. Lecture 3: Complexes of sheaves

3.1. Sheaves tend to occur in complexes. Familiar examples include the de Rham complex of
differential forms on a smooth manifold M ,

Ω0(M,R)→ Ω1(M,R)→ Ω2(M,R) · · ·

or the ∂̄ complex on a complex manifold; the sheaf of singular cochains, etc. Less obvious examples
include the push-forward f∗(S

•) of a complex by a (continuous, smooth, or algebraic) mapping
f : X → Y .

3.2. A complex S• (in an abelian category) is a sequence

· · · −−−→ Sr−1 dr−1

−−−→ Sr dr−−−→ Sr+1 dr+1

−−−→ · · ·

where d◦d = 0. (We will assume that all of our complexes are bounded from below, that is Sr = 0
if r is sufficiently small, usually if r < 0). The cohomology Hr(S•) of the complex is ker dr/ Im dr−1.
So the complex S• is exact (meaning that it forms an exact sequence) iff Hr(S•) = 0 for all r. A
complex of sheaves is a complex in which each Sr is a sheaf. In this case, the cohomology sheaf
Hr(S•) is the sheaf ker d/ Im d. The stalk of the cohomology sheaf coincides with the cohomology
of the stalks (exercise), that is,

Hr
x(S

•) := Hr(S•)x ∼= Hr(S•x).

A morphism (of complexes in an abelian category) S• → T • of complexes is a collection of
morphisms that commute with the differentials. Two morphisms f, g : S• → T • are chain homo-
topic if there is a collection of mappings h : Sr → T r−1 (for all r) so that dTh + hdS = f − g.
A morphism ϕ : S• → T • is a quasi-isomorphism if it induces isomorphisms on the cohomology
objects Hr(S•)→ Hr(T •) for all r. We will see that a quasi-isomorphism of complexes of sheaves
induces isomorphisms on cohomology.
Exercise: For the complex Ω•M of sheaves of differential forms on a smooth manifold M show that
the cohomology sheaves are zero in all degrees except zero, and that H0(Ω•M) ∼= R is the constant
sheaf.

3.3. Magic Triangles. The mapping cone C• = C(ϕ) of a morphism ϕ : A• → B• is the complex
Cr = Ar+1⊕Br with differential dC(a, b) = (dA(a), (−1)deg(a)ϕ(a)+ dB(b)). It is the total complex
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of the double complex

A2

d
6

ϕ- B2

d
6

A1

d
6

ϕ- B1

d
6

A0

d
6

ϕ- B0

d
6

from which we see that there are obvious morphisms β : B• → C• and γ : C• → A•[1]. It is
customary to denote this situation as a triangle of morphisms

A•
ϕ - B•

C(ϕ)
�[1]

�

3.4. Lemma. If ϕ is injective then there is a natural quasi-isomorphism coker(ϕ) ∼= C(ϕ). If
ϕ is surjective then there is a natural quasi-isomorphism C(ϕ) ∼= ker(ϕ)[1]. There are natural
quasi-isomorphisms A•[1] ∼= C(β) and B•[1] ∼= C(γ). Moreover, there is a long exact sequencer on
cohomology

· · · → Hr−1(B•)→ Hr−1(C•)→ Hr(A•)→ Hr(B•)→ Hr(C•)→ · · · .

The proof is an exercise, and it works in any abelian category.

3.5. Double complexes. A double complex is an array Cpq with horizontal and vertical differen-
tials dh : Cpq → Cp+1,q and dv : Cpq → Cp,q+1 such that dvdv = 0, dhdh = 0, and dvdh = dhdv.
[Some authors assume instead that dvdh = −dhdv which eliminates the necessity for a sign in the
definition below of the total complex.] For convenience we will always assume that Cpq = 0 unless
p ≥ 0 and q ≥ 0. The associated single complex, or total complex T • is defined by T r = ⊕p+q=rC

pq

with “total differential” dT : T r → T r+1 defined by dT (cpq) = (dh + (−1)qdv)cpq for cpq ∈ Apq (that
is, change 1/4 of the signs to obtain that dTdT = 0).

3.6. Lemma. Let C•• be a first quadrant double complex and suppose the rows are exact and that
the zeroth horizontal arrows d0qh are injections (which is the same as saying that an extra zero may
be added to the left end of each row, without destroying the exactness of the rows). Then the total
complex T is exact.



14

Proof. A proper proof involves indices, signs, and an induction that is totally confusing and is best
worked out in the privacy of your own home. To see how the argument goes, let us show that the
total complex T 0 → T 1 → T 2 · · · is exact at T 2. Let x = x02 + x11 + x21 ∈ T 2 and suppose that
dTx = 0.

·

x02

6

- ·

y01

6

- x11

6

- ·

·
6

- y10

6

- x20

6

- ·

• Since dTx = 0 we have:

dvx02 = 0; dvx11 + dhx02 = 0; dvx20 − dhx11 = 0; dhx20 = 0.

• Since the bottom row is exact there exists y10 so that dhy10 = x20.
• Now consider x′11 = x11 − dvy10. Check that dh(x

′
11) = 0.

• Since the first row is exact there exists y01so that dhy01 = x′11.
• Now consider x′02 = x02 + dvy01. Check that dhx

′
02 = 0.

• But now we are in the left column, so this last operation, dh was an injective mapping.
This implies that x′02 = 0.
• Now just check that we have the right answer, y = y01 + y10 ∈ T 1. □

3.7. Corollary. Let {Cpq} be a first quadrant double complex (p, q ≥ 0) with exact rows. Let T •

denote the total complex, T r = ⊕p+q=rC
pq. Let Ar = ker(d0,r : C0r → C1r) denote the subcomplex

of the zeroth column, with its vertical differential dv. Then the morphism A• → T • (given by the
inclusion Ar → C0r → T r) is a quasi-isomorphism.

Proof. Let us consider the extended double complex obtained by considering the complex A• to
be the −1-st column, that is, C−1,r = Ar, with vertical differential dv = dA and with horizontal
differential the inclusion Ar → C0,r.

A2 ⊂ - C02 - C12 - C22 - · · ·

A1

dA
6

⊂ - C01

6

- C11

6

- C21

6

- · · ·

A0

dA
6

⊂ - C00

6

- C10

6

- C20

6

- · · ·
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Let S• denote the total complex of this extended double complex. It is precisely the mapping cone
of the morphism A• → T • so we have a magic triangle

A• ⊂ - T •

S•
�[1]

�

Moreover, the extended double complex has exact rows and the leftmost horizon maps are injective
so the previous lemma applies and we conclude that the cohomology of S• vanishes. By the long
exact sequence on cohomology this implies that Hr(A•)→ Hr(T •) is an isomorphism for all r. □

3.8. Cohomology of a complex of sheaves. We defined the cohomology of a sheaf to be the
(global section) cohomology of an injective resolution of the sheaf. So one might expect an injective
resolution of a complex of sheaves A• to be a double complex, and in fact, such a double complex
can always be constructed. If the coefficient ring is a field, then the simplest way is to use the
Godement resolution because it is functorial (see the next lecture). For more general coefficient
rings, the Godement resolution can be tensored with an injective resolution of the ring. More
generally, a double complex resolution was constructed by Cartan and Eilenberg, and it is known
as a Cartan-Eilenberg resolution of the complex. It is easy to take an injective resolution of each of
the sheaves in the complex, but not so easy to see how to fit them together so that the differentials
satisfy d2v = 0, but this can be done (see the Stacks Project, or Wikipedia on Cartan-Eilenberg
resolutions). In any case, let us assume that we have a double complex, the r-th row of which
resolves Ar.

But that is not the end. Given an injective resolution as a double complex A• → I•• with
horizontal and vertical differentials dh, dv respecitvely, we form the associated total complex T r =
⊕p+q=rI

pq and with dr = dh + (−1)qdv.

3.9. Lemma. The resulting map A• → T • is a quasi-isomorphism.

This follows immediately from Corollary 3.7, which says that there is a long exact sequence of
cohomology sheaves,

· · · → Hr(A•)→ Hr(T •)→ Hr(S•)→ Hr+1(A•)→ · · ·
where the cohomology sheaves of S• vanish.

In summary, we have replaced the double complex Ipq with a single complex T • so we arrive at
the following definition, which works in any abelian category:

3.10. Definition. An injective resolution of a complex A• is a quasi-isomorphism A• → T • where
each T r is an injective object. The cohomology Hr(X,A•) (also known as the hypercohomology
of A•) of a complex of sheaves is defined to be the cohomology of the complex of global sections

Γ(X,T r−1)→ Γ(X,T r)→ Γ(X,T r+1)

of any injective resolution A• → T •
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[A messy technical point: a complex of injective objects is not necessarily an injective object
in the category of complexes. So the somewhat ambiguous terminology of “injective resolution”
could be misleading and some authors refer to these as “K-injective resolutions”. Fortunately we
will not be required to consider injective objects in the category of complexes.]

This fits beautifully with the notion of a resolution of a single sheaf S: it is a quasi-isomorphism,

0 −−−→ S −−−→ 0y
0 −−−→ I0 −−−→ I1 −−−→ I2 −−−→ · · ·

As before, flabby, soft or fine resolutions may be used instead of injective resolutions. For example,
let Mn be a smooth manifold. Let x ∈M and let Ux be a neighborhood of x that is diffeomorphic
to an n-dimensional ball. The Poincaré lemma says that if ξ is a closed (i.e. dξ = 0) differential
r-form (r ≥ 1) defined in Ux then there is a differential r − 1 form η so that dη = ξ. The sheaf of
smooth differential forms is fine, so the Poincaré lemma says that this complex of sheaves is a fine
resolution of the constant sheaf,

0 −−−→ R −−−→ 0y
0 −−−→ Ω0

M −−−→ Ω1
M −−−→ Ω2

M −−−→ · · ·
Therefore the cohomology Hr(M,R) is canonically isomorphic to the cohomology of the complex
of global sections of Ω∗M , that is, the de Rham cohomology.

In fact, injective resolutions may be constructed directly without resorting to the Godement
double complex or the Cartan-Eilenberg double complex. [I hope to write down the argument for
this but involves some serious latex hacking with diagrams.]

3.11. Proposition. Let A• → B• be a quasi-isomorphism of complexes of sheaves on a topological
space X. Then it induces an isomorphism on cohomology Hr(U,A•) ∼= Hr(U,B•) for any open set
U ⊆ X. (Proof in the next lecture.)
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4. Lecture 4: Godement and Čech

4.1. Examples.
1. Let X be the 2-dimensional simplex. In the category of simplicial sheaves, suppose that S is a
sheaf on X that assigns the value Q to the interior of the 2-simplex and assigns 0 to simplices on
the boundary. Find an injective resolution of S. Determine the global sections of each step in the
resolution. Show that the cohomology of S is Q in degree 2 and is 0 in all other degrees.

2. Let X be a triangulation of S2, which may be taken, for example to be the boundary of a
3-simplex. Let S be the constant sheaf on X. Find an injective resolution of S in the category of
simplicial sheaves, and compute the cohomology of its global sections.

3. Let X be a triangulation of S2 with 108 simplices. Describe an injective resolution of X.

4. Let X be a topological space, let x0 ∈ X and let S = S(x0,Q) be the presheaf that assigns to
any open set U

S(U) =

{
Q if x0 ∈ U

0 else

Show that S is injective and that its leaf space LS is a skyscraper, that is, it consists of a single
group Q at the point x0 and zero everywhere else.

5. In the above example, fix x0 ∈ X and let T • be the complex of sheaves S(x0,Q)→ S(x0,Q/Z).
Show that this complex is an injective resolution of the skyscraper sheaf that is Z at the point x0.

These examples show that injective sheaves must be sums of sheaves with tiny support. This
leads one to the following:

4.2. Godement resolution. Given a sheaf A on a topological space X it embeds in a flabby
sheaf God(A) with sections

Γ(U,God(A)) =
∏
x∈U

Ax

the product of all the stalks at points in U . It is sometimes called the sheaf of totally discontinuous
sections. If we start with the constant sheaf Z then a section s ∈ Γ(U,God(Z)) assigns to each

point x ∈ U an integer, without any regard to continuity or compatibility. It is the sort of sheaf
that you definitely do not want to meet in a dark alley. The Godement resolution God•(A) is

obtained by applying this construction to the cokernel of A→ God(A) and iterating:

A ⊂ - God(A) - God(coker ) - God(coker )

coker
⊂

-

-

coker
⊂

-

-

If Ax is injective for all x ∈ X (for example, if the coefficient ring R is a field) then this is
an injective resolution of A. For many rings there are functorial injective resolutions that can be
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used, together with the Godement construction to make a double complex, the associated total
complex of which is then a canonical injective resolution. The Godement resolution is functorial:
a morphism f : A → B induces a morphism of complexes God(f) : God•(A) → God•(B) in such

a way that God(f ◦ g) = God(f) ◦God(g).
In summary, injective sheaves are huge, horrible objects and maybe we use them to prove things

but never to compute with. A much more efficient computational tool is the Čech cohomology.

4.3. Čech cohomology of sheaves. Let A be a sheaf on X. Let U = {Uα}α∈I be a collection
of open sets in X. For any subset J ⊂ I let UJ = ∩α∈JUα be the corresponding intersection. The
Čech cochain complex is

Čr(X,A) =
∏
|J |=r+1

Γ(UJ , A)

Čr+1(X,A)

d

?
=

∏
|K|=r+2

Γ(UK , A)

d

?

where d is defined as follows: suppose that K = {k0, k1, · · · , kr+1} ⊂ I and σ ∈ Čr(X,A). Then

dσ(UK) =
r+1∑
i=0

σ(Uk0 ∩ · · · ∩ Ûki ∩ · · · ∩ Ukr+1)|UK .

For example, if σ ∈ Č1 and if U = U0 ∩ U1 ∩ U2 then

dσ(U) = σ(U1 ∩ U2)|U − σ(U0 ∩ U1)|U + σ(U0 ∩ U2)|U.

Then one checks that d ◦ d = 0 so the cohomology of this resulting complex is defined:

Ȟr
U(X,A) = ker d/ Im d.

Notice, in particular, that Ȟ0
U(X,A) consists of sections σα over Uα that agree on each intersection

Uα ∩ Uβ so it coincides with the global sections: Ȟ0
U(X,A) = Γ(X,A) for any covering U.

4.4. Theorem. Suppose the open cover U has the property that Hr(UJ , A) = 0 for every J ⊂ I and
for all r > 0. Then there is a canonical isomorphism Ȟ i(X,A) ∼= H i(X,A) for all i. In particular,
H0(X,A) ∼= Γ(X,A).

This is an incredibly useful result because it says that we can use possibly very few and very
large open sets when calculating sheaf cohomology, and it even tells us how to tailor the open
sets to take advantage of the particular sheaf, whereas the original theorem of Čech assumed that
all the multi-intersections of the open sets were contractible (and it applied only to the constant
sheaf). On the other hand, given the machinery that we have developed, the proof is very simple.
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Proof. Let A be a sheaf on a topological space and let U = {Uα}α∈K be an open covering of X.

The Čech complex Č•(A) = ČU
•(A) is

· · · →
∏
|J |=r+1

Γ(UJ , A)→
∏
|J |=r+2

Γ(UJ , A)→ · · · .

Sheafify this construction by defining

Cp(A) = Cp
U(A) =

∏
|J |=p+1

i∗(A|UJ)→ Cp+1(A)→ · · ·

so that Cp(A)(V ) =
∏
|J |=p+1 Γ(V ∩UJ , A). This is functorial in A. There is a little combinatorial

argument to show that

0→ A→ C0(A)→ C1(A)→ · · ·
is exact. (To check exactness of the stalks at a single point x, we need to consider the combinatorics
of having p + 1 open sets whose multi-intersection contains x. Then exactness comes down to
proving that the homology of the p-simplex is trivial.)

Now let A→ I0 → I1 → I2 → · · · be an injective resolution of A, and apply the Čech resolution
to each term in this sequence, which gives a double complex of sheaves:

C0(I2) - C1(I2) - C2(I2) -

C0(I1)

6

- C1(I1)

6

- C2(I1)

6

-

C0(I0)

6

- C1(I0)

6

- C2(I0)

6

-

whose rows are exact. Let T• denote the associated single complex (of sheaves). If we augment the
left column with the column I0 → I1 → I2 → · · · then Corollary 3.7 says that the resulting map
on cohomology sheaves H∗(I•) → H∗(T •) is an isomorphism, which is to say that I• → T • is a
quasi-isomorphism. So it induces an isomorphism on cohomology, H∗(I•) = H∗(X,A) ∼= H∗(T •).
On the other hand, let us take global sections to obtain a double complex of groups. The r-th

column now reads (from the bottom up)∏
|J |=r+1

Γ(UJ , I
0)→

∏
|J |=r+1

Γ(UJ , I
1)→ · · ·

which is a complex that computes the product of hypercohomology groups
∏
|J |=r+1H

∗(UJ , A) = 0

by hypothesis. The kernel of the zeroth vertical map is exactly the Čech cochains Čr(A). Therefore,
if we augment the bottom row with the complex Č0(A) → Č1(A) → Č2(A) · · · of Čech cochains
then Corollary 3.7 says that we will obtain a quasi-isomorphism of this complex with the total
complex of this double complex, namely Γ(X,T •) . Hence, the cohomology of the Čech complex
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of groups coincides with the cohomology of this total complex, which was shown above to coincide
with the hypercohomology of the sheaf A as computed using injective resolutions. □
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5. Lecture 5: Homotopy and injectives

5.1. The sheaf of chains. Most of the complexes of sheaves that were discussed until now have
the property that their cohomology sheaves live only in degree zero. The sheaf of chains, however, is
a naturally occurring entity with complicated cohomology sheaves. But it is not so obvious how to
construct a sheaf onX that corresponds to the singular chains. One might define a presheaf Cr with
sections Γ(U,Cr) = Cr(U) to be the group of singular chains on U and with restriction mapping
Cr(U)→ Cr(V ) that assigns zero to every singular simplex that is not completely contained in V .
If we sheafify this then we are forced to consider singular chains that are (possibly) infinte sums
of simplices. If the space X is paracompact then we may restrict to chains that are locally finite.
The result is called Borel-Moore homology. For field coefficients k, Borel and Moore defined a
sheaf with sections

Γ(U,CBM
r ) = Hom(Cr

c (U, k), k)

where Cr
c denotes the cochains with compact support. For more general rings R it is necessary to

replace Hom(·, k) with a complex Hom(·, I•) where R → I• is an injective resolution of the ring.
The resulting double complex is converted into a single complex by the usual diagonal sum trick.
If X is compact then the Borel-Moore homology coincides with the usual (e.g. singular) homology.

Exercise. In the simplicial sheaf setting find a complex of injective sheaves that gives the Borel-
Moore homology for a finite simplicial complex K.

Let us say that a topological space X has finite type if it is homeomorphic to K − L where K
is a finite simplicial complex and L is a closed subcomplex. In this case HBM

r (X) ∼= Hr(K,L)
coincides with the relative homology which can then be expressed as the homology of a chain
complex formed by the simplices that are contained only in K, and by defining the differential so
as to ignore all components of the boundary that may lie in L. This gives a simple combinatorial
construction of Borel-Moore homology for spaces of finite type.

Exercise. Find a complex of injective sheaves that gives the Borel-Moore homology for a space
X = K − L of finite type, where K is a finite simplicial complex and L is a closed subcomplex.

5.2. Homotopy theory. Two morphisms f, g : A• → B• of complexes are said to be homotopic if
there is a collection of mappings h : Ar → Br−1 so that hdA+ dBh = f − g. This is an equivalence
relation. Equivalence classes are referred to as homotopy classes of maps; the set of which is
denoted [A•, B•]. Define the complex of abelian groups (or R modules)

Homn(A•, B•) =
∏
s

Hom(As, Bs+n)

with differential df = dBf + (−1)n+1fdA where f : As → Bs+n.

5.3. Lemma. Let f : A• → B• be a morphism of complexes and let C(f) be the cone of f . For any
complex S• we have a morphism of complexes f∗ : Hom

•(S•, A•) → Hom•(S•, B•). Then there is
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a canonical isomorphism of complexes of abelian groups,

C(f∗) ∼= Hom•(S•, C(f)).

For any complex T • we have a morphism of complexes f ∗ : Hom(B•, T •)→ Hom(A•, T •). Suppose
the cohomology of S•, T • is bounded, that is, Hr(S•) = Hr(T •) = 0 if |r| is sufficiently large. Then
there is a canonical quasi-isomorphism of complexes of abelian groups,

C(f ∗)[−1] ∼= Hom•(C(f), T •).

The first statement is obvious because Hom(Ss, At+1 ⊕ Bt) = Hom(Ss, At+1) ⊕ Hom(Ss, Bt).
The second statement is similar. The following exercise is crucial .

5.4. Proposition. Hn(Hom•(A•, B•)) = [A•, B•[n]]. □

In particular given f : A• → B• let C• = C(f) be the cone. Then for any complex S• there is
a long exact sequence

· · · [S•, A•]→ [S•, B•]→ [S•, C•]→ [S•, A•[1]]→ [S•, B•[1]]→ · · ·

We can do the same with sheaf-Hom. Recall that Hom(A,B)(U) = HomSh(U)(A|U,B|U)). We

obtain a complex of sheaves,

Homn(A
•
, B

•
) =

∏
s

Hom(As, Bs+n)

with the property that

H0(X,Hom•(A
•
, B

•
)) = Γ(X,Hom•(A

•
, B

•
)) = H0(Hom •(A•, B•)) = [A•, B•]

5.5. The bounded homotopy category Kb(X) of sheaves on X is the category whose objects are
complexes of sheaves whose cohomology sheaves are bounded (meaning that Hr(A•) = 0 for
sufficiently large r), and whose morphisms are homotopy classes of morphisms, that is,

HomKb(X)(A
•, B•) = [A•, B•] = H0(X,Hom•(A•, B•)).

5.6. Wonderful properties of injective sheaves. Roughly speaking, when we restrict to in-
jective objects, then quasi-isomorphisms become homotopy equivalences. For sheaf theory, this
is important because a homotopy of complexes of sheaves also gives a homotopy on global sec-
tions. In this way, quasi-isomorphisms of complexes of injective sheaves give isomorphisms on
hypercohomology.

5.7. Lemma. Let C• be a (bounded below) complex of sheaves and suppose that the cohomology
sheaves Hr(C•) = 0 for all r. Let J• be a complex of injective sheaves. Then any morphism f :
C• → J• is homotopic to zero, meaning that there exists h : C• → J•[−1] such that dJh+hdC = f .
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Proof. It helps to think about the diagram of complexes:

0 - C0 d0 - C1 d1 - C2 d2 - C3 - · · ·

0 - J0

f

?

d0
-

h1

�
J1

f

?

d1
-

h2

�
J2

f

?

d2
-

h3

�
J3

f

?
- · · ·

The first step is easy, since C0 → C1 is an injection and since J0 is injective there exists h1 : C1 →
J0 that makes the triangle commute, that is, h1d0 = f . Now let us define h2 : C2 → J1. Consider
the map (f − d0h1) : C1 → J1. It vanishes on Im(d0) = ker(d1) because

(f − d0h1)d0 = fd0 − d0h1d0 = fd0 − d0f = 0.

Therefore it passes to a vertical mapping in this diagram:

C1 - C1/ ker(d1) ⊂ - C2

J1

f − d0h1

?-

where the second horizontal mapping is an injection. Since J1 is injective we obtain an extension
h2 : C2 → J1 such that h2 ◦ d1 = f − d0h1 so that h2d1 + d0h1 = f . Continuing in this way, the
other hr can be constructed inductively. □

Exactly the same argument may be used to prove the following:

5.8. Lemma. Let f : A• → B• be a quasi-isomorphism of (bounded below) complexes. Then
for any complex J• of injectives, the induced map [B•, J•] → [A•, J•] on homotopy classes is an
isomorphism. □

This result can also be proven by applying the previous lemma to the cone C(f) and using the
long exact sequence on cohomology.

5.9. Corollary. The following statements hold.

(1) Suppose J• is a complex of injective sheaves and Hn(J•) = 0 for all n. Then J• is homotopy
equivalent to the zero complex.

(2) Let ϕ : X• → Y • be a quasi-isomorphism of sheaves of injective complexes. Then ϕ admits
a homotopy inverse g : Y • → X• (meaning that gϕ ∼ IX and ϕg ∼ IY ).

(3) Let A• → I• and B• → J• be injective resolutions of complexes A•, B•. Then any morphism

f : A• → B• admits a lift f̃ : I• → J• and any two such lifts are homtopic.
(4) Let f : A• → B• be a quasi-isomorphism of complexes of sheaves. Then f induces an

isomorphism on hypercohomology Hr(X,A•) ∼= Hr(X,B•) for all r.
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Proof. For (1) consider the identity mapping J• → J• For (2) , mapping (X•
ϕ−→ Y •) to X•

and using the lemma gives an isomorphism [Y •, X•] → [X•, X•], the map given by f 7→ f ◦ ϕ.
So the identity X• → X• corresponds to some f such that f ◦ ϕ ∼ Id, implying that ϕ has a
left homotopy-inverse. Now consider mapping Y • into the triangle X• → Y • → C(ϕ) → · · · ,
giving an exact sequence · · · → [Y •, X•] → [Y •, Y •] → [Y •, C(ϕ)] → · · · . Since C(ϕ) is injective
and its cohomology vanishes, the identity is homotopic to zero, hence [Y •, C(ϕ)] = 0 so that
[Y •, X•] ∼= [Y •, Y •] with the map given by g 7→ ϕ ◦ g. Therefore there exists g : Y • → X• so that
ϕ ◦ g ∼ Id meaning that ϕ has a right inverse in the homotopy category. If a mapping has both a
left inverse and a right inverse then it has an inverse (in other words, f and g are homotopic, so
either of them will behave as a homotopy inverse to ϕ). For (3), the lemma gives an isomorphism
[A•, J•] → [I•, J•]. For (4), the hypercohomology is defined in terms of the global sections of an
injective resolution. So we may assume that A• and B• are injective. By the lemma, the cone C(f)
is homotopic to zero. Let h be such a homotopy. Now take global sections. The global sections of
the cone coincides with the cone on the global sections, that is, we have a triangle of groups:

Γ(X,A•) - Γ(X,B•)

Γ(X,C(f))
�

[1]

�

The homotopy h also gives a homotopy on the global sections so that Hn(Γ(X,C(f))) = 0. So the
long exact sequence on cohomology implies that Hn(X,A•)→ Hn(X,B•) is an isomorphism. □
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6. Lecture 6: The derived category

There are several different “models’ for the derived category. The first definition we give is easy
to understand and useful for proofs but the objects themselves are not very natural. The second
model is less intuitive but the objects occur naturally.

6.1. The derived category: first definition. Let X be a topological space. The bounded
derived category Db(X) is the category whose objects are complexes of injective sheaves whose
cohomology sheaves are bounded (meaning that Hr(A•) = 0 for sufficiently large r and for suffi-
ciently small r). The morphisms are homotopy classes of morphisms (of complexes of sheaves), so
that Db(X) is the homotopy category of (complexes of) injective sheaves.

If S(X) denotes the category of sheaves on X, if Cb(X) denotes the category of complexes of
sheaves with bounded cohomology and if Kb(X) denotes the homotopy category of (complexes of)
sheaves with bounded cohomology then we have a canonical functors

S(X) −−−→ Cb(X) −−−→ Kb(X)
God−−−→
←−

Db(X)

that associates to any sheaf S the corresponding complex concentrated in degree zero, and to any
complex A• its Godement injective resolution. [This construction makes sense if we replace the
category of sheaves with any abelian category C provided it has enough injectives. In this way we
define the bounded derived category Db(C) with functors C→ Kb(C)→ Db(C). ]

From the previous lecture on “properties of injective sheaves” we therefore conclude:

• The mapping Kb(X) → Db(X) is a functor (that is, a morphism between complexes
determines a morphism in the derived category also).
• If A• → B• is a quasi-isomorphism of complexes of sheaves then it becomes an isomorphism
in Db(X).
• if A• is a complex of sheaves such that Hm(A•) = 0 for all m then A• is isomorphic to the
zero sheaf.

6.2. Definition. Let T : S(X) → B be a covariant (and additive) functor from the category of
sheaves to some other abelian category with enough injectives. For the moment, let us also assume
that it takes injectives to injectives. Define the right derived functor RT : Db(X) → Db(B) by
RT (A•) to be the complex T (I0) → T (I1) → T (I2) → · · · where A• → I• is the canonical
(or the chosen) injective resolution of A•. Define RmT (A) (“the m-th derived functor”, an older
terminology) to be the cohomology object of this complex, Hm(RT (A•)).

Let A• → I• and B• → I• be the canonical injective resolutions of A•, B•. Then any morphism
f : A• → B• has a lift f̃ : I• → J• that is unique up to homotopy, which is to say that f̃ is a
uniquely defined morphism in the category Db(X), and we obtain a well defined morphism

RT (f) = T (f̃) : RT (A•) = T (I•)→ T (J•) = RT (B•).

In other words, the right derived functor of T is obtained by replacing each complex A• by its
injective resolution I• and then applying T to that complex.
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6.3. Examples.
1. If f : X → Y is a continuous map between topological spaces, then we show (below) that
f∗ : S(X) → S(Y ) takes injectives to injectives. Taking Y = {pt} we get that the global sections
functor Γ takes injectives to injectives. Then, for any complex of sheaves A•,

RmΓ(A•) = Hm(Γ(X, I•))

where A• → I• is the canonical injective resolution. (This is how we defined the hypercohomology
of the complex of sheaves A in §3.10.)

2. Let f : X → Y be a continuous map and let Z be the constant sheaf on X. If f is surjective and

its fibers are connected then f∗(Z) is again the constant sheaf, because as a presheaf, f∗(Z(U) =

Z(f−1(U)) = Z for any connected open set U ⊂ Y . Although we cannot hope to understand

Rf∗(Z) we can understand its cohomology sheaves:

Rmf∗(Z)(U) = Hm(Γ(f−1(U), I•))

where I• is an injective resolution (or perhaps the canonical injective resolution) of the constant
sheaf. But this is exactly the definition of the hypercohomology Hm(f−1(U),Z) = Hm(f−1(U,Z)).
If f is proper then the stalk cohomology (of the cohomology sheaf of Rf∗(Z)) at a point y ∈ Y is

equal to Hm(f−1(y);Z), the cohomology of the fiber. In other words, the sheaf Hm(Rf∗(Z)) is a
sheaf on Y which, as you move around in Y , displays the cohomology of the fiber.

3. We can also determine the global cohomology of the complex Rf∗(Z), for it is the cohomology

of the global sections Γ(X, I•), that is, the cohomology of X. More generally, the same argument
shows that: for any complex of sheaves A• on X, the complex Rf∗(A

•) is a sheaf on Y whose
global cohomology is

H∗(Y,Rf∗(A
•)) ∼= H∗(X,A•).

This complex of sheaves therefore provides data on Y which allows us to compute the cohomology
ofX. It is called the Leray Sheaf (although historically, Leray really considered only its cohomology
sheaves Rmf∗(A

•)). In particular we see that the functor Rf∗ does not change the hypercohomology.
For f : X → {pt}, if S is a sheaf on X then f∗(S) = Γ(X,S) is the functor of global sections (or
rather, it is a sheaf on a single point whose value is the global sections), so Rif∗(A

•) = H i(X,A•)
is the hypercohomology.

4. The m-th derived functor of Hom is called Extm, i.e., it is the group

Extm(A•, B•) = Hm(RHom(A•, B•)) = Hm(Hom•(A•, J•)) = H0(Hom•(A•, J•[m]))

where B• → J• is an injective resolution. (We consider Hom(A•, B•) to be a functor of the B•

variable and derive it by injectively resolving. It turns out, as we will see later, that the same
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result can be obtained by projectively resolving A•.) As before, there is a sheaf version of Hom,
which also gives a sheaf version of Ext:

Extm(A•, B•)) = Hm(RHom(A•, B•))

Exercise. LetG,H be abelian groups, considered as complexes in degree zero. Show that Ext1(G,H)
coincides with the usual definition of ExtZ(G,H),

6.4. The derived category: second construction. The derived category can be constructed
as a sort of quotient category of the homotopy category Kb(X) of complexes, by inverting quasi-
isomorphisms. Let Eb(X) be the category whose objects are complexes of sheaves on X, and where
a morphism A• → B• is an equivalence class of diagrams

C•

A•

qi
�

B•
-

where C
• → A• is a quasi-isomorphism, and where two such morphisms A• ← C•1 → B• and

A• ← C•2 → B• are considered to be equivalent if there exists a diagram

C•1

A• �
qi�

C•3

6

- B•
-

C•2

?

-
�

that is commutative up to homotopy. (Exercise: figure out how to compose two morphisms and
then check that the result is well defined with respect to be above equivalence relation.)

6.5. Theorem. The natural functor Db(X)→ Eb(X) is an equivalence of categories.

Proof. To show that a functor F : C → D is an equivalence of categories it suffices to show (a)
that it is essentially surjective, meaning that every object in D is isomorphic to an object F (C)
for some object C in C, and (b) that F induces an isomorphism on Hom sets. The first part
(a) is clear because we have injective resolutions. Part (b) follows immediately from the fact
that a quasi-isomorphism of injective complexes is a homotopy equivalence and has a homotopy
inverse. □

This gives a way of referring to elements of the derived category without having to injectively
resolve. Each complex of sheaves is automatically an object in the derived category Eb(X). Here
are some applications.
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6.6. T -acyclic resolutions. A functor T : C → D between abelian categories is exact if it takes
exact sequences to exact sequences. It is left exact if it preserves kernels, that is, if f : X → Y
and if Z = ker(f) (so 0 → Z → X → Y is exact) then T (Z) = ker(T (f)) (that is, 0 → T (Z) →
T (X) → T (Y ) is exact). An object X is T -acyclic if RiT (X) = 0 for all i ̸= 0. This means:
take an injective resolution X → I•, apply T , take cohomology, the result should be zero except
possibly in degree zero.

The great advantage of T -acyclic objects is that they may be often used in place of injective
objects when computing the derived functors of T , that is

6.7. Lemma. Let T be a left exact functor from the category of sheaves to some abelian category
with enough injectives. Let A• be a complex of sheaves and let A• → X• be a quasi-isomorphism,
where each of the sheaves Xr is T -acyclic. Then RrT (A•) is canonically isomorphic to the r-th
cohomology object of the complex

T (X0)→ T (X1)→ T (X2)→ · · · .
If T is exact then there is no need to take a resolution at all: RT (A•) is canonically isomorphic
to T (A•).

The proof is the standard double complex argument: Suppose T is left exact. Let I•• be a double
complex of injective sheaves, the r-th row of which is an injective resolution of Xr. Let Z• be the
total complex of this double complex. It follows that A• → X• → Z• are quasi-isomorphisms and
so the complex Z• is an injective resolution of A•. Now augment the double complex by attaching
X• to the zeroth column, and apply the functor T to the augmented complex. Since each Xr is
T -acyclic, each of the rows remains exact except possibly at the zeroth spot. Since T is left exact,
the rows are also exact at the zeroth spot. So our lemma says that T (X•)→ T (Z•) = RT (A•) is
also a quasi-isomorphism, which gives an isomorphism between their cohomology objects. If the
functor T is exact then every object Ar is T -acyclic (exercise), so the original complex A• may be
used as its own T -acyclic resolution.

6.8. Key exercises. Show that injective objects are T -acyclic for any left exact functor T . If
f : X → Y is a continuous map, show that f ∗ : S(Y )→ S(X) is exact (and so it does not need to
be derived). Using this and the adjunction formula HomS(Y )(B, f∗(I)) ∼= HomS(X)(f

∗(B), I) show
that f∗ is left exact and takes injectives to injectives. Show that fine, flabby, and soft sheaves are
Γ-acyclic. In particular, the cohomology of a sheaf (or of a complex of sheaves) may be computed
with respect to any injective, fine, flabby, or soft resolution.

6.9. More derived functors. This also gives us a way to define “the” derived functor RT :
Db(X) → Db(C) for any left exact functor T : Sh(X) → C provided the category C has enough
injectives, namely, if A• is a complex of sheaves on X, take an injective resolution A• → I•,
then apply the functor T to obtain a complex T (I•) of objects in the category C, then injectively
resolve this complex by the usual method of resolving each T (Ir) to obtain a double complex, then
forming the associated total complex. Let RT denote the resulting complex. Different choices of
resolutions give isomorphic complexes RT .
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6.10. The sheaf of chains in the derived category. Suppose X is a finite simplicial complex.
If σ is a (closed) simplex let Q

σ
denote the constant sheaf on σ. It is injective in the category of

simplicial sheaves on X, and every injective simplicial sheaf (of rational vector spaces) is a direct
sum of such elementary injectives. The sheaf of chains can be realized as the (injective) complex
C•: ⊕

dim(σ)=0

Q
σ
←−

⊕
dim(σ)=1

Q
σ
←−

⊕
dim(σ)=2

Q
σ
←− · · ·

in degrees 0,−1,−2, · · · respectively. (We place the chains in negative degrees so that the differ-
entials will increase degree; it is a purely formal convention.) The global sections of this complex
equals the usual complex C•(X) of simplicial chains. If we use the constant sheaf Zσ everywhere,
then the resulting sheaves are soft, rather than injective, but they may still be used to compute
the homology of X.

Now consider the limit over all subdivisions of the simplicial complex X. We define a “topolog-
ical” sheaf on X that is, in some sense, the sheafification of the direct limit of these sheaves. To
be precise, let U ⊂ X be an open subset and let T be a locally finite triangulation of U , and let
CT

r (U) be the group of r-dimensional simplicial chains with respect to this triangulation. Then
the sheaf of piecewise linear chains is the sheaf C•PL with sections

Γ(U,C−rPL) = lim−→
T

CT
r (U)

for r ≥ 0. It is a soft sheaf, and the resulting complex

C0
PL ←− C−1PL ←− C−2PL ←− · · ·

is quasi-isomorphic to the sheaf of Borel-Moore chains. If the space X has a real analytic (or
semi-analytic or subanalytic or O-minimal) structure then one similarly has the sheaf of locally
finite subanalytic or O-minimal chains, which gives another quasi-isomorphic “incarnation” of the
sheaf of chains.

Evidently, the derived category would be more useful if such complexes could be considered to
be objects in the derived category (without having to resort to taking injective resolutions).

6.11. The bad news. The derived category is not an abelian category. In fact, the homotopy
category of complexes is not an abelian category. Kernels and cokernels do not make sense in these
categories. The saving grace is that the cone operation still makes sense and in fact, it passes to
the homotopy category. So we have to replace kernels and cokernels with triangles.

6.12. Definition. A triangle of morphisms

A• - B•

C•
�[1]

�
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in Kb(X) or in Db(X) is said to be a distinguished triangle if it is homotopy equivalent to a triangle

X•
ϕ - Y •

C(ϕ)
�[1]

�

where C(ϕ) denotes the cone on the morphism ϕ.

This means that there are morphisms between corresponding objects in the triangles such that
the resulting squares commute up to homotopy. (In the homotopy categories K(X) and Db(X)
homotopy equivalences are isomorphisms, so people often define a distinguished triangle to be a
triangle in K(X) that is isomorphic to a mapping cone.)

6.13. Lemma. The natural functor Kb(X)→ Db(X) takes distinguished triangles to distinguished
triangles. If

A• - B•

C•
�[1]

�

is a distinguished triangle and if X• is a complex (bounded from below) then there are distinguished
triangles

RHom(X•, A•) - RHom(X•, B•) RHom(A•, X•) � RHom(B•, X•)

and

RHom(X•, C•)
�[1]

�

RHom(C•, X•)

-

[1] -

The proof is the observation (from the last lecture) that Hom into a cone is equal to the
cone of the Homs. We stress again that the hypercohomology of RHom is exactly the group of
homomorphisms in the derived category: H0(X,RHom(A•, B•)) = HomDb(X)(A

•, B•).

6.14. Exact sequence of a pair. Let Z be a closed subspace of a topological space X, and let

U = X − Z, say Z
i−→ X

j←− U.
If S is a sheaf on X then there is a short exact sequence of sheaves 0→ j!j

∗S → S → i∗i
∗S → 0.

The morphisms are obtained by adjunction, and exactness can be checked stalk by stalk: If
x ∈ Z then the sequence reads 0 → 0 → Sx → Sx → 0. If x ∈ U then the sequence reads
0 → Sx → Sx → 0 → 0. Consequently if A• is a complex of sheaves then there is a distinguished
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triangle

Rj!j
∗(A•) - A•

Ri∗i
∗(A•)

�[1]

�

(recall the exercise that the cokernel of an injective morphism is quasi-isomorphic to the mapping
cone). For the constant sheaf the triangle gives an exact sequence

Hr(X)→ Hr(Z)→ Hr+1
c (U)→ · · ·

but observe that H∗c (U) = H∗(X,Z) is the cohomology of cochains on X that vanish on Z. For
the sheaf of chains this gives an exact sequence Hr(U) → Hr(X) → Hr(X,U) → · · · because
i∗(chains) is the limit over open sets containing Z of Borel-Moore chains on that open set.

If S is a sheaf on X define i!(S) to be the restriction to Z of the presheaf with sections supported
in Z, that is

i!(S) = i∗(SZ) where Γ(V, SZ) = {s ∈ Γ(V, S)| spt(s) ⊂ Z} .
Thus, if W ⊂ Z is open then

Γ(W, i!(S)) = lim−−−→
V⊃W

ΓZ(V, S)

(the limit is over open sets V ⊂ X containing W ). The functor i! is a right adjoint to the push-
forward with compact support i!, that is, HomX(i!A,B) = HomZ(A, i

!B). In fact, HomZ(A, i
!B)

consists of mappings of the leaf space LA→ LB|Z that can be extended by zero to a neighborhood
of Z in X, and this is the same as HomX(i!A,B). (In particular we obtain a canonical morphism
i!i

!B → B.)

6.15. Proposition. Let A• be a complex of sheaves on X. There is another distinguished triangle

Ri∗i
!(A•) - A•

Rj∗j
∗(A•)

�[1]

�

Later we will prove this using Verdier duality. For now, observe that in the case of the constant
sheaf this gives an exact sequence

Hr(X)→ Hr(U)→ Hr(X,U)→ · · ·
For the sheaf of chains, i!C−r will give the homology of a tiny neighborhood of Z in X which,
for most nice spaces, will be homotopy equivalent to Z itself. The sheaf j∗(C−r) will give the
Borel-Moore homology of U , which is the relative homology Hr(X,Z). So this triangle gives the
long exact sequence for the homology of the pair (X,Z).
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7. Lecture 7: Stratifications

7.1. For some historical comments see:
http://www.math.ias.edu/~goresky/math2710/ThomMather.pdf

7.2. The plan is to decompose a reasonable space into a locally finite union of smooth manifolds
(called strata) which satisfy the axiom of the frontier: the closure of each stratum should be a
union of lower dimensional strata. If Y ⊂ X are strata we write Y < X. But this should be
done in a locally trivial way. In Whitney’s example below, it is not enough to divide this figure

Figure 1. Three strata needed

into 1- and 2-dimensional strata, even though this gives a decomposition into smooth manifolds.
If the origin is not treated as another stratum then the stratification fails to be “locally trivial”.
Whitney proposed a condition that identifies the origin as a separate stratum in this example. Let
us say that a stratification of a closed subset W of some smooth manifold M is a locally finite
decomposition W =

⨿
α Sα into locally closed smooth submanifolds Sα ⊂ M (called strata) so

as to satisfy the axiom of the frontier. A stratified homeomorphism h : W1 → W2 between two
stratified sets is a homeomorphism that takes strata to strata and is smooth on each stratum.

7.3. Definition. Let Y ⊂ X be strata in a stratification of a closed set W ⊂M . The pair (X,Y )
satisfies Whitney’s condition B at a point y ∈ Y if the following holds. Suppose that x1, x2, · · · ∈ X
is a sequence that converges to y, and suppose that y1, y2, · · · ∈ Y is a sequence that also converges
to y. Suppose that (in some local coordinate system near y) the secant lines ℓi = xi, yi converge
to some limiting line ℓ. Suppose that the tangent planes Txi

X converge to some limiting plane τ .
Then ℓ ⊂ τ .

We say the pair (X,Y ) satisfies condition B if it does so at every point y ∈ Y . The decomposition
into strata is a Whitney stratification if every pair of strata Y < X satisfies condition B at every
point in the smaller stratum Y .

(If condition B is satisfied, and if the tangent planes TyiY also converge to some limiting plane
η then η ⊂ τ as well, which Whitney had originally proposed as an additional condition, which
he called Condition A.) It turned out that Whitney’s condition B was just the right condition to

http://www.math.ias.edu/~goresky/math2710/ThomMather.pdf
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guarantee that a stratification is locally trivial, but the verification involved the full development of
stratification theory by René Thom and John Mather. The problem is that stratifications satisfying
condition B may still exhibit certain pathologies, such as infinite spirals, so there is a very delicate
balance between proving that local triviality holds while avoiding a host of counterexamples to
similar sounding statements.

Suppose W ⊂ M has a stratification that satisfies condition B. Let Y be a stratum and let
y ∈ Y . Let Ny ⊂ M be a normal slice, that is, a smooth submanifold of dimension dim(Ny) =
dim(M) − dim(Y ) that intersects Y transversally in the single point {y}. Define the link of the
stratum Y ,

LY = LY (y, ϵ) = (∂Bϵ(y)) ∩Ny ∩W

where Bϵ(y) is a ball of radius ϵ (measured in some Riemannian metric on M) centered at the
point y.

7.4. Theorem. (R. Thom, J. Mather) If ϵ is chosen sufficiently small then

(1) the closed set LY is stratified by its intersection with the strata Z of W such that Z > Y
(2) this stratification satisfies condition B
(3) the stratified homeomorphism type of LY is independent of the choice of Ny, ϵ, and the

Riemannian metric
(4) if the stratum Y is connected then the stratified homeomorphism type of LY is also inde-

pendent of the point y.

Moreover, the point y has a basic neighborhood Uy ⊂ W and a stratified homeomorphism

Uy
∼= co(LY )×B

where co(LY ) denotes the open cone on LY (with its obvious stratification) and where B denotes
the open ball of radius 1 in Rdim(Y ).

This homeomorphism preserves strata in the obvious way: it takes

(1) {y} ×B → Y ∩ U with {y} × {0} → {y}
(2) (LY ∩X)× (0, 1)×B → X ∩ U for each stratum X > Y

This result says that the set W does not have infinitely many holes or infinitely much topology as
we approach the singular stratum Y and it says that the normal structure near Y is locally trivial
as we move around in Y . In particular, the collection of links LY (y) form the fibers of a stratified
fiber bundle over Y .

It also implies that (for any r ≥ 0) the local homology Hr(W,W − y;Z) forms a local coefficient
system on Y with stalk

Hr(W,W − y;Z) ∼= Hr−dim(Y )−1(LY ;Z).

7.5. In fact, Thom and Mather proved that a Whitney stratified W set admits a system of control
data consisiting of a triple (TZ , πZ , ρZ) for each stratum Z, where TZ is a neighborhood of Z in
W , where πZ : TZ → Z is a “tubular projection”, ρZ : TZ → [0, ϵ) is a “tubular distance function”



34

so that the pair (πZ , ρZ)|Y ∩ TZ : Y ∩ TZ → Z × (0, ϵ) is a smooth submersion for each stratum
Y > Z, and where πZπY = πZ in TZ ∩ TY and ρZπY = ρZ . (picture).

u u&%
'$

&%
'$

Z Z ′Y

TZ(ϵ) TY (ϵ) TZ′(ϵ)

Figure 2. Tubular neighborhoods

7.6. This data was then used to construct controlled vector fields that trace out the local triviality
of the stratification.

7.7. Whitney himself outlined a procedure for proving that any closed subset W of Euclidean
space defined by analytic equations admits a Whitney stratification. The idea is to start with the
open, nonsingular part W 0 of W as the “top” stratum, and then to look at the set of points in
the singular set Σ = W −W 0 where condition B fails. He proves that this is an analytic subset of
codimension two, whose complement in Σ is therefore the first singular stratum, W 1. Now, carry
both W 0 and W 1 along, looking at the set of points (in what remains) where condition B fails,
and continue in this way inductively. Since Whitney’s early work, many advances have been made
in the subject. The following statement is at best a partial summary of the work of many people.

7.8. Theorem. The following sets admit Whitney stratifications: real and complex algebraic vari-
eties, real and complex analytic varieties, semi-algebraic and semi-analytic varieties, subanaltyic
sets, and sets with o-minimal structure. Given such an algebraic (resp. analytic etc.) variety W
and a locally finite union Z of algebraic (resp. analytic etc.) subvarieties, the stratification of W
can be chosen so that Z is a union of strata. Given an algebraic (resp. analytic etc.) mapping
f : W → W ′ of algebraic (resp. analytic etc.) varieties, it is possible to find Whitney stratifications
of W,W ′ so that the mapping f takes strata to strata, and so that for each stratum X of W the
mapping X → f(X) is a smooth submersion onto a stratum of W ′. Whitney stratified sets can be
triangulated by a triangulation that is smooth on each stratum, such that that the closure of each
stratum is a subcomplex of the triangulation.

[A subanalytic set is the image under a projection (for example, a linear projection Rm → Rn) of
an analytic or a semi-analytic set. O-minimal structures allow for dertain non-analytic functions
to be included in the definition of the set. Whitney stratifications also make sense for algebraic
varieties defined over fields of finite characteristic. Given an algebraic mapping f : W → W ′

between complex algebraic varieties, it is not generally possible to choose triangulations of W,W ′

so that f becomes a simplicial mapping.]
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7.9. Pseudomanifolds and Poincaré duality. A pseudomanifold of dimension n is a purely n
dimensional (Whitney) stratified space that can be triangulated so that every n − 1 dimensional
simplex is a face of exactly two n-dimensional simplices. This implies that the n− 1 dimensional
simplices can be combined with the n-dimensional simplices to form an n-dimensional manifold,
and that the remainder (hence, the “singularity set”) has dimension ≤ n − 2. If this manifold is
orientable then an orientation defines a fundamental class [W ] ∈ Hn(W ;Z). Cap product with
the fundamental class defines the Poincaré duality map Hr(W ;Z) → Hn−r(W ;Z) which is an
isomorphism if W is a manifold (or even a homology manifold) but which, in general, is not an
isomorphism.

There is a sheaf-theoretic way to say this. If W is oriented and n-dimensional then a choice of
orientation determines a sheaf map ZW → Cn to the sheaf of n-chains. On any open set U , choose
a triangulation of U and map m ∈ Z to m times the sum of all the n-dimensional simplices in U .
(Recall that a PL chains are identified under subdivision.) Therefore, if W is an n-dimensional
homology manifold, that is, if Hr(W,W − x) = 0 for all 0 ≤ r < n and Hn(W,W − x;Z) = Z then
the map

ZW [n]→ C•W
is a quasi-isomorphism. This simple statement is the Poincaré duality theorem. For, it says that
this quasi-isomorphism induces an isomorphism on cohomology, that is,

Hr(W ;Z) ∼= HBM
n−r (W ;Z)

and an isomorphism on cohomology with compact supports, that is,

Hr
c (W ;Z) ∼= Hn−r(W ;Z).

[Actually, from this point of view, the deep fact is that H i(W ; k) and Hi(W ; k) are dual over any
field k, but this is not a fact about manifolds. Rather, it is a fact about the sheaf of chains.]

More generally if W is not necessarily orientable then the orientation sheaf OW is the local
system whose stalk at x ∈ W is the top local homology Hn(W,W −x) and the mapping OW → C•

is a quasi-isomorphism. So, for any local coefficient system L on W the mapping L⊗OW → C•(L)
is a quasi-isomorphism, giving an isomorphism on cohomology,

Hr(W ;L⊗ OW ) ∼= HBM
n−r (W ;L)

and on cohomology with compact supports,

Hr
c (W ;L⊗ OW ) ∼= Hn−r(W ;L).

So this quasi-isomorphism statement includes the Poincaré duality theorem for orientable and
non-orientable manifolds, for non-compact manifolds, and for manifolds with boundary, and with
possibly nontrivial local coefficient systems.
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8. Lecture 8: Constructible sheaves

8.1. Constructible sheaves. Fix a Whitney stratification of a closed subset W ⊂ M of some
smooth manifold. A sheaf S (of abelian groups, or of R modules) on W is constructible with respect
to this stratification if the restriction S|X to each stratum X is a locally constant sheaf and the
stalks Sx are finitely generated. A complex of sheaves A• on W is cohomologically constructible
with respect to this stratification if its cohomology sheaves are bounded (that is, Hr(S•) = 0 for
|r| sufficiently large) and constructible.

If W is an complex algebraic (resp. complex analytic, resp. real algebraic etc.) variety then
a complex of sheaves S• on W is algebraically construcible (resp. analytically constructible, etc.)
if its cohomology sheaves are bounded and constructible with respect to some algebraic (resp.
analytic etc.) Whitney stratification.

In each of these constructibility settings (that is, constructible with respect to a fixed stratifica-
tion, or algebraically constructible, etc.) the two constructions of the derived category make sense
(as the homotopy category of injective complexes, or as the category of complexes and equiva-
lence classes of roofs), which is then referred to as the bounded constructible derived category and
denoted Db

c(W ).

8.2. Theorem. Suppose that W is a compact subset of some smooth manifold M and suppose
that S• is a complex of sheaves that is cohomologically constructible with respect to some Whitney
stratification of W . Then the hypercohomology groups Hr(W,S•) are finitely generated. If Ux is
a basic neighborhood of x ∈ W then the stalk cohomology Hr(S•)x coincides with the cohomology
Hr(UxS

•) for all r (and so the limit over open sets containing x is essentially constant). If
i : Z → X is a closed union of strata with open complement j : U → X then Ri∗i

∗(S•) and
Rj∗j

∗(S•) are also cohomologically constructible. If A•, B• are cohomologically constructible then
so is RHom•(A•, B•). If f : W → W ′ is a proper stratified mapping and A• is CC on W then
Rf∗(A

•) is CC on W ′.

Proof. Let X be the top stratum and let Σ = W −X be the singular set. Let U be the union of
the tubular neighborhoods of the strata in Σ. Then X − (X ∩ U) is compact, and as U shrinks
these form a sequence of diffeomorphic compact manifolds with corners that exhaust X. If L is a
local system on X then (since W is compact)

H∗c (X,L) = H∗(X − (X ∩ U),L)

is finitely generated. From the spectral sequence for cohomology of a complex, the same holds for
H∗c (X,A•) since the cohomology sheaves of A• are local systems on X.
Now consider the exact triangle

Rj!j
∗A• → A• → Ri∗i

∗(A•)→ · · · .
The cohomology of Rj!j

∗A• is H∗c (X,A•) which is finitely generated as just shown. The complex
i∗(A•) is a constructible complex on Σ, which has smaller dimension, so its cohomology is finitely
generated by induction. The long exact sequence implies the cohomology of A• is finitely generated.
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The stalk cohomology coincides with the cohomology of Ux because the family of these basic
neighborhoods are cofinal in the set of all neighborhoods of x but as they shrink there are stratified
isomorphisms h : Ux → U ′x with the inverse given by inclusion. Since the cohomology sheaves of
A• are locally constant on each stratum there is a quasi-isomorphism h∗(A

•)→ A• which induces
isomorphisms on cohomology. In other words, H∗(Ux, A

•) is independent of the choices, so the
limit stabilizes. Constructibility of Ri∗i

∗A• is obvious but constructibility of Rj∗j
∗A• takes some

work. Here is the key point

8.3. Lemma. Let A• be a cohomologically constructible complex of sheaves on W . Let Z ⊂ W be
a closed subset with complement j : V → W . Let X be the largest stratum of Z. Then the stalk
cohomology at x ∈ X of Rj∗j

∗(A•) is

(8.3.1) H i(Rj∗j
∗A•)x ∼= H i(Lx, A

•).

The Lemma follows from the fact that the stalk cohomology isH i(Rj∗j
∗A•)x = H i(j−1(Ux∩V );A•)

where Ux
∼= co(Lx) × Bdim(X) is a basic open neighborhood. Since X is the largest stratum of Z,

we have:
Ux ∩ V ∼= Lx × (0, 1)×Bdim(X),

and the cohomology sheaves of A• are constant in the Euclidean directions of this product.
Since Lx is compact this cohomology is finitely generated. It is locally constant as x ∈ X varies

because the same is true of Lx and the cohomology sheaves of A•|Lx. □
In summary, the derived category Db

c(W ) of complexes whose cohomology sheaves are bounded
and constructibe forms a “paradise”, in the words of Verdier, who had assured us (when we were
writing IH II) that such a category, in which all these operations made sense, and was closed under
pullback, proper push forward, Hom and Verdier duality, did not exist.

8.4. Attaching sheaves. Let us examine the triangle for Rj∗j
∗A• for i ≤ cod(X)−1 and its stalk

cohomology:

(8.4.1)

Ri∗i
!(A•) - A• H i−dim(X)

c (Ux;A
•) - H i(A•)x

and

Rj∗j
∗(A•)

α
�

β
[1]

�

H i(Lx, A
•)

α�

β

[1]

�

The attaching map α goes from information (H i(A•)x) living on the small stratum to information
(H i(Lx, A

•)) living completely in the larger strata and so it represents the degree to which the
sheaf A• is “glued” across the strata.
Exercise. Suppose W = X < U consists of two strata. Let B•, C• be sheaves on X and on U
respectively and let A• = Ri∗(B

•) ⊕ Rj!(C
•) so that A• consists of just these two sheaves with

no relation between them. Show that the attaching homomorphism α is zero. For example, if
B• = ZX and if C• = ZU then A• is a sheaf whose stalk at each point is Z however it is not the
constant sheaf. Show that if A• = ZW is the constant sheaf then the attaching homomorphism α
is injective.
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8.5. A motivating example. Consider W = ΣT 3, the suspension of the 3-torus with singular
points denoted {N}, {S}. We have natural cycles, point, T 1, ΣT 1, T 2, ΣT 2, T 3, ΣT 3. Some of
these hit the singular points, some do not. The ones that do not are homologous to zero by a
homology that hits the singular point. If we restrict cycles and homologies by not allowing them
to hit the singular point, this will change the resulting homology groups. For p = 0, 1, 2 define
Cp

i (W ) = {ξ ∈ Ci(W )| ξ ∩ {N,S} = ϕ unless i ≥ 4− p} Here are the resulting homology groups.

p = 0 p = 1 p = 2

i = 4 ΣT 3 ΣT 3 ΣT 3

i = 3 0 ΣT 2 ΣT 2

i = 2 T 2 0 ΣT 1

i = 1 T 1 T 1 0

i = 0 {pt} {pt} {pt}

p = 0 p = 1 p = 2

i = 4 T 3 T 3 T 3

i = 3 0 T 2 T 2

i = 2 0 0 T 1

i = 1 0 0 0

i = 0 0 0 0

Figure 3. Intersection homology and stalk homology of ΣT 3

The larger the number p the more cycles are allowed into the singular points. If there are more
strata we can assign such numbers to each stratum separately.
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9. Lecture 9: Intersection Homology

9.1. Digression on transversality. Let K ⊂ R be the Cantor set. Let f : R→ R be a smooth
(C∞) function that vanishes precisely on K. Let A ⊂ R2 denote the graph of f and let B denote
the x-axis. Then A,B are smooth submanifolds of R2 but their intersection is the Cantor set. This
sort of unruly behavior can be avoided using transversality.

Two submanifolds A,B ⊂M of a smooth manifold are said to be transverse at a point of their
intersection x ∈ A ∩ B if TxA + TxB = TxM . If A and B are transverse at every point of their
intersection then A∩B is a smooth submanifold of M of dimension dim(A) + dim(B)− dim(M).
Arbitrary submanifolds A,B,⊂ M can be made to be transverse by moving either one of them,
say A′ = ϕϵ(A) by the flow, for an arbitrarily small time, of a smooth vector field on M . If V is a
finite dimensional vector space of vector fields on M which span the tangent space TxM at every
point x ∈ M then there is an open and dense subset of V consisting of vector fields v such that
the time = 1 flow ϕ1 of v takes A to a submanifold A′ = ϕ1(A) that is transverse to B. [This is a
very powerful result. It says, for example, that two submanifolds of Euclidean space can be made
transverse by an arbitrary small translation. The proof, due to Marston Morse, is so elegant, that
I decided to include it here http://www.math.ias.edu/~goresky/math2710/Trans.pdf.]

Two Whitney stratified subsets W1,W2 ⊂ M are said to be transverse if each stratum of W1 is
transverse to each stratum of W2, in which case the intersection W1∩W2 is also Whitney stratified.
Whitney stratified sets can also be made to be transverse by the application of the flow, for an
arbitrarily small time, of a smooth vector field on M .

9.2. Intersection homology. Let W be a compact n-dimensional Whitney stratified pseudo-
manifold with strata Sα (α in some index set I, partially ordered by the closure relations between
strata with S0 being the stratum of dimensioin n) and let 0 ≤ pα ≤ cod(Sα)− 2 be a collection of
integers which we refer to as [trigger warning] a perversity. Define the intersection chains,

9.3. Definition.

(9.3.1) IC p̄
i (W ) =

{
ξ ∈ Ci(W )

∣∣∣∣ dim(ξ ∩ Sα) ≤ i− cod(Sα) + pα

dim(∂ξ ∩ Sα) ≤ i− 1− cod(Sα) + pα

for α > 0

}
Having placed the same restrictions on the chains as on their boundaries, we obtain a chain

complex, in fact a complex of (soft) sheaves ICp with resulting cohomology groups Hp
i (W ). (As

usual, “chains” could refer to PL chains, singular chains, subanalytic chains, etc.) Because W is a
pseudomanifold the singular strata have codimension at least 2. The condition pα ≤ cod(Sα)− 2
implies that most of the chain, and most of its boundary are completely contained within the
top stratum S0. So a cycle (∂ξ = 0) in IC p̄

i is also a cycle for ordinary homology and we have
a homomorphism IH p̄

i (W ) → Hi(W ). Moreover, if ξ ∈ IC p̄
i (W ) and if η ∈ IC q̄

j (W ) and if we
can arrange that ξ ∩ Sα and η ∩ Sα are transverse within each stratum Sα then we will have an
intersection

ξ ∩ η ∈ IC p̄+q̄
i+j−n(W )

http://www.math.ias.edu/~goresky/math2710/Trans.pdf
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which is well defined provided that pα + qα ≤ cod(Sα)− 2 for all α > 0.
The first problem with this construction is that it is obviously dependent on the stratification.

Moreover, if we are not careful, large values of pα for small strata Sα < Sβ will have the effect
of allowing chains into Sα but not into Sβ thereby “locking” the chain into passing through a
small stratum. This issue can be avoided by requiring that pα depend only on cod(Sα) and that
β > α =⇒ pβ ≥ pα.
The second problem involves the effect of refining the stratification. For a simple case, suppose

W consists only of two strata, S0 and Sc, the singular stratum having codimension c ≥ 3, to which
we assign a perversity pc. Now suppose we refine this stratum by introducing a “fake” stratum,
Sr of codimension r > c. Chains in ICp

i (W ) may intersect Sc in dimension ≤ i − c + pc and
for all we know, they may lie completely in Sr, meaning that the chain will have “perversity”
pr = pc + c − r. On the other hand if we assume, as before, that we can arrange for this chain
to be transverse to the fake stratum Sr within the stratum Sc then its intersection with Sr will
have dimension ≤ i− c+ pc − (r− c) = i− r+ pc which is to say that it has “perversity” pr = pc.
This argument shows (or suggests) that in this case we have natural isomorphisms between the
intersection homology IHpc

i (W ) as computed before the refinement, and the intersection homology
IHpc,pr

i after refinement, for any pr with pc ≤ pr ≤ pc + r − c, that is,

IHpc,pc
i (W ) ∼= IHpc,pc+1

i (W ) ∼= · · · ∼= IHpc,pc+r−c
i (W )

In summary, assuming that pc ≤ pr ≤ pc+r−c the resulting homology group IHpc,pr
i is unchanged

after refinement. This leads us to the formal definition of intersection homology.

9.4.Definition. A perversity is a function p̄ = (p2, p3, · · · ) with p2 = 0 and with pc ≤ pc+1 ≤ pc+1.
The complex of sheaves of intersection chains is the complex with sections

(9.4.1) Γ(U, IC−ip̄ ) =

{
ξ ∈ Ci(U)

∣∣∣∣ dim(ξ ∩ Sc) ≤ i− c+ pc

dim(∂ξ ∩ Sc) ≤ i− 1− c+ pc
for c ≥ 2

}
where Sc denotes the union of all strata of codimension c ≥ 2.

Intersection homology with coefficients in a local system is defined similarly, however something
special happens in this case. For any triangulation of a chain ξ ∈ IC−ip̄ all of its i-dimensional
simplices and all of its i − 1 dimensional simplices will be completely contained within the top
stratum (or “nonsingular part”) of W . So if L is a local coefficient system defined only on the top
stratum of W , we can still construct the sheaf of intersection chains IC•p̄(L) exactly as above.

Let 0̄ be the perversity 0c = 0 and let t̄ be the perversity tc = c− 2.

9.5. Theorem. Let W be an oriented stratified pseudomanifold. For any choice of perversity p̄
equation (9.4.1) defines a complex of soft sheaves IC•p̄ on W and the following holds.

(1) The cohomology sheaves IH−mp̄ and the hypercohomology groups IH p̄
i (W ) are well defined

and are independent of the stratification;
(2) in fact they are topological invariants.
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(3) There are canonical maps

Hn−i(W )→ IH p̄
i (W )→ Hi(W )

that factor the Poincaré duality map,
(4) if p̄ ≤ q̄ then there are also compatible mappings IH p̄ → IH q̄. In sheaf language we have

natural maps

ZW [n]→ IC p̄
W → IC q̄

W → C•W .

(5) If the link Lx of each stratum is connectred then for p̄ = 0̄ the first of these maps is a
quasi-isomorphism, and for q̄ = t̄ the second map is a quasi-isomorphism.

(6) If pc + qc ≤ tc = c − 2 for all c then the intersection of transversal chains determines a
pairing

IH p̄
i (W )× IH q̄

j (W )→ IH p̄+q̄
i+j−n(W )

(7) If p̄+ q̄ = t̄ then the resulting pairing

IH p̄
i (W )× IH q̄

n−i(W )→ H0(W )→ Z

is nondegenerate over Q (or over any field).

The last statement in Theorem 9.5, Poincaré duality, was the big surprise when intersection
homology was discovered for it is a duality statement that applies to singular spaces. Especially,
if the stratification of W consists only of even codimension strata then there is a “middle” choice
for p, that is, pc = (c− 2)/2 for which IH p̄(W ; k) is self-dual for any field k.

There is a technical problem with moving chains within a Whitney stratified set W , so as to
be transverse within each stratum of W . This can be accomplished with piecewise-linear chains
within a piecewise-linear stratified set W , and has recently been accomplished using semi-analytic
chains within a semi-analytic stratified set, but to my knowedge, it has not been accomplished
in any other setting. This is one of the many problems that is avoided with the use of sheaf
theory. The proof of topological invariance depends entirely on sheaf theory. Other results such
as the proof of Poincaré duality, that can be established using chain manipulations, are incredibly
awkward, requiring a choice of model for the chains, and delicate manipulations with individual
chains. These constructions are easier, but less geometric, if they are all made using sheaf theory.
For this purpose we need to identify the quasi-isomorphism class of the complex of sheaves IC p̄.

9.6. Proposition. Let W be a Whitney stratified pseudomanifold and let L be a local coefficient
system defined on the top stratum. Fix a perversity p̄, and let x ∈ Sc be a point in a stratum of
codimension c. Then the stalk of the intersection homology sheaf at x is

H−i(IC p̄(L))x = IH p̄
i (W,W − x;L) =

{
0 if i < n− pc
IHi−n+c−1(Lx;L) if i ≥ n− pc
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and the stalk cohomology with compact supports is

H−ic (Ux; IC
p̄(L)) = IH p̄

i (Ux) =

{
Hi(Lx;L) if i ≤ c− pc
0 if i > c− pc

Proof. Use the local product structure of a neighborhood Ux
∼= co(Lx) × Rn−c and the Künneth

formula
IH p̄

i (U, ∂U ;L) ∼= IH p̄
i−(n−c)(c(Lx), Lx;L).

If ξ ∈ IC p̄
i and if (i−n+ c)− c+pc ≥ 0 then the chain ξ is allowed to hit the cone point, otherwise

it is not. When it is allowed to hit the cone point, we may assume (using a homotopy argument)
that it locally coincides with the cone over a chain in Lx which satisfies the same allowability
conditions. Similar remarks apply to ∂ξ. On the other hand, a compact i-dimensional chain ξ in
the link Lx can be coned down to the cone point it vanishes in cohomology, and such a cone c(ξ)
is allowed provided 0 ≤ (i+ 1)− c+ pc, that is, if i > c− pc. □
Comparing this to the calculation (8.3.1) of j∗j

∗(IC p̄) where j : U = W − Sc → W is the
inclusion of the open complement of the closure of Sc we see that the intersection homology sheaf
on Sc is the truncation of the sheaf j∗(IC

p̄|U). For example, suppose dim(W ) = 8 has strata
of dimension 0, 2, 4, 6, 8 and the perversity is the middle one, p(c) = (c − 2)/2. Then the stalk
cohomology H i(C)x of the sheaf IC p̄ looks as follows, where Lr means the r-dimensional link of
the codimension r+1 stratum and the red zeroes represent homology groups that have been killed
by the perversity condition:

i cod0 cod2 cod4 cod6 cod8

0

-1 0

-2 0

-3 0 0

-4 0 0

-5 0 0 IH4(L
7)

-6 0 IH3(L
5) IH5(L

7)

-7 0 IH2(L
3) IH4(L

5) IH6(L
7)

-8 Z IH1(L
1) IH3(L

3) IH5(L
5) IH7(L

7)

cod0 cod2 cod4 cod6 cod8

Z IH0(L
1) IH0(L

3) IH0(L
5) IH0(L

7)

0 IH1(L
3) IH1(L

5) IH1(L
7)

0 IH2(L
5) IH2(L

7)

0 0 IH3(L
7)

0 0

0 0

0

0

Figure 4. Stalk cohomology and compact support cohomology of IC•

This gives an inductive way to construct intersection homology using purely sheaf-theoretic oper-
ations, to be described in the next lecture.
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10. Lecture 10: Truncation

10.1. Truncation. If A• is a complex of sheaves define

(τ≤rA
•)i =


0 if i > r

ker(dr) if i = r

Ai if i < r

Then H i(τ≤rA
•) = H i(A•) for i ≤ r and is zero for i > r.

During a conversation in October 1976 Pierre Deligne suggested that the following construction
might generate the intersection homology sheaf.

10.2. Definition. Let W be a purely n dimensional oriented Whitney stratified pseudomanifold
and let Wr denote the union of the strata of dimension ≤ r. Set Uk = W −Wn−k with inclusions

U2 −−−→
j2

U3 −−−→
j3

· · · −−−→
jn−1

Un −−−→
jn

Un+1 = W

Let L be a local coefficient system defined on the top stratum U = U2. Set

P •p̄(L) = τ≤p(n)Rjn∗ · · · τ≤p(3)Rj3∗τ≤p(2)Rj2∗L.

The resulting complex of sheaves will have stalk cohomology that is illustrated as follows (in the
case of middle perversity, with L = Z, for a stratified psuedomanifold W with dim(W ) = 8 that
is stratified with strata of codimension 0, 2, 4, 6, 8). In this figure we suppress the p̄ on P •p̄.

i cod0 cod2 cod4 cod6 cod8

8

7 0

6 0

5 0 0

4 0 0

3 0 0 H3(L7, P •)

2 0 H2(L5, P •) H2(L7, P •)

1 0 H1(L3, P •) H1(L5, P •) H1(L7, P •)

0 Z H0(L1, P •) H0(L3, P •) H0(L5, P •) H0(L7, P •)

We remark, for example, at a point x ∈ W that lies in a stratum X of codimension 6, the stalk
cohomology at x equals the cohomology of the link L5 of X with coefficients in the part of the
sheaf P •|U6 that has been previously constructed over the strictly larger strata Y > X.
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10.3. Theorem. Let W be an oriented n-dimensional stratified pseudomanifold and let L be a
local coefficient system on the top stratum. The orientation map L[n] → C−nU (L) induces an
isomorphism P •p̄(L)[n]

∼= IC•p̄(L) where U = U2 denotes the largest stratum.
If the link Lx of every stratum is connected then P •t̄ (Z)[n]→ C•(ZU) is a quasi-isomorphism (so

that IH i
t̄(W ) = Hn−i(W )) and P •0̄ (Z) → Z is a quasi-isomorphism (so that IH i

0̄(W ) = H i(W )),
where 0̄c = 0 and where t̄c = c−2 are the “bottom” and “top” perversities respectively. If p̄+ q̄ ≤ t̄
(where tc = c − 2) and if L1 ⊗ L2 → L3 is a morphism of local systems on U then it extends
canonically to a product

P •p̄(L1)⊗ P •q̄(L2)→ P •p̄+q̄(L3).

Proof. For simplicity we discuss the case of constant coefficients. There are two problems (a) to
show that the orientation map ZU → C−nU extends to a (uniquely defined) map in the derived
category P •[n]→ IC• (for a fixed perversity, which we suppress in the notation) and (b) to show
that this map is a quasi-isomorphism. These are proven by induction, adding one stratum at a
time. Consider the diagram

Uk −−−→
jk

Uk+1 ←−−−
ik

Xn−k

where Xn−k is the union of the codimension k strata. Suppose by induction that we have con-
structed a quasi-isomorphism P •k → IC•k of sheaves over Uk (where the subscript k denotes the
restriction to Uk). Now compare the two distinguished triangles (writing i = ik and j = jk to
simplify notation),

Ri∗i
!(P •k+1) - P •k+1 Ri∗i

!(IC•k+1) - IC•k+1

and

Rj∗j
∗(P •k+1)

�

�

=Rj∗(P
•
k) Rj∗j

∗(IC•k+1)
�

�

=Rj∗(IC
•
k)

We are actually concerned with the right side of these triangles. By induction we have an isomor-
phism on the bottom row, so we get an isomorphism of the truncations:

P •k+1 = τ≤p(k)Rj∗Pk → τ≤p(k)Rj∗(IC
•
k)

This is the upper right corner of the first triangle and we wish to identify it with the upper right
corner of the second triangle. So it suffices to show that we have an isomorphism (in the derived
category),

IC•k+1
∼= τ≤p(k)Rj∗(IC

•
k).

But this is exactly what the local calculation says: the stalk of the intersection cohomology is the
truncation of the intersection cohomology of the link.

In fact, the formula P •k+1 = τ≤p(k)Rj∗P
•
k implies that the attaching morphism P •k+1 → Rj∗j

∗P •k+1

is an isomorphism in degrees r ≤ p(k), or equivalently, that Hr(i!P •) = 0 for r ≤ p(k) + 1. This
is the same as saying that for any x ∈ Xn−k,

Hr(Ux;P
•) = Hr(i!xP

•) = 0 for r < p(k) + 2 + (n− k) = n− q(k)
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where q(k) = k − 2− p(k) is the complementary perversity, ix : {x} → W is the inclusion and Ux

is a basic open neighborhood of x in W .
The construction of the pairing is similar. Start with the multiplication

ZU2
⊗ ZU2

→ ZU−2.

Now apply τ≤p(2)Rj∗. The truncation of a tensor product is not simply the tensor product of the
truncations, there are a lot of cross terms. By examining the effect on the stalk cohomology one
eventually arrives at a pairing

P •p̄ ⊗ P •q̄ → P •p̄+q̄.

For more details see:
http://www.math.ias.edu/~goresky/math2710/IH2.pdf □

10.4. Duality. But what is the sheaf-theoretic statement for the Poincaré duality theorem for
intersection cohomology? Translating into cohomology indexing this says: if p̄ + q̄ = t̄ then the
resulting pairing

IH i
p̄(W )× IHn−i

q̄ (W )→ IH t̄
n(W )→ Z

is nondegenerate when tensored with any field.
If S• is a complex of sheaves of k-vector spaces on a topological space, Borel and Moore defined

its dual D(S•) to be the complex of sheaves associated to the complex of presheaves

D(S)−j = Hom(Γc(U, S
j), k).

For example the sheaf of currents on a smooth manifold is the dual of the sheaf of smooth dif-
ferential forms. For sheaves of abelian groups (or sheaves of R modules), Hom must be replaced
by RHom in the category of groups. In other words, choose an injective resolution Z → I• (or
R→ I•), and take the total complex associated to the double complex Hom(Γc(U, S

•), I•). Borel
and Moore proved that there are exact cohomology sequences

0→ Ext(Hn+1
c (X,S•),Z)→ H−n(X,D(S•))→ Hom(Hn

c (X,S•),Z)→ 0

in analogy with the universal coefficient theorem for cohomology:

0→ Ext(Hn−1(X,Z),Z)→ Hn(X,Z)→ Hom(Hn(X,Z),Z)→ 0.

Then they defined the Borel-Moore homology to be the homology of the complex D(Z). We
have previously seen that this is the homology theory of locally finite chains. The problem with
the Borel-Moore theory is that the double dual of S• did not equal S•.
Then Verdier discovered that their construction could be interpreted sheaf theoretically:

D(S•) = RHom•(S•,D•)

where D• is a particular, universal sheaf called the dualizing complex. He then showed that there
is a canonical quasi-isomorphism in the derived category,

DD(S•) ∼= S•.

http://www.math.ias.edu/~goresky/math2710/IH2.pdf
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So double duality is restored. And what is this magic dualizing complex? For sheaves of abelian
groups, we have no choice:

D• = RHom•(Z,D•) = D(Z)

is the Borel-Moore sheaf of chains! More precisely, it is the quasi-isomorphism class of the Borel-
Moore chains. The sheaf of locally finite chains with integer coefficients is not injective, because
Z is not injective. In order to obtain an injective model for the dualizing sheaf it is necessary to
injectively resolve Z. Any reasonable injective model of the dualizing complex is a mess.

10.5. Definition. A pairing S•⊗T • → D• of sheaves on a Whitney stratified space X is said to be
a Verdier dual pairing if the resulting morphism S• → RHom•(T •,D•) = D(T •) is an isomorphism
in Db

c(X).

In particular, this means that if K is a field then for any open set U ⊂ X,

H i(U,D(S•)) ∼= Hom(H−ic (U, S•), K).

10.6. Definition. If f : X → Y is a continuous map and S• is a complex of sheaves on Y define
f !(S•) = DXf

∗DY (S
•).

10.7.Theorem (Verdier duality). Let f : X → Y be a stratified mapping between Whitney stratified
spaces. Let A• and B• be constructible sheaves on X and Y respectively. Then f ∗, f !, Rf∗ and
Rf! take distinguished triangles to distinguished triangles. There are canonical isomorphisms in
Db

c(X) as follows:

(1) DD(A•) ∼= A•

(2) D•X
∼= f !D•Y

In particular D•X = f !(Z) when Y is a point.
(3) f !(B•) = DXf

∗DY (B
•)

(4) Rf!(A
•) = DYRf∗DX(A

•)
So f ! is the dual of f ∗ and Rf! is the dual of Rf∗.

(5) f !RHom•(B•, C•) ∼= RHom•(f ∗(B•), f !(C•))
(6) Rf∗(RHom

•(A•, f !B•)) ∼= RHom•(Rf!A
•, B•) [Verdier duality theorem]

This says that Rf! and f ! are adjoint, just as Rf∗ and f ∗ are.
(7) Rf∗RHom

•(f ∗B•, A•) ∼= RHom•(B•, Rf∗A
•)

(8) Rf!RHom
•(A•, f !B•) ∼= RHom•(Rf!A

•, B•)
(9) If f : X → Y is the inclusion of an open subset then f !(B•) ∼= f ∗(B•).

(10) If f : X → Y is the inclusion of a closed subset then Rf!(A
•) ∼= Rf∗(A

•).
(11) If f : X → Y is the inclusion of an oriented submanifold in another, and if B• is cohomo-

logically locally constant on Y then f !(B•) ∼= f ∗(B•)[dim(Y )− dim(X)].

Exercise. Verify (1) for the category of simplicial sheaves using the canonical model for the
(simplicial) sheaf of chains. It comes down to a statement about the second barycentric subdivision.
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10.8.Theorem. Let X be a Whitney stratified space and let p̄+q̄ = t̄ be complementary perversities.
Let K = Q, R, or C. Let L2 ⊗ L2 → K be a dual pairing of local systems (of K-vector spaces)
defined over the top stratum of X. Then the resulting pairing

IC•p̄(L1)[n]⊗ IC•q̄(L2)→ IC•t̄ (K) = D•(K)

is a Verdier dual pairing. For any open set U ⊂ X, the pairing

IHn−i
p̄ (U)× IH i

q̄,c(U)→ K

is nondegenerate.

The proof is by induction on the strata, as before, adding one stratum at a time, using the long
exact sequences, duality, and the above formal properties. It is not difficult.

10.9. Remark. Dualizing complexes exist in other derived categories as well. For example, in the
category of abelian groups the complex Q→ Q/Z is a dualizing complex.
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11. Perverse sheaves

In the next lecture we will prove the following result. It is actually the same as the proof that
P •p̄[n]

∼= IC p̄.

11.1. Theorem. Let W be an n-dimensional Whitney stratified set with biggest stratum U and let
p̄ be a pervesity. Then Deligne’s construction

L 7→ P •(L) = τ≤p(n)Rjn∗ · · · τ≤p(3)Rj3∗τ≤p(2)Rj2∗L
defines an equivalence of categories between the category of local systems of K-vector spaces (K =
Q,R,C) on the nonsingular part U , and the full subcategory of Db

c(W ) consisting of “IC sheaves”,
that is, complexes of sheaves A•, constructible with respect to the given stratification, such that the
following conditions hold

(1) A•|U2
∼= L is isomorphic to a local coefficient system

(2) Hr(A•) = 0 for r < 0
(3) Hr(i∗xA

•) = 0 for r > p(k)

(4) Hr(i!xA
•) = 0 for r < n− q(k)

for all points x ∈ W , where ix : {x} → W is the inclusion of the point and k denotes the
codimension of the stratum containing x and where q(k) = k − 2 − p(k) is the complementary
perversity.

This says, in particular, that if L is a local system on U2 and if A• is a constructible complex of
sheaves that satisfies the above conditions, then there is a canonical isomorphism A• ∼= IC•p̄(L).
Moreover, it says that if L1,L2 are local systems on U2 then

RHom(IC•(L1), IC
•(L2)) ∼= Hom(L1,L2).

If L is an indecomposable local system (which is not isomorphic to a direct sum of two nontrivial
local systems) then IC•p̄(L) is an indecomposable complex of sheaves (and is not isomorphic to a
direct sum of two nontrivial complexes of sheaves).

For a perversity p̄ let p−1(j) = min{c| p(c) ≥ j} and p−1(j) =∞ if j > p(n). We can reformulate
these conditions (2,3,4) in a way that does not refer to a particular stratification as follows:

(S1) dim{x ∈ W | Hr(i∗xA
•) ̸= 0} ≤ n− p−1(j) for all j > 0

(S2) dim{x ∈ W | Hr(i!xA
•) ̸= 0} ≤ n− q−1(n− j) for all j < n.

As above, the condition (S2) is the Verdier dual of condition (S1) and may be expressed as

(S2’) dim{x ∈ W | Hr(i∗xD(A•)) ̸= 0} ≤ n− q−1(j) for all j > 0.

11.2. Let W be a Whitney stratified space with a given stratification. We have two notions of
the constructible derived category,

(1) As complexes of sheaves that are cohomologically constructible with respect to the given
stratification
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(2) As complexes of sheaves that are cohomologically constructible with respect to some strat-
ification

In order to reduce the total number of words in these notes, we shall simply refer to “the con-
structible derived category”, meaning either one of these two possibilities.

Perverse sheaves are defined for any perversity but the indexing conventions are messy in general.
In the following we will give the definition for the middle perversity, which is the only case of real
importance. In the examples we will discuss a few others as well.

11.3. Definition. Let W be a n-dimensional Whitney stratified (or stratifiable) space that can
be stratified with strata of even dimension. Let K = Q,, R, or C. Fix a perversity p̄. A (middle
perversity) perverse sheaf on W is a complex of sheaves A• in the bounded constructible derived
category Db

c(W ) of K-vector spaces, such that (see Figure 8):

(P1) dim{x ∈ W | Hr(j∗xA
•) ̸= 0} ≤ n− 2r

(P2) dim{x ∈ W | Hr(j!xA
•) ̸= 0} ≤ 2r − n

i cod0 cod2 cod4 cod6 cod8

8 c c c c c

7 c c c

6 c c

5 c

4 0

3 x

2 x x

1 x x x

0 x x x x x

IC• support

i cod0 cod2 cod4 cod6 cod8

8 c c c c c

7 c c c c

6 c c c

5 c c

4 cx

3 x x

2 x x x

1 x x x x

0 x x x x x

Perverse sheaf support

Figure 5. Stalk and co-stalk cohomology of IC• and perverse sheaves

In these figures, “x” denotes regions of possibly nontrivial stalk cohomology and “c” denotes
regions of possibly nontrivial stalk cohomology with compact support, Hr(j!xA

•).

11.4. Definition. Fix a Whitney stratified (or stratifiable) space. Fix a perversity p̄. The category
of perverse sheaves (with perversity p) is the full subcategory of Db

c(W ) whose objects are perverse
sheaves with perversity p̄.

11.5. Theorem (Beilinson, Bernstein, Deligne). The category of perverse sheaves with perversity
p̄ forms an abelian subcategory of the derived category Db

c(W ). If A• is p̄-perverse then its Verdier
dual D(A•) is q̄-perverse, where q̄ is the perversity complementary to p.
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There is something very mysterious about this theorem. If ϕ : A• → B• is a morphism (in
Db

c(W )) between two perverse sheaves, it can be lifted to an honest morphism of complexes A• →
B•. As such, it has a kernel and a cokernel. These are unlikely to be perverse, and moreover,
they may change if we choose different (but quasi-isomorphic) representative complexes for A•, B•.
However, the kernel and cokernel of ϕ in the category of perverse sheaves are again perverse sheaves,
and are well defined as elements of the derived category. Moreover, various constructions from the

theory of abelian cartegories can be implemented. For example, suppose A•0
d→ A•1

d→ A•2
d→ · · · is

a complex of perverse sheaves, that is a complex such that d ◦ d = 0 in the derived category. Then
ker(d)/ Im(d) makes sense as a perverse sheaf, so we obtain the perverse cohomology pHr(A••) of
such a complex. (Clearly these bullets will start to get in the way so it is customary to drop them
at this point.)

11.6. Historical comment. Around 1980 Kazhdan and Lusztig realized that certain questions in-
volving representations of Hecke algebras, Verma modules, and Kazhdan Lusztig polynomials were
related to the failure of Poincaré duality for Schubert varieties. On the advice of Raoul Bott they
spoke at length with MacPherson, who replied with a long letter which, at the end, suggested the
use of intersection cohomology as a solution to their problem. Consequently the Kazhdan Lusztig
polynomials were shown to coincide with the intersection cohomology local Poincaré polynomial
of one Schubert variety at a point in another Schubert variety. This resulted in a further series
of conjectures, by Kazhdan and Lusztig concerning representations of Verma modules and their
relation to Kazhdan-Lusztig polynomials. These conjectures were eventually proven indepedently
by Beilinson-Bernstein and by Brylinski-Kashiwara. On an algebraic manifold (such as the flag
manifold) there is a ring D (or rather, a sheaf of rings) of differential operators. To each D-module
there corresponds a sheaf of solutions, which is a constritible sheaf. B-B and K-L showed that each
Verma module can be associated to a certain D-module whose sheaf of solutions turns out to be
the IC sheaf. This provided the link between the Kazhdan-Lusztig polynomials and Verma mod-
ules. However, the category of D-modules is an abelian category, whereas the (derived) category of
constrictible sheaves is not abelian, so it was conjectured that there might correspond an abelian
subcategory of the derived category that “receives” the solutions of D-modules. This turned out
to be the category of perverse sheaves, with middle perversity. On the other hand, intersection
homology is a topological invariant, so then the question arose as to whether this category of
perverse sheaves could be constructed purely topologically, and for other perversities as well. The
book of BBD completely answers this question, giving a very general setting in which the category
of perverse sheaves, an abelian subategory of the derived category, could be constructed.



51

12. Lecture 12: Examples of perverse sheaves

12.1. IC of subvarieties. As above we consider the middle perversity m̄ and a Whitney stratified
space of dimension n with even dimensional strata. Let Y denote the closure of a single stratum, Y o.
Let LY be a local system on the stratum Y o. Then the intersection complex ICm̄

Y (LY )[−cod(Y)/2]
is m̄-perverse. Here are the support diagrams for an 8 dimensional stratified space with strata of
dimension 0, 2, 4, 6, 8 where, as above, “x” denotes possibly nonzero stalk cohomology and “c”
denotes possibly nonzero stalk cohomology with compact support.

i\k 0 2 4 6 8

8 c c c c c i\k 0 2 4 6

7 c c c 6 c c c c i\k 0 2 4

6 c c 5 c c 4 c c c i\k 0 2

5 c 4 c 3 c 2 c c i\k 0

4 0 3 0 2 0 1 0 0 cx

3 x 2 x 1 x 0 x x d = 0

2 x x 1 x x 0 x x x dim(Y ) = 2

1 x x x 0 x x x x dim(Y ) = 4

0 x x x x x dim(Y ) = 6

dim(Y ) = 8

Figure 6. Shifted IC of subvarieties

Adding these up gives the support diagram (Figure 8) for a perverse sheaf. (It is hoped that the
Reader will appreciate the manner in which the Author coaxed latex into lining these up correctly.)

12.2. Logarithmic perversity. Because the support conditions for (middle) perverse sheaves
are relaxed slightly from those for IC•, there are several other perversities for which intersection
cohomology forms a (middle) perverse sheaf. These include the logarithmic perversity ℓ̄, given
by ℓ̄(k) = k/2 = m̄(k) + 1 and its Verdier dual, the sublogarithmic perversity, s̄ given by s̄(k) =
m̄(k)− 1.

12.3. Let Y o be a stratum of W (which is stratified by even dimensional strata). Let Y be its
closure with inclusion jY : Y → W . It is stratified by even dimensional strata. Let A• be a
perverse sheaf on Y . Then Rj∗(A

•)[−cod(Y)/2] is a perverse sheaf on W .

12.4. Hyperplane complements. Let {H1, H2, · · · , Hr} be a collection of complex affine hyper-
planes in W = Cn. Stratify W according to the multi-intersections of the hyperplanes. The largest
stratum is

W o = W −
r∪

j=1

Hj
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i cod0 cod2 cod4 cod6 cod8

8 c c c c c

7 c c

6 c

5 0

4 x

3 x x

2 x x x

1 x x x

0 x x x x x

IC•ℓ̄ support

i cod0 cod2 cod4 cod6 cod8

8 c c c c c

7 c c c c

6 c c c

5 c c

4 c

3 0

2 x

1 x x

0 x x x x x

IC•s̄ support

Figure 7. Support/cosupport of logarithmic and sublogarithmic IC sheaf

and it has a highly nontrivial fundamental group. let L be a local coefficient system on this
hyperplane complement. Then IC•s̄(L), IC

•
m̄(L) and IC•ℓ̄(L) are perverse sheaves on W = Cn.

These are surprisingly complicated objects, and even the case of middle perversity, when the
hyperplanes are the coordinate hyperplanes, has been extensively studied. Notice, in this case,
that the space W = Cn is nonsingular, the hyperplane complement W o is nonsingular, and the
sheaf IC(L) is constructible (with respect to this chosen stratification) but to analyze this sheaf
we are forced to consider the singularities of the multi-intersections of the hyperplanes.

In the simplest case, (C, {0}) the category of perverse sheaves is equivalent to the category of
representations of the following quiver

•
α -�
β

•

where I − αβ and I − βα are invertible.
For C2, xy = 0 (the coordinate axes) the perverse category is equivalent to the category of

representations of the quiver

• -� •

•

6

? -� •

6

?

with the same conditions on each of the horizontal and vertical pairs, such that all possible ways
around the outside of the square commute.
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12.5. Small and semismall maps. Let M be a compact complex algebraic manifold and let
π : M → W be an algebraic mapping. Then π is said to be semismall if

codW({x ∈ X| dimπ−1(x) ≥ k}) ≥ 2k.

In other words, if the map has been stratified then for each stratum S ⊂ W the dimension of
the fiber over S is ≤ 1

2
the codimension of S. The map is small if, for each singular stratum S,

dimπ−1(x) < 1
2
cod(S) (for all x ∈ S).

If π is small then Rπ∗(Q) is a self dual sheaf on W whose support satisfies the support conditions
of (middle) intersection cohomology. It follows from the axiomatic characterization that there is
a canonical isomorphism (in Db

c(W )), Rπ∗(QQ) ∼= ICm̄(W ). In other words, the intersection
cohomology of W is canonically isomorphic to the ordinary cohomology of M .

If π is semi-small then Rπ∗(Q) is (middle) perverse.
Let W = {P ⊂ C4| dim(P ) = 2, dim(P ∩ C2) ≥ 1} be the singular Schubert variety in the

Grassmannian of 2-planes in 4-space. It has a singularity when P = C2. A resolution of sin-

gularities is W̃ = {(P,L)| P ∈ W, and L ⊂ P ∩ C2 ⊂ C4} . Then π : W̃ → W is a small map so

Rπ∗(Q) ∼= IC•W hence IH∗(W ) ∼= H∗(W̃ ).

12.6. Sheaves on P1. Let us stratify P1 with a single zero dimensional stratum, N (the north
pole, say). The support diagram is the following:

i\cod 0 2

2 c c

1 cx

0 x x

So the skyscraper sheaf supported at the point, Q
N
[−1] is perverse. We also have the following:

Q
N
[−1] :

2

1 cx

0

QP1 :

2 c c

1

0 x x

j!(QU) :

2 c c

1 c

0 x

j∗(QU
) :

2 c

1 x

0 x x

The first sheaf is self dual. The second sheaf is self dual. The third and fourth sheaves are dual to
each other. It turns out that there is one more indecomposable perverse sheaf on this space, which
is not an IC sheaf, and its support diagram is the full diagram. It is self dual. Here is how to
construct it. Take a closed disk and put the constant sheaf on the interior, zero on the boundary,
except for one point (or even one segment). Then map this disk to the 2-sphere, collapsing the
boundary to the N pole, and push this sheaf forward.

If we started with zero on the boundary and pushed forward we would gert the sheaf Rj!(QU).
If we started with the full constant sheaf on the disk and pushed forward we would get the sheaf
Rj∗(Q). This new sheaf has both stalk cohomology and compact support stalk cohomology in
degree 1, at the singular point. Verdier duality switches these two types of boundary conditions,
so when we have a mixed boundary condition as in this case, we obtain a self dual sheaf.
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In this case the category of perverse sheaves is equivalent to the category of representations of
the quiver

•
α -�
β

•

where αβ = βα = I. There are five indecomposable objects, one of which is has Q⊕Q on one of
the vertices of the graph.

12.7. Deligne’s numbering system. In their book [?] Beilinson, Bernstein and Deligne modified
the indexing system for cohomology in a way that vastly reduces the amount of notation and
arithmetic involving indices. Although the new system is extremely simple, it is deceptively so,
because it takes us one step further away from any intuition concerning perverse sheaves. The
new system works best in the case of a complex algebraic (or analytic) variety W , stratified with
complex algebraic (or analytic) strata, and counted according to their complex dimensions. The
idea is simply to shift all degrees by dimC(W ) = dim(W )/2. So the support conditions look like
this:

new old cod0 cod2 cod4 cod6 cod8

4 8 c c c c c

3 7 c c c c

2 6 c c c

1 5 c c

0 4 cx

-1 3 x x

-2 2 x x x

-3 1 x x x x

-4 0 x x x x x

Perverse sheaf support

In symbols,

dim sptH−r(A•) ≤ r and dim sptH−r(D(A•)) ≤ r

or equivalently,

dim{x ∈ W | H i
x(A

•) ≠ 0} ≤ −i for all i ∈ Z
dim{x ∈ W | H i

c(A
•) ≠ 0} ≤ i for all i ∈ Z.

12.8. Perversity zero. Let W be a stratified pseudomanifold of dimension n (with a fixed strat-
ification). The category of Perverse sheaves on W with perversity zero, constructible with respect
to this stratification, is equivalent to the category of sheaves on W (nb: this means sheaves, rather
than complexes of sheaves) that are constructible with respect to this stratification, that is, sheaves
whose restriction to each stratum is locally trivial. In this case, the “abelian subcategory” defined
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by the perversity condition simply coincides with the abelian category structure of the category
of sheaves. Here are support diagrams for intersection cohomology with perversity zero, and for
perverse sheaves with perversity zero.

i cod0 cod1 cod2 cod3 cod4 cod5 cod6

6 c c c c c c c

5 c c c c

4 c c c

3 c c

2 c

1 0

0 x x x x x x x

IC•ℓ̄ support

i cod0 cod1 cod2 cod3 cod4 cod5 cod6

6 c c c c c c c

5 c c c c c

4 c c c c

3 c c c

2 c c

1 c

0 x x x x x x x

perverse sheaf support

Figure 8. Support/cosupport for p̄ = 0 IC sheaf and perverse sheaf

Technical interlude

The following lemma that provides lifts of morphisms in the derived category, see [GMII] §?¿

12.9. Lemma. Let A•, B• be a objects in the derived category. Suppose Hr(A•) = 0 for all
r > p and suppose that Hr(B•) = 0 for all r < p. Then the natural map

HomDb
c(X)(A

•, B•)→ HomSh(X)(H
p(A•), Hp(B•))

is an isomorphism.

Proof. When we wrote IH II, Verdier (who was one of the referees) showed us how to replace our
4 page proof with the following simple proof. Up to quasi-isomorphism it is possible to replace the
complexes A•, B/b with complexes

· · · −−−→ Ap−1 dA−−−→ Ap −−−→ 0 −−−→ 0 −−−→ · · ·

· · · −−−→ 0 −−−→ Ip −−−→
dB

Ip+1 −−−→ Ip+2 −−−→ · · ·

where Ir are injective. This means that a morphism in the derived category is represented by an
honest morphism between these complexes, that is, a mapping

ϕ : Hp(A•) = coker(dA)→ ker(db) = Hp(B•). □
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12.10. Proof of Theorem 11.1. We have a Whitney stratification of W and inclusions

U2 −−−→
j2

U3 −−−→
j3

· · · −−−→
jn−1

Un −−−→
jn

Un+1 = W

Let us suppose that A• is constructible with respect to this stratification and that it satisfies the
support (but not necessarily the co-support) conditions, that is

Hr(A•)x = 0 for r ≥ p(c) + 1

whenever x ∈ Xn−c lies in a stratum of codimension c. Fix k ≥ 2 and consider the situation

Uk −−−→
jk

Uk+1 ←−−−
ik

Xn−k

where Xn−k is the union of the codimension k strata. Let A•k = A•|Uk. Let q̄ be the complementary
perversity, q(c) = c − 2 − p(c). The following proposition says that the vanishing of the stalk
cohomology with compact supports Hr(i!xA]b) is equivalent to the condition that the attaching
map is an isomorphism:

12.11. Proposition. The following statements are equivalent.

(1) A•k+1
∼= τ≤p(k)Rjk∗A

•
k

(2) Hr(A•k+1)x → Hr(Rjk∗A
•
k)x is an isomorphism for all x ∈ Xn−k

(3) Hr(i!kA
•
k+1) = 0 for all r ≤ p(k) + 1

(4) Hr(i!xA
•
k+1) = 0 for all r < n− q(k) for all x ∈ Xn−k

Proof. Items (1) and (2) are equivalent because there is a canonical morphism

A•k+1 → Rjk∗j
∗
kA
• = Rjk∗Ak

truncation τ≤p(k) leaves an isomorphism in degrees ≤ p(k). Items (3) and (4) are equivalent
because ix : {x} → Xn−k is the inclusion into a manifold so i!x = i!k[n − k], and because r <
p(k) + 2+ (n− k) = n− (k− 2− p(k)) = n− q(k). Items (2) and (3) are equivalent because there
is a distinguished triangle,

Rik∗i
!
k(A

•
k+1) - A•k+1

Rjk∗j
∗
k(A

•
k+1)

α�

�
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and therefore an exact sequence on stalk cohomology as follows:

Hp+2(i!kA
•
k+1)x - Hp+2(A•k+1)x - Hp+2(Rjk∗A

•
k)x

Hp+1(i!kA
•
k+1)x - Hp+1(A•k+1)x - Hp+1(Rjk∗A

•
k)x

�

Hp(i!kA
•
k+1)x - Hp(A•k+1)x α

- Hp(Rjk∗A
•
k)x

�

Hp−1(i!kA
•
k+1)x - Hp−1(A•k+1)x α

- Hp−1(Rjk∗A
•
k)x

�

Now use the fact that the yellow highlighted terms are zero and the green highlighted morphisms
are isomorphisms to conclude the proof of the Proposition. □

Since the sheaf IC•p̄[−n] satisfies these conditions, this proposition proves (by induction) that it
is isomorphic (in the derived category) to the sheaf P •p̄ that is defined by Deligne’s construction.
We gave an intuitive argument for this statement a few lectures ago, but the above constitutes a
proof.

12.12. Continuation of the proof of Theorem 11.1. Now let us show that if L1,L2 are local
systems on U2 and if A• = P •p̄(L1) and if B• = P •p̄(L2) then we have an isomorphism

HomSh(L1,L2) ∼= HomDb
c(X)(A

•, B•).

As before, let A•k+1 = A•|Uk+1 = τ≤p(k)Rjk∗A
•
k. Assume by induction that we have established an

isomorphism

Hom(L1,L2) ∼= HomDb
c(Uk)(A

•
k, B

•
k).

Using the above triangle for B• we get an exact triangle of RHom sheaves,

RHom•(A•k+1, Rik∗i
!
kB
•
k+1) - RHom•(A•k+1, B

•
k+1)

RHom•(A•k+1, Rjk∗B
•
k)

α�[1]

�

By Lemma 12.9 and the support conditions, we see that α is an isomorphism in degree zero,

HomDb
cX

(A•k+1, B
•
k+1) = H0(Uk+1; RHom

•(A•k+1, B
•
k+1)
∼= H0(Uk+1; RHom

•(A•k+1, Rjk∗B
•
k)).

Moreover,

Rjk∗RHom
•(A•k, B

•
k)
∼= Rjk∗RHom

•(j∗kA
•
k+1, B

•
k)
∼= RHom•(A•k+1, Rjk∗B

•
k)
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by the standard identites (above), whose cohomology is

H0(Uk+1;Rjk∗RHom
•(A•k, B

•
k))
∼= H0(Uk; RHom

•(A•k, B
•
k))
∼= HomDb

c(Uk)(A
•
k, B

•
k).

So, putting these together we have a canonical isomorphism

HomDb
c(Uk)(A

•
k, B

•
k)
∼= HomDb

c(Uk+1
(A•k+1, B

•
k+1)

which was canonically isomorphic to HomSh(L1,L2) by induction. This completes the proof of the
theorem, but the main point is that the depth of the argument is the moment in which Lemma
12.9 was used in order to lift a morphism A•k+1 → Rjk∗B

•
k to a morphism A•k+1 → B•k+1. □
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13. Lecture 13: t-structures and Perverse cohomology

13.1. Definition. An indecomposable object A in an abelian category is one that cannot
be expressed nontrivially as a direct sum A = B ⊕ C. A simple object A is one that has
no nontrivial subobjects B → A (where the morphism is a monomorphism). An object is
semisimple if it is a direct sum of simple objects. An Artinian category is one in which
descending chains stabilize, which implies that every object can be expressed as a finite
iterated sequence of extensions of simple objects.

13.2. Perversity zero. Let W be a stratified space. The category of (ordinary) sheaves on W
that are constructible with respect to this stratification is Artinian. If j : X → W is the inclusion
of a single stratum and if L is a local system on X then its extension by zero, j!(L) is a simple
object in this category. Every object S in this category is an interated extension of such sheaves,
for if S is such a sheaf then there is a smallest stratum j : X → W such that S|X is nonzero. Let
j : X → W be the inclusion. The sheaf j∗(S) is a local system on S so it decomposes as a direct
sum of local systems. We get an exact sequence

0→ j!j
∗S → S → coker→ 0.

and the cokernel is supported on fewer strata so we may proceed by induction.
Now let A• be a complex of sheaves. We have truncation functors

A• = (· · ·
dr−2- Ar−1 dr−1 - Ar dr - Ar+1 dr+1

- · · · )

τ≤rA
• = (· · · - Ar−1 - ker(dr) - 0 - · · · )

τ≥rA• = (· · · - 0 - coker(dr−1) - Ar+1 - · · · )
Then there is a short exact sequence 0 → τ≤0A

• → A• → τ≥1A• → 0, and the cohomology sheaf
of A• is given by

Hr(A•) = τ≤r
(
τ≥rA•

)
= τ≥r (τ≤rA

•)

To summarize, let Shc(W ) be the category of (ordinary) sheaves on W that are constructible
with respect to this stratification. Then the the following holds:

13.3. Theorem. The cohomology functor Hr : Db
c(W )→ Shc(W ) is given by τ≤r ◦ τ≥r and

also by τ≥r ◦ τ≤r. The functor H0 restricts to an equivalence of categories between Shc(W )
and the subcategory of Db

c(W ) whose objects are complex A• such that Hr(A•) = 0 for r ̸= 0.
This category is Artinian and its simple objects are the sheaves j!(L) where L is a simple
local system on a single stratum j : X → W .
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13.4. Fix a perversity p̄. Let P(W ) denote the category of perverse sheaves on W , that are
constructible with respect to a given stratification. There are truncation functors

p̄τ≤r and p̄τ≥r : Db
c(W )→ Db

c(W )

which are cohomological, that is, they take distinguished triangles to exact sequences, and satisfy

(T1) p̄τ≤r(A
•) = (p̄τ≤0(A

•[r]))[−r].
From this, define the perverse cohomology

p̄Hr(A•) = p̄τ≤r
(
p̄τ≥rA•

)
.

Then p̄Hr : Db
c(W )→ P(W ) and A• ∈ P(W ) if and only if p̄Hr(A•) = 0 for all r ̸= 0. In this case

p̄H0(A•) = A•.

13.5. Theorem. The cohomology functor p̄Hr : Db
c(W )→ P(W ) is given by p̄τ≤r ◦ p̄τ≥r and

also by p̄τ≥r ◦ p̄τ≤r. The functor p̄H0 restricts to an equivalence of categories between P(W )
and the subcategory of Db

c(W ) whose objects are complex A• such that p̄Hr(A•) = 0 for
r ̸= 0. This category is Artinian and its simple objects are the sheaves Rj∗(IC

•
p̄(L)) where

L is a simple local system on a single stratum X and where j : X̄ → W is the inclusion.

In particular, a semisimple perverse sheaf is one which is a direct sum of (appropriately shifted)
intersection cohomology sheaves of (closures of) strata.

13.6. t structures. But how to define these truncation functors? At this point it becames almost
essential to shift to Deligne’s numbering scheme, otherwise we will have shifts depending on the
strata that will drive you crazy. Define the subcategoryDb

c(W )≤0 to be the category of constructible
complexes A• that satisfy the support condition, that is,

dimC{x ∈ W | sptHi(A•)x ̸= 0} ≤ −i
and define Db

c(W )≥0 to be the category of complexes A• that satisfy the cosupport condition,

dimC{x ∈ W | H i(i!xA
•) ̸= 0} ≤ i.

Note that

(T2) Db
c(W )≤0 ⊂ Db

c(W )≤1 and Db
c(W )≥0 ⊃ Db

c(W )≥1.
(T3) HomDb

c(W )(A
•, B•) = 0 for all A• ∈ Db

c(W )≤0 and B ∈ Db
c(W )≥1

by the basic lemma proven earlier. Moreover, P(W ) = Db
c(W )≤0 ∩Db

c(W )≥0.

(T4) For any complex X• there is a distinguished triangle

A• - X•

B•
�[1]

�

where A• ∈ Db
c(W )≤0 and where B• ∈ Db

c(W )≥1.
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In this case we define

p̄τ≤0X
• = A• and p̄τ≥1X• = B•.

Then, the perverse cohomology is p̄H0(X•) = p̄τ≥0(A•), so everything depends on the definition
of the truncation functors.

13.7. Further properties. There is a beautiful way to see the kernel and cokernel of a morphism
Φ : A• → B• of perverse sheaves. Let M• be the mapping cone of the morphism. Then the long
exact sequence on perverse cohomology reads:

· · · - p̄H−1(B•) - p̄H−1(M•) - p̄H0(A•) - p̄H0(B•) - p̄H0(M•) - p̄H1(A•) - · · ·

|| || || || || ||

0 - ker(Φ) - A•
Φ - B• - coker(Φ) - 0

Perverse versions of other functors can be defined by using p̄H0 to “project” the result into the
category P(W ). For example, if j : U → X and if A• is perverse on U then pj∗A

• = pH0(Rj∗A
•)

and pj!A
• = pH0(Rj!A

•). In particular, if we start with a local system L on the nonsingular part
U = U2 of a stratified space W then

pj!(L) = IC•s̄(L) and pj∗(L) = IC•ℓ̄(L).

Moreover, the (perverse) image of the first in the second is the middle IC sheaf, and it is sometimes
referred to as

pj!∗(L) = IC•m̄(L).

13.8. The truncation functors are constructed by induction. If W is a manifold and if X• is
cohomologically locally constant on W then take A• = τ≤0X

• and B• = τ≥1X• as above, that is,
pτ = τ is the usual truncation. Otherwise, assume (as usual) by induction that we have defined
these truncation functors on an open union U of strata, and consider the addition of a single
stratum S. We may assume that W = U ∪ S.

U −−−→
j

W ←−−−
i

S
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Given a complex X• on W let Y •[1] be the mapping cone of X• → Rj∗
pτ≥1j∗X• and let A•[1] be

the mapping cone of Y • → i∗
pτ≥1i∗Y •.

X• - Rj∗
pτ≥1j∗X•

A• -
....
....
....
....
...-

Y •
�[1]

�

i∗
pτ≥1i∗Y •

�[1]

�

This gives the desired morphism A• → X• and then B• is the third term.
For example, suppose there are two strata and we let X = Rj∗(Q). Then pτ≥1j∗X = 0 so

Y = X. Now the stalk cohomology of i∗(Y ) equals the cohomology of the link. τ≥1i∗(Y ) is the
cohomology of the link in degrees above the middle. So the mapping cone, which is A, keeps the
cohomology of the link in degrees ≤ the middle. We end up with 0→ A• → Y • → B• → 0 where
A• is perverse and where B• is in Db

c(W )≥1. If we start with X = Rj!(Q) then this is already in
Db

c(W )≤0. The relevant section is [BBD] p. 48.

13.9. More generally, a t-structure on a category D is defined to be a pair of subcategories D≤0
andD≥0 satisfying (T1), (T2), (T3), (T4) above. It is proven in [BBD] that under these hypotheses
the heart P = D≤0 ∩D≥0 is abelian.
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14. Lecture 14: Algebraic varieties and the decomposition theorem

14.1. Lefschetz theorems. Suppose W ⊂ CPN is a complex projective algebraic variety of com-
plex dimension n. Let Lj ⊂ CPn be a codimension j linear subspace. Let Y j = Lj ∩W . If Lj

is transverse to each stratum of a Whitney stratification of W then there are natural morphisms
α : IHr(W ;Q)→ IHr(Y j;Q) and β : IHs(Y j;Q)→ IHs+2j(W ;Q).

14.2. Theorem. If H1 is transverse to W then the restriction mapping IHr(W ;Z) →
IHr(Y 1;Z) is an isomorphism for r ≤ n − 2 and is an injection for r = n − 1. If j ≥ 1
and Lj is transverse to W then the composition Lj : IHn−j(W ;Q) → IHn−j(Y j;Q) →
IHn+j(W ;Q) is an isomorphism.

These maps are illustrated in the following diagram.

IH0 IH1 IH2 IH3 IH4 IH5 IH6 IH7 IH8 IH9 IH10

IP 0 - L(IP 0) - L2(IP 0) - L3(IP 0) - L4(IP 0) - L5(IP 0)

IP 1 - L(IP 1) - L2(IP 1) - L3(IP 1) - L4(IP 1)

IP 2 - L(IP 2) - L2(IP 2) - L3(IP 2)

IP 3 - L(IP 3) - L2(IP 3)

IP 4 - L(IP 4)

IP 5

where (for j ≤ n) the primitive intersection cohomology IP j ⊂ IHj is the kernel of ·Ln−j+1. (It
may also be identified with the cokernel of ·L : IHj−2 → IHj.) The resulting decomposition is

called the Lefschetz decomposition IHr ∼= ⊕[r/2]
j=0 L

j · IP r−2j. The combination of Poincaré duality

IHn+r(W ;Q) ∼= Hom(IHn−r(W ;Q),Q)

and the Lefschetz isomorphism Lr : IHn−r(W ;Q) ∼= IHn+r(W ;Q) induces a nondegenerate bilin-
ear pairing on IHn−r(W ;Q). With respect to this pairing the Lefschetz decomposition is orthog-
onal and its signature is described by the Hodge Riemann bilinear relations.

14.3. Hodge theory and purity. Let W be a complex projective algebraic variety. Then there
is a natural decomposition IHr(W ;C) ∼= ⊕a+b=rIH

a,b(W ) with IHa,b ∼= Hb,a and the Lefschetz
operator ∩H1 induces IHa,b → IHa+1,b+1.

LetX be a projective algebraic variety defined over a finite field k with q = pt elements. Then the
étale intersection cohomology IHs

et(X(k̄);Qℓ) carries an action of Gal(k̄/k) which is topologically
generated by the Frobenius Fr. The eigenvalues of Fr on IHs

et(X) have absolute value equal to√
qs.
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14.4. Modular varieties. Let G be a semisimple algebraic group defined over Q of Hermitian
type, with associated symmetric space D = G(R)/K where K ⊂ G(R) is a maximal compact
subgroup. Let γ ⊂ G(Q) be a torsion free arithmetic group. The space X = Γ\D is a Hermitian
locally symmetric space and it admits a natural “invariant” Riemannian metric. Let L be a finite
dimensional metrized local system on X. The L2 cohomology Hr

(2)(X;L) is defined to be the
cohomology of the complex of differential forms

Ωj
(2)(X) =

{
ω ∈ Ωj(X;C)|

∫
X

ω ∧ ∗ω <∞,

∫
X

(dω) ∧ ∗(dω) <∞
}
.

This may be interpreted as the global sections of a complex of sheaves Ωr on the Baily Borel
compactification X whose sections over an open set U ⊂ X̄ consist of differetial forms ω ∈
Ωr(U ∩X) such that ω, dω are square integrable. The following conjecture of S. Zucker was proven
by E. Looijenga and independently by L. Saper and M. Stern.

14.5. Theorem. There is a natural quasi-isomorphism of sheaves Ω•(2)(X) ∼= IC•
X

which

induces an isomorphism Hr
(2)(X) ∼= IHr(X;C).

14.6. Morse theory. Let W be a Whitney stratified (with a fixed stratification) closed subset
of some smooth manifold M . Let f : M → R be a smooth function. For any t ∈ R let W≤t =
W ∩ f−1(−∞, t]. We say that f is a Morse function on W if the following holds

(1) For each stratum W ⊂ W the restriction f |W is a Morse function, that is, its critical points
are isolated and nondegenerate.

(2) For each stratum X ⊂ W and for each critical point x ∈ X the following further nondegen-
eracy condition is required: suppose that X < Y are strata of W , that yi ∈ Y is a sequence
converging to x ∈ X and suppose that the tangent planes TyiY converge to some limiting
plane τ ⊂ TxM . Then df(x)(τ) ̸= 0.

In other words, df(x) does not kill any limit of tangent planes from larger strata. It is a theorem
from [SMT] that if f : M → R is a smooth function that is Morse on W and if x ∈ S ⊂ W is a
critical point with critical value v = f(x) then the group

M i
x := H i(W≤v+ϵ,W≤v−ϵ)

is independent of ϵ, provided ϵ is chosen sufficiently small. It is called the i − th Morse group
at the critical point x. If x lies in the top stratum of W then M i

x = 0 for all values of i except
for one, the Morse index, and it equals the dimension of the negative eigenspace of the Hessian
matrix d2f(x). However at a general singular point x the Morse groups M i

x may be nonzero in
many different degrees i.
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14.7. Theorem. Suppose W ⊂M is a Whitney stratified complex algebraic or complex ana-
lytic subvariety of a complex manifold and that the strata closures are also complex analytic.
Let f : M → R be a Morse function in the above sense. Let A• be a perverse sheaf on W
(for example, the IC• sheaf). Let x ∈ S be a critical point of f . Then the Morse group

M i
x(A

•) = H i(W≤v+ϵ,W≤v−ϵ;A
•)

is nonzero in at most a single degree, i = codC(S) + λ where λ is the Morse index of f |S.

This allows you to use Morse theory to analyze the cohomology of a perverse sheaf but it only
works in the complex analytic setting.

14.8. Decomposition theorem. Let f : X → Y be a proper complex projective algebraic map
with X nonsingular. The decomposition theorem says that Rf∗(IC

•
X) breaks into a direct sum

of intersection complexes of subvarieties of Y , with coefficients in various local systems, and with
shifts. In many cases this statement is already enough to determine the constituent sum. More
precisely,

(1) Rf∗(IC
•
X)
∼=

⊕
i
p̄H i(Rf∗(IC

•
X))[−i] (This says that the push forward sheaf is a di-

rect sum of perverse sheaves; these are its own perverse cohomology sheaves, shifted.)
(2) Each p̄H i(Rf∗(IC

•
X)) is a semisimple perverse sheaf. (This says that it is a direct

sum of IC• sheaves of strata. In particular, each summand enjoys all the remarkable
properties of intersection cohomology that were described in the previous lecture.)

(3) The big summands come in pairs, p̄H i(Rf∗(IC
•
X))
∼= p̄H−i(D(Rf∗(IC

•
X))) (This is

because IC•X is self-dual, hence so is its pushforward.)
(4) If η is the class of a hyperplane on X then for all r,

·ηr : p̄H−r(Rf∗(IC
•
X))→ p̄Hr(Rf∗(IC

•
X))

is an isomorphism. (This is the relative hard Lefschetz theorem.)
(5) If L is the class of a hyperplane on Y then for all s and all r,

·Ls : H−s(Y, p̄Hr(Rf∗(IC
•
X)))→ Hs(Y, p̄Hr(Rf∗(IC

•
X))

is an isomorphism. (This is just the statement that each summand satisfies hard
Lefschetz.)

Moreover, if the mapping f can be stratified then the resulting perverse sheaves are constructible
with respect to the resulting stratification of Y .

14.9. The hard Lefschetz isomorphisms give rise to the Lefschetz decomposition into primitive
pieces as above. The combination of the Lefschetz isomorphism and the Poincaré duality isomor-
phism gives a nondegenerate bilinear form on each Hr(Rf∗(IC

•). The Lefschetz decomposition is
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orthogonal with respect to this pairing, and the signature of the components is given by the Hodge
Rieman bilinear relations.

14.10. If f : X → Y is a proper projective algebraic map, recall that the i-th cohomology sheaf
of Rf∗(IC

•
X) is the constructible sheaf

Rif∗(IC
•
X) = H i(Rf∗(IC

•
X)

whose stalk at a point y ∈ Y is the cohomology H i(f−1(y); IC•X |f−1(y)). Let U ⊂ Y be the
nonsingular part. Then the invariant cycle theorem says that

(6) The restriction map

IH i(X)→ H0(U,Rif∗(IC
•
X)) = Γ(U,Rif∗(IC

•
X))

is surjective.

Let y ∈ Y and let By be the intersection of Y with a small ball around y. Let y0 ∈ By ∩U . For
simplicity assume X is nonsingular so that IC•X = Qx[n]. Then the local invariant cycle theorem
says

(7) restriction mapping

H i(f−1(By,Q) = H i(f−1(y),Q)→ H0(By, R
if∗(QX [n])) ∼= H i(f−1(y0))

π1(U∩By)

is surjective.

14.11. Let us suppose that X is nonsingular so that (in Deligne’s numbering system) IC•X
∼=

QX [n]. The decomposition theorem contains two hard Lefschetz theorems and they work against
each other to limit the types of terms that can appear in this decomposition. Let [η] ∈ H2(X)
denote a hyperplane class and let [L] ∈ H2(Y ) denote a hyperplane class. Statement (4) says that,
for each j ≥ 0 the cup product with [η]j induces an isomorphism

Hr(Y ; pH−j(Rf∗(Q[n]))) ∼= Hr+2j(Y ; pHj(Rf∗(Q[n]))) for all r.

Statement (2) says that pHj(Rf∗(Q[n])) is a direct sum of intersection cohomology sheaves, each
of which satisfies hard Lefschetz (with respect to L) so that, for any t ≥ 0 and for all j, the cup
product with Lt induces an isomorphism

Hr−t(Y ; pHj(Rf∗(Q[n])) ∼= Hr+t(Y ; pHj(Rf∗(Q[n])).

14.12. Suppose π : X → Y is a resolution of singularities. The decomposition theorem says that
Rπ∗(Q[n]) is a direct sum of intersection cohomology sheaves of subvarieties. The stalk cohomology
of this sheaf, at any nonsingular point y ∈ Y is H∗(π−1(y);Q[n]) which is Q in degree −n. So
the sheaf IC•Y is one of the summands, that is: the intersection cohomology of Y appears as a
summand in the cohomology of any resolution.
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14.13. Suppose X,Y are nonsingular and f : X → Y is an algebraic fiber bundle. Then
Rf∗(QX [n]) decomposes into a direct sum of perverse sheaves on Y , each of which is therefore
a local system on Y , that is,

Hr(X;Q) ∼= ⊕i+j=rH
i(Y ;Hj(F ))

where Hj(F ) denotes the cohomology of the fiber, thought of as a local system on Y . In other
words, the Leray spectral sequence for this map degenerates (an old theorem of Deligne) and hard
Lefschetz applies both to Hj(F ) and to H i(Y ).

14.14. Three proofs. The first and original proof is in [BBD] and uses reduction to varieties in
characteristic p > 0, purity of Frobenius, and Deligne’s proof of the Weil conjectures. The second
proof is due to Morihiko Saito, who developed a theory of mixed Hodge modules in order to extend
the proof to certain analytic settings. The third proof is due to deCataldo and Migliorini, who
used classical Hodge theory. Their proof works in the complex analytic setting and some people
feel it is the most accessible of the three.
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15. Lecture 15: cohomology of toric varieties

15.1. In 1915 Emmy Noether proved that if a Hamiltonian system is preserved by an 1-parameter
infinitesimal symmetry (that is to say, by the action of a Lie group) then a certain corresponding
“conjugate” function, or “first integral” is preserved under the time evolution of the system. Time
invariance gives rise to conservation of energy. Translation invariance gives rise to conservation of
momentum. Rotation invariance gives rise to conservation of angular momentum.

Figure 9. Emmy Noether

Today, this is known as the moment map: Suppose (M,ω) is a symplectic manifold, and suppose
a compact lie group G acts on M and preserves the symplectic form. The infinitesimal action of
G in the direction of V defines a vector field X on M . Contract this with the symplectic form to
obtain a 1-form θ = ιX(ω). It follows that dθ = 0. If the action of G is Hamiltonian then in fact,
θ = df for some smooth function f : M → R (defined up to a constant). This is the conserved
quantity. In summary, if the action is Hamiltonian then there exists a moment map, that is, a
smooth mapping µ : M → g∗ so that for each X ∈ } the differential of the function p 7→ ⟨µ(p), X⟩
equals ιX(ω).

Now consider the Fubini Study metric h(z, w) =
∑

dzi ∧ dz̄i on projective space. The real and
imaginary part, h = R+iω are respectively, positive definite and sympletic. Fix a0, a1, · · · , an ∈ Z.



69

If λ ∈ C× acts on Cn+1 by

λ · (z0, z1, · · · , zn) = (λa0z0, λ
a1z1, · · · , λanzn)

then, restricting the action to (S1), the resulting moment map µ : CPn → R is

µ([z0 : z1 : · · · : zn]) =
a0|z0|2 + a1|z1|2 + · · ·+ an|zn|2

(|z0|2 + · · ·+ |zn|2)
.

If (λ0, λ1, · · · , λn) ∈ (C×)n acts on Cn by

(λ0, · · · , λn) · (z0, · · · , zn) = (λ0z0, · · · , λnzn)

then, restricting the action to (S1)n the restulting moment map µ : CPn → Rn

µ([z0 : · · · : zn]) =
(|z0|2, |z1|2, · · · , |zn|2)
(|z0|2 + · · ·+ |zn|2)

and it is the standard simplex contained in the hyperplane x0 + · · · + xn = 1. These actions are
Hamiltonian and the moment map collapses orbits of (S1)n.

15.2. Now let X ⊂ CPN be an n-dimensional subvariety on which a torus T = (C×)n acts with
finitely many orbits. In this case the action extends to a linear action on projective space of the
sort described above and the moment map image (for the action of (S1)n), µ(X) ⊂ µ(CPn) is
convex. In fact, the convexity theorem of Atiyah, Kostant, Guillemin, Sternberg states that

15.3. Theorem. The moment map image µ(X) is the convex hull of the images µ(xi) of the
T -fixed points in X. The image of each k-dimensional T -orbit is a single k-dimensional face
of this polyhedron.

It turns out, moreover, that the toric variety is a rational homology manifold if and only µ(X)
is a simple polytope, meaning that each vertex is adjacent to exactly n edges.

Algebraic geometers prefer a presentation of a toric variety from a fan, a collection of homoge-
neous cones in Euclidean space. From a fan one constructs a convex polynedron by intersecting
the fan with a ball centered at the origin, and then flattening the faces. The resulting convex
polyhedron is the dual of the moment map polyhedron. If the moment map polyhedron is simple
then the fan-polyhedron is simplicial, meaning that the faces are simplices.

15.4. Definition. If Y is a complex algebraic variety define the intersection cohomology
Poincaré polynomial

h(Y, t) = h0 + h1t+ h2t
2 + · · ·+ hnt

n

where hr = rank IHr(Y ;Q). If y ∈ Y define the local Poincaré polynomial hy(Y, t) =∑
r≥0 rank (H

r(IC•)y) t
r.

If Y is defined over Fq we use the same notation for the Poincaré polynomial of the étale
intersection cohomology.
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15.5. Counting points. There is a very general approach to understanding the cohomology and
intersection cohomology of an n-dimensional algebraic variety defined over a finite field Fq, provided
its odd degree cohomology groups vanish. The variety Y/Fq is said to be pure if the eigenvalues of
Frobenius on Hr(Y ;Qℓ) have absolute value

√
qr with respect to any embedding into the complex

numbers. The Weil conjectures (proven by Deligne) say that

2n∑
r=0

(−1)rTr(Frq : H
r(Y )→ Hr(Y )) = |Y (Fq)|

the right hand side being the number of points that are fixed by the Frobenius morphism. The
intersection cohomology of any projective algebraic variety is pure. If the variety Y is also non-
singular (so that IH∗(Y ) = Y ∗(Y ) and Tate (which means that the eigenvalues on Hr are in fact
equal to (

√
q)r) then this gives

h(Y,
√
q) =

n∑
r=0

rankH2r(Y )qr = |Y (Fq)|.

For example, if such a variety Y is defined over the integers, is nonsingular and Y (C) has an
algebraic cell decomposition with mr cells of (complex) dimension r then h2r+1 = 0 and h2r = mr

accounts for mrq
r points over Fq. In the case of a nonsingular toric variety whose moment map

image is a convex polyhedron with fr faces of dimension r this gives

h(Y,
√
q) =

n∑
s=0

rankH2s(Y ;C)qs =
n∑

r=0

fr(q − 1)r

since each r-dimensional orbit is itself (isomorphic to) a torus of dimension r. The hard Lefschetz
theorem says h2s−2 ≤ h2s for 2s ≤ n which in turn gives inequalities between the face numbers, as
observed by Stanley in 1980.

15.6. If we wish to use intersection cohomology rather than ordinary cohomology in the Weil
conjectures then the formula becomes

2n∑
r=0

(−1)rTr(Frq : IH
r(Y )→ IHr(Y )) = |Y (Fq)|mult

where each point y ∈ Y (Fq) is counted with a multiplicity equal to the (alternating sum of) trace
of Frobenius acting on the stalk of the intersection cohomology at y ∈ Y (Fq). If this is pure
and if the stalk cohomology vanishes in odd degrees, then this multiplicity equals the Poincaré
polynomial hy(Y,

√
q) of the stalk of the intersection cohomology. In conclusion, if the intersection

cohomology of Y is Tate and vanishes in odd degrees then
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(15.6.1)
n∑

s=0

Tr(Frq|(IH2s(Y ))) =
n∑

s=0

rank IH2s(Y )qs = h(Y,
√
q) =

∑
y∈Y (Fq)

hy(Y,
√
q).

Let us now try to determine these multiplicities hy. If f(x) = a0 + a1x + · · · + anx
n define the

truncation τ≤rf to be the polynomial a0 + · · ·+ arx
r consisting of those terms of degree ≤ r.

15.7. Lemma. Let Z ⊂ CPN−1 be a projective algebraic variety of dimension d, with inter-
section cohomology Poincaré polynomial

g(t) = g0 + g1t+ · · ·+ g2dt
2d =

2d∑
r=0

dim(IHr(Z))tr.

Then the stalk of the intersection cohomology of the complex cone Y = coneC(Z) ⊂ CPN at
the cone point y ∈ Y has Poincaré polynomial

(15.7.1) hy(Y, t) = τ≤d
(
g(t)(1− t2)

)
Proof. The complex projective space CPN is the complex cone over CPN−1. In fact, if we remove
the cone point then what remains is a line bundle L → CPN−1 whose first Chern class c1(L) ∈
H2(CPN−1) is the class of a hyperplane section. This is to say that there exists a section of this
bundle that vanishes precisely on a hyperplane; it may be taken to be

s([z0 : ...zN−1]) = [z0 : ... : zN−1,Σjajzj] ∈ CPN

for any fixed choice (not all zero) of a0, a1, · · · , aN−1 ∈ C. The vanishing of the last coordinate is
a hyperplane in CPN−1. So this class may be used as a hard Lefschetz class.

If Z ⊂ CPN−1 is a projective algebraic variety then coneC(Z) ⊂ CPN is a singular variety and
the link L of the cone point can be identified with the sphere bundle of this line bundle LZ → Z.
The Gysin sequence becomes

IH i−2(Z)
∪c1−−−→ IH i(Z) −−−→ IH i(L) −−−→ IH i−1(Z)

∪c1−−−→ IH i+1(Z) −−−→

It follows from the hard Lefschetz theorem for Z that IH i(L) is the primitive part of the intersection
cohomology of Z for i ≤ d, that is,

IH i(L) ∼= IP i(Z) = coker(·c1(L) : IH i−2(Z)→ IH i(Z))

for i ≤ dim(Z), and hence its Poincaré polynomial is given by

g0 + g1t+ (g2 − g0)t
2 + (g3 − g1)t

3 + (g4 − g2)t
4 + · · ·+ (gd − gd−2)t

d = τ≤dg(t)(1− t2). □
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15.8. Some geometry. Let µ : Y → P ⊂ Rm be the moment map corresponding to the action of
a torus T ∼= (C×)m on a toric variety Y . If F is a face of P , the link of F can be realized as another
conex polyhedron, LF = P ∩ V where V ⊂ RN is a linear subspace such that dim(V ) + dim(F ) =
N−1, which passes near F and through P . (For example, V may be taken to lie completely in the
plane F⊥.) In fact, LF is the moment map image of a sub-toric variety YF on which a sub-torus
TF acts.

15.9. In the case of a toric variety Y , a given face F corresponds to a stratum SF of the toric
variety. The link of this stratum is therefore isomorphic to a circle bundle over a toric variety
whose moment map image is the link LF of the face F . Let h(YF , t) be the intersection cohomology
Poincaré polynomial of this “link” toric variety. Then equations (15.7.1) and (15.6.1) give:

15.10. Theorem. The IH Poincaré polynomial of Y is

h(Y, t) =
∑
F

(t2 − 1)dim(F ).τ≤n−dim(F )

(
(1− t2)h(YF , t)

)

15.11. In particular, the intersection cohomology only depends on the combinatorics of the mo-
ment map image P = µ(Y ), and moreoer, the functions h(YF , t) may be determined (inductively)
from the moment map images LF = µF (YF ). The hard Lefschetz theorem (which says that
h2r ≥ h2r−2 for all r ≤ dim(Y )) then implies a collection of inequalities among the numbers of
chains of faces.

15.12. Remarks. This formula simplifies if P is a simple polyhedron, to:

h(Y, t) =
∑
F

(t2 − 1)dim(F ) = f(t2 − 1)

where f(s) = f0 + f1s + · · · + fds
d and fj is the number of faces of dimension j. The poly-

topes considered here are always rational, meaning that the vertices are rational points in Rd,
or equivalently, the faces are the kernels of linear maps Rd → R with rational coefficients. Any
simple (or simplicial) polytope can be perturbed by moving the faces (resp. the vertices) so as
to make them rational. Therefore the inequalities arising from hard Lefschetz apply to all simple
polytopes. However a general polytope cannot necessarily be perturbed into a rational polytope
with the same face combinatorics. The Egyptian pyramid, for example, has a square face. Lifting
one of the vertices on this face, an arbitrarily small amount, will force the face to “break”. In
order to prove that the inequalities arising from hard Lefschetz for intersection cohomology can
be applied to any polytope it was necessary to construct something like intersection cohomology
in the non-rational case. This was accomplished by (Barthel, Brasselet, Fieseler, Kaup) and K.
Karu [] (who proved that it satisfies the hard Lefschetsz formula).
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15.13. There is another way to prove this result using the decomposition theorem (which does
not involve passing to varieties over a finite field). The singularities of the toric variety Y can
be resolved by a sequence of steps, each of which is toric with moment maps that correspond to
‘cutting off the faces” that are singular. For example, the Egyptian pyramid has a single singular
point. The singularity is resolved by a mapping π : Ỹ → Y as illustrated in this diagram:

insert diagram here.
Let us examine the decomposition theorem for this mapping. The mapping is an isomorphism

everywhere except over the singular point y ∈ Y and π−1(y) ∼= P1 × P1. The stalk cohomology
of the pushforward Rπ∗(QỸ ) is (Q, 0,Q ⊕ Q, 0,Q). Put this into the support diagram for a 3
dimensional variety:

i j cod0 cod2 cod4 cod6 H∗(π−1(y))

6 3 c c c c

5 2 c c

4 1 c Q
3 0 0 0

2 -1 x Q⊕Q
1 -2 x x 0

0 -3 x x x x Q
IC• support

(Here, the degree i is the “usual” cohomology degree notation and the degree j is the “perverse
degree” notation.) From the decomposition theorem we know that one term will be IC•(Y ) and
that there are additional terms supported at the singular point y. From the support condition it
is clear that Q[3] (on the bottom row) is part of the IC sheaf. It is not so clear how much of the
(Q⊕Q)[1] belongs to IC•(Y ) and how much belongs to the other terms. However the Q[−1] (at
the top of the column; in degree j = 1) is definitely not part of IC. By Poincaré and especially by
Hard Lefschetz, it must be paired with one copy of Q in degree −1. So this leaves Q[3]⊕Q[1] (in
degrees −3 and 1 respectively) for the IC sheaf. A closer inspection of this argument shows that
these two terms constitute the primitive cohomology of the fiber, as we saw earlier.

Thus, the decomposition theorem singles out the primitive cohomology of the fiber as belonging
to the IC sheaf. Now, assuming by induction that the formula holds for IH∗(Ỹ ) = H∗(Ỹ ) (which
is less singular that Y ) and knowing how these terms decompose, it is easy to conclude that the
formula must also hold for IH∗(Y ).
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16. Lecture 16: Springer Representations

16.1. The flag manifold. Let G = SLn(C). It acts transitively on the set F of complete flags
0 ⊂ F 1 ⊂ · · · ⊂ F n−1 ⊂ Cn and the stabilizer of the standard flag is the “standared” Borel
subgroup B of (determinant = 1) upper triangular matrices, giving an isomorphism F ∼= G/B.
The Lie algebras are g (matrices with trace = 0) and b = upper triangular matrices with trace
= 0. If x ∈ G and xBx−1 = B then x ∈ B. So we may identify F with the set B of all subgroups
of G that are conjugate to B or equivalently to the set of all subalgebras of g that are conjugate
to b, that is, the variety of Borel subalgebras of g.

16.2. Definition. Let N be the set of all nilpotent elements in g. Define

Ñ={(x ∈ N, A ∈ B)| x ∈ Lie(A)} ϕ−−−→ B

π

y
N

The mapping π is proper and its fibers Bx = π−1(x) are called Springer fibers. In a remarkable
series of papers [Springer 1976, 1978], T. A. Springer constructed an action of the symmetric group
W on the cohomology of each Springer fiber Bx, even though W does not actually act on Bx.

Let A be the subgroup that preserves a flag FA = (0 = A0 ⊂ A1 ⊂ · · · ⊂ An = Cn) then the
following are equivalent:

(1) (x,A) ∈ Ñ

(2) x ∈ Lie(A)
(3) exp(x) preserves the flag FA

(4) the vectorfield Vx (defined by x) on the flag manifold F vanishes on FA

(5) xAj ⊂ Aj−1 for 1 ≤ j ≤ n.

So the Springer fiber π−1(x) is the zero set of the vectorfield Vx; it is the set of all flags that are
preserved by x and is often referred to as the variety of fixed flags. For the subregular nilpotent
x ∈ g the Springer fiber turns out to be a string of n− 1 copies of P1, each joined to the next at a
single point. [picture]

16.3. Lemma. The mapping ϕ : Ñ→ B identifies Ñ with the cotangent bundle to the flag manifold.

Proof. The tangent space at the identity to F is TI(G/B) = g/b. So its dual space is

T ∗I (G/B) = {ϕ : g→ C| ϕ(b) = 0} .

The canonical inner product ⟨, ⟩ : g × g → C given by ⟨x, y⟩ = Trace(xy) is symmetric and
nondegenerate. Using this to identify g∗ with g gives

T ∗I (G/B) ∼= {x ∈ g| ⟨x, b⟩ = 0} = n
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Figure 10. Tonny Springer

is the algebra of strictly upper triangular matrices, that is, the nilradical of b. So for each Borel
subgroup A ⊂ G, the cotangent space T ∗A(G/B) ∼= n(A) is naturally isomorphic to the nilradical
of Lie(A). But this is exactly the fiber, ϕ−1(A). □

16.4. The group G acts on everything in the diagram (16.2). It acts transitively on B and it
acts with finitely many orbits on N, each of which is a nilpotent conjugacy class. These form a
Whitney stratification of N by complex algebraic strata. It follows from Jordan normal form that
each nilpotent conjugacy class corresponds to a partition λ1 ≥ λ2 ≥ · · · ≥ λr with

∑
λi = n or

equivalently to a Young frame

Stratum closure relations correspond to refinement of partitions with the largest stratum corre-
sponding to the case of a single Jordan block (λ1 = n) and the smallest stratum corresponding to
0 ∈ N, which is the partition 1 + 1 + 1 · · ·+ 1 = n.
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16.5. The Grothendieck simultaneous resolution is the pair

g̃ = {(x,A) ∈ g×B| x ∈ A} π̂−−−→ g

Given (x,A) ∈ g̃ choose h ∈ G which conjugates A into the standard Borel subgroup B. It
conjugates x into an element x′ ∈ Lie(B) and the diagonal entries α = α(x) ∈ t are well defined
where t is the set of diagonal matrices with trace = 0. On the other hand, the characteristic
polynomial ch(x) of x is determined by the diagonal matrix α but is independent of the order of the
entries. The set of possible characteristic polynomials forms a vector space, with coordinates given
by the coefficients of the characteristic polynomial, which provides an example of a remarkable
theorem of Chevalley (cf. http://www.math.ias.edu/~goresky/Borel.html) that the quotient
t/W is again an affine space. The nilpotent elements N in g map to zero in t/W . In summary we
have a diagram

Ñ ⊂ - g̃
α - t

N

π
?

⊂ - g

π̂
?

ch
- t/W

p
?

16.6. Theorem (Grothendieck, Lusztig, Slowdowy). The map π̂ : g̃→ g is small. The map

π : Ñ → N is semi-small. For each A ∈ t the map π̂ : α−1(A)→ ch−1(p(A)) is a resolution
of singularities.

16.7. Adjoint quotient. There is another way to view the map ch. Each x ∈ g has a unique
Jordan decomposition x = xs+xn into commuting semisimple and nilpotent elements. Then xs is
conjugate to an element of t, and the resulting element is well defined up to the action of W . The
quotient t/W turns out to be isomorphic to the geometric invariant theory quotient g//G and the
map ch : g→ t/W is called the adjoint quotient map.

The vector space t consists of diagonal matrices A = diag(a1, · · · , an) with trace zero. The
reflecting hyperplanes are the subspaces Hij = {A|ai = aj} where two entries coincide and they
are permuted by the action of W . Their image in t/W is the discriminant variety Disc consisting
of all (characteristic) polynomials with multiple roots. The complement of the set ∪i ̸=jHij is
sometimes called the configuration space of n ordered points in C; its fundamental group is the
colored braid group. The complement of the discriminant variety in t/W is the configuration space
of n unordered points, and its fundamental group is the braid group.

Suppose x ∈ grs ⊂ g is regular and semisimple, meaning that its eigenspaces E1, E2, · · · , En are
distinct and form a basis of Cn. Then the flag E1 ⊂ E1⊕E2 ⊂ E1⊕E2⊕E3 · · · is fixed by x and
every fixed flag has this form, for some ordering of the eigenspaces. Therefore there are n! fixed
flags and the symmetric group permutes them according to the regular representation.

http://www.math.ias.edu/~goresky/Borel.html
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16.8. Springer’s representation. Since π̂ is a small map, we have a canonical isomorphism

Rπ̂∗(Qg̃
[n]) ∼= IC•(g;L),

the intersection cohomology sheaf on g, constructible with respect to a stratification of π̂, with
coefficients in the local system L over the regular semisimple elements whose fiber at x ∈ grs is the
direct sum ⊕FQF of copies of Q, one for each fixed flag. The symmetric group W acts on L which
induces an action on IC•(L) and therefore also on the stalk cohomology at each point y ∈ g, that
is, on

Hr(Rπ̂∗(Qg̃
)y = Hr(π̂−1(y)) ∼= IHr(g;L)y.

For y ∈ N this action of W on H∗(π−1(y)) turns out to coincide with Springer’s representation.
The decomposition theorem for the semismall map π provides an enormous amount of information
about these representations.

16.9. Decomposition theorem for semismall maps. Recall that a proper algebraic morphism
f : X → Y is semismall if it can be stratified so that

2 dimC f
−1(y) ≤ cod(S)

for each stratum S ⊂ Y , where y ∈ S. This implies that dim(X) = dim(Y ) and, ifX is nonsingular,
that Rf∗(QX) is perverse on Y . A stratum S ⊂ Y is said to be relevant if 2d = cod(S) where
d = dim f−1(y). In this case, the top degree cohomology H2d(f−1(y) forms a local system LS on
the stratum S. The following result is due to W. Borho and R. MacPherson.

16.10. Proposition. Suppose f : X → Y is semismall and X is nonsingular of complex
dimension d. Then the decomposition theorem has the following special form:

Rf∗(Qx)[d] ∼=
⊕
S

IC•S̄(LS)

where the sum is over those strata S that are relevant (with no shifts, if we use Deligne’s
numbering). In particular, the endomorphism algebra of this sheaf End(Rf∗(QX)[d]) ∼=⊕

S EndS(LS) is isomorphic to the direct sum of the endomorphism algebras of the indi-
vidual local systems LS.

Proof. The top stratum, Y o is always relevant. If no other strata is relevant then the map is
small. In Lecture [??] we described a “standard” technique of proof (let us call this “Proof no.
1”) which implies that Rf∗(QX [d]) ∼= IC•Y (LY o). So there is only one term in the decompsition
theorem. Now suppose the next relevant stratum has codimension c so that the fiber over points
in this stratum has (complex) dimension d = c/2 (and in particular, the complex codimension c is
even). One term in the decomposition theorem is IC•Y (LY o). Consider the support diagram (e.g.
if c = 4):

From this diagram we can see that a new summand must be added to the decomposition, and
it is the local system H4(f−1(y)) = H2d(f−1(y) = LS arising from the top cohomology of the
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i j codC0 codC1 codC2 codC3 codC4 H∗(f−1(y))

8 4 c c c c c

7 3 c c c

6 2 c c

5 1 c

4 0 0 H4(f−1(y))

3 -1 x H3(f−1(y))

2 -2 x x H2(f−1(y))

1 -3 x x x H1(f−1(y))

0 -4 x x x x x H0(f−1(y))

IC• support

fiber, that is, from the irreducible components of the fiber. This local system on S gives rise to
the summand IC•S̄(LS) over the whole of the closure S̄ ⊂ Y . Let US = ∪T≥S be the open set
consisting of S together with the strata larger than S. We have constructed an isomorphism of
Rf∗(QX) with

Rf∗(QX [d]) ∼= IC•Y (LY o)⊕ IC•S̄(LS)

over the open set US. The exact same method as in Proof No.1 shows that this isomorphism
extends uniquely to an isomorphism over the larger open set that contains additional (smaller)
strata until we come to the next relevant stratum. Continuing in this way by induction gives the
desired decomposition.

Finally, if LR, LS are local systems on distinct strata R,S of Y then

HomDb
c(Y )(IC

•
R̄(LR), IC

•
S̄(LS)) = 0

which implies that the endomorphism algebra of this direct sum decomposes into a direct sum of
endomorphism algebras. □

16.11. Some conclusions. Let d = dim(G/B) = n(n − 1)/2. For the SLn adjoint quotient
Rπ∗(QÑ [d])

∼= ⊕SIC
•(S;LS)

(1) Every stratum S is relevant: for x ∈ S, 2 dim(Bx) = cod(S).
(2) The odd cohomology of each Springer fiber H2r+1(Bx) = 0 vanishes.
(3) Let S be a stratum corresponding to some partition (or Young frame) λ = λ(S). Then

the Springer action on the top cohomology Hcod(S)(Bx) is the irreducible representation ρλ
corresponding to λ (modulo possible notational normalization involving transpose of the
partition and tensoring with the sign representation). [Note: this representation is not
(cannot) be realized via permutations of the components of Bx, but the components give,
nevertheless, a basis for the representation.]

(4) Every irreducible representation of W occurs in this decomposition, and it occurs with
multiplicity one.
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(5) The local systems occurring in the decomposition theorem (SLn case only!) are all trivial.
(6) Putting these facts together, let Sλ denote the stratum in N corresponding to the partition

λ. Then, using “classical” degree indices, the decomposition theorem in this case becomes:

Rπ∗(Qd̃)
∼= ⊕λIC

•(Sλ)[−2dλ]⊗ Vλ

where Vλ is the (space of the) irreducible representation ρλ of W and dλ is the complex
dimension of the stratum Sλ.

(7) Applying stalk cohomology at a point x ∈ Sµ to this formula gives:

H i(Bx) ∼= ⊕λ≥µIH
i−2dλ
y (Sλ)⊗ Vλ.

Consequently, if an irreducible representation ρλ of W occurs in H∗(Bx) then the stratum
Sµ containing x is in the closure of the stratum Sλ corresponding to ρ.

(8) More generally, suppose R < S are strata corresponding to partitions µ, λ respectively
and let x ∈ R. Then dim IH i−2dλ(S)x is the multiplicity of the representation ρλ in the
cohomology H i(Bx) of the Springer fiber Bx. In fact the Poincaré polynomial of these
multiplicities

Pλ,µ(t) =
∑
i

mult(ρλ, H
2i(Bx))t

i =
∑
i

rank(IH2i(S)x)t
i

turns out to be the Kostka-Foulkes polynomial.
(9) For x = 0 ∈ N the Springer fiber Bx = G/B is the full flag variety and the representation

of W is the regular representation. Moreover, the full endomorphism algebra

End(Rπ∗(QÑ
) ∼= C[W ]

is isomorphic to the full group-algebra of the Weyl group, with its regular representation.
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degee rank Young

H12(G/B) 1

H10(G/B) 3

H8(G/B) 5 ⊕

H6(G/B) 6 ⊕

H4(G/B) 5 ⊕

H2(G/B) 3

H0(G/B) 1

Figure 11. Springer representations for SL4. Each rep occurs as often as its dimension

Even for the W action on the full flag manifold B ∼= G/B these results are startling. In this
case it had been shown by Borel and Leray that the action of W was the regular representation,
but which irreducible factors appeared in which degrees of cohomology had appeared to be a total
mystery. Many computations were done by hand and the result appeared to be random. The
above conclusions explain that the multiplicity of each representation ρλ in H i(G/B) is given by
the rank of the local intersection cohomology, in degree i, at the origin o ∈ N of the stratum S
that corresponds to the partition λ.
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17. Lecture 17: the Iwahori Hecke Algebra

Let G be a finite group. The convolution of two functions f, f ′ : G→ C is the function

(f ∗ f ′)(x) = 1

|G|
∑
h∈G

f(xh−1)f ′(h) =
1

|G|
∑
a∈G

f(a)f ′(a−1x).

this product is associative. If H ⊂ G is a subgroup the Hecke algebra is

H(G,H) = {ϕ : G→ C| ϕ(kgk′) = ϕ(g) for all k, k′ ∈ H}

with algebra structure given by convolution. It is the convolution algebra of functions on the
double coset space H\G/H. If ρ : H → GL(V ) is a representation, the induced representation is

IndG
H(ρ) = {ϕ : G→ V | ϕ(hx) = ρ(h)ϕ(x) for all h ∈ H, x ∈ G}

with action (g.ϕ)(x) = ϕ(xg−1). Then

HomG(Ind
G
HV,W ) ∼= HomH(V,Res

G
H(W )) and H(G,H) ∼= HomG(Ind

G
H(1), Ind

G
H(1)).

Now let G = SLn(Fq) and H = B the collection of upper triangular matrices (or determinant
one). Let W = Sn be the symmetric group which may be thought of as acting on the standard
basis vectors {e1, · · · , en}. It is generated by the “simple reflections” S = {s1, · · · , sn−1} where
si exchanges ei and ei+1. The length ℓ(w) of an element w ∈ W is the minimum number of
elements required to express w as a product of simple reflections, and it is well defined. The
Bruhat decomposition says that G =

⨿
w∈W BwB. Each B orbit BwB/B ⊂ G/B is isomorphic

to an affine space of dimension ℓ(w).

17.1. Definition. The Hecke algebra H is the algebra of B-bi-invariant functions on G. It
has a basis consisting of functions

ϕw = 1BwB.

The unit element in H is the function ϕ1 = 1B. In this algebra we will use the following
normalization for convolution of bi-invariant functions f, f ′ : G→ C,

(f ∗ f ′)(x) = 1

|B|
∑
h∈G

f(xh−1)f ′(h).

17.2. Lemma. If s ∈ S is a simple reflection and if w ∈ W then the following holds:
ϕw ∗ ϕw′ = ϕww′ if ℓ(w) + ℓ(w′) = ℓ(ww′)

ϕs ∗ ϕs = (q − 1)ϕs + qϕ1

ϕs ∗ ϕw = (q − 1)ϕw + qϕsw if ℓ(sw) < ℓ(w)
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Proof. (The third equation follows from the second by induction.) The key nontrivial point (see
for example, Bump’s notes on Hecke algebras) is that

ℓ(w) + ℓ(w′) = ℓ(ww′) =⇒ (BwB)(Bw′B) = Bww′B

ℓ(ws) = ℓ(w)− 1 =⇒ (BwB)(BsB) ⊂ (BwB) ∪ (BwsB).

Following Bump’s notes, for f ∈ H let ϵ(f) = 1
|B|

∑
g∈G f(g) so that ϵ(f ∗ f ′) = ϵ(f)ϵ(f ′) and

ϵ(ϕw) = qℓ(w). If ℓ(w)+ℓ(w′) = ℓ(ww′) then ϕw ∗ϕw′ is supported on Bww′B and is B bi-invariant.
Apply epsilon to conclude that ϕw ∗ϕw′ = ϕww′ . Similarly, ϕs ∗ϕs is supported on (BsB)∪B so it
equals αϕs+βϕ1 for some α, β ∈ C. Apply ϵ to conclude that q2 = αq+β. Evaluate at x = I ∈ G
to get ϕs ∗ ϕs(I) = |BsB|/|B| = q = α.0 + β.1 So α = q − 1. □

17.3. Remark. The same holds for any semisimple algebraic group G defined over Fq, where B is
a Borel subgroup and W is the Weyl group. More generally, if W is any Coxeter group the Hecke
algebra of W is defined to be the Z[q1/2, q−1/2] algebra generated by symbols ϕw and satisfying the
relations in the box.

17.4. Kazhdan and Lusztig discovered a mysterious new basis for the Hecke algebra that appeared
to be closely related to infinite dimensional representations of the Lie algebra g of SLn. Each
element ϕw ∈ H is invertible and the algebra H admits an involution defined by

ι(q1/2) = q−1/2 and ι(ϕw) = (ϕw−1)−1.

17.5. Theorem (Kazhdan, Lusztig). For each w ∈ W there is a unique element cw ∈ H

such that ι(cw) = cw and

cw = q−ℓ(w)/2
∑
y≤w

Pyw(q)ϕy

where Pww = 1 and Pyw (for y < w) is a polynomial of degree ≤ 1
2
(ℓ(w)− ℓ(y)− 1).

Existence and uniqueness of cw is easily proven by induction. Kazhdan and Lusztig conjectured
that the coefficients of Pyw were nonnegative integers. They further conjectured that, in the
Grothendieck group of Verma modules,

[Lw] =
∑
y≤w

(−1)ℓ(w)−ℓ(y)Pyw(1)[My]

where Mw is the Verma module corresponding to highest weight −ρ − w(ρ) and Lw is its unique
irreducible quotient. This second conjecture became known as the Kazhdan-Lusztig conjectures;
they were eventually proven by J. L. Brylinski and M. Kashiwara and independently by A. Beilinson
and D. Bernstein. This circle of ideas became extremely influential in representation theory. But
what exactly is the meaning of cw and Pyw?



83

Algebra of correspondences

17.6. Let us return to the complex picture with G = SLn(C), B the Borel subgroup of upper trian-
gular matrices and W the symmetric group. let X = G/B be the flag manifold, or equivalently, the
variety of Borel subgroups of G. The group G decomposes as a disjoint union G =

⨿
w] inW BwB.

It follows that the group B acts on X with finitely many orbits, and these are indexed by the
elements of W . For each w ∈ W the Schubert cell or Bruhat cell Xw = BwB/B ⊂ G/B indexed
by w contains Xy in its closure iff y < w in the Bruhat order. Similarly the group G acts on X×X
with finitely many orbits, each of which contains a unique point (B,wB) (thinking of the standard
Borel subgroup B as being the basepoint in the flag manifold) for some w ∈ W . It consists of
pairs of flags (F1 ⊂ F2 ⊂ · · ·Fn = Cn) and (F ′1 ⊂ F ′2 ⊂ · · · ⊂ F ′n = Cn) that are in relative
position w ∈ W , meaning that there exists an ordered basis (e1, e2, · · · , en) of Cn so that, for each
1 ≤ i ≤ n

⟨e1, e2, · · · , ei⟩ = Fi and ⟨ew(1), ew(2), · · · , ew(i)⟩ = F ′i .

If q2 : X ×X → X denotes projection to the second factor then this orbit, let us denote it by Ow

fibers over X with fiber equal to Xw; in particular it is simply connected. In other words, each G
orbit on X ×X intersects the fiber X in a single B orbit.

17.7. Algebra of correspondences. The following construction was discovered independently by
R. MacPherson, G. Lusztig, Brylinski and Kashiwara, Beilinson and Bernsstein and is described in
Springer’s article [Springer]. It is convenient here to change notation in the Hecke algebra, setting

t =
√
q.

Consider the derived categoryDb
c,even(X×X) of sheaves A• onX×X, cohomologically constructible

with respect to this stratification such that H i(A•) = 0 for i odd. For for such a sheaf A• let
H2i(A•)w denote the stalk cohomology of A• at a point in Ow and define

h : Db
c,even → H

h(A) =
∑
w∈W

∑
i≥0

dim(H i(A•)w)t
iϕw

Note that all elements of H obtained in this way have nonnegative coefficients so the image of
h ends up in a sort of “positive cone” in the Hecke algebra. Consider the following diagram of
correspondences.

X ×X ×X

X ×X

q12

�
X ×X

q13
?

X ×X

q23
-

If A•, B• ∈ Db
c(X ×X) define their convolution product
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A• ◦B• = Rq13∗ (q
∗
12(A

•)⊗ q∗23(B
•)) .

17.8. Theorem. If A•, B• ∈ Db
c,even(X) then so is A• ◦B•. The mapping h satisfies

h(A• +B•) = h(A•) + h(B•) and h(A• ◦B•) = h(A•)h(B•) ∈ H.

Moreover h(D(A•)) = ι(h(A•) (so ι corresponds to Verdier duality). Let jw : Ow → X
denote the inclusion. Then

h
(
jw!(COw

)[ℓ(w)]
)
= ϕw and h

(
jw∗(IC

•
Ow

(C))
)
= cw.

tℓ(w)h(IC•
Ow

) = h(IC•
Ow

[−ℓ(w)])

In other words, Py,w is the local intersection cohomology Poincaré polynomial of Xw at a point
in Xy. It vanishes in odd degrees and its coefficients are non-negative. Using “classical” indexing
for sheaf cohomology,

Pyw(t
2) =

∑
i≥0

dim IH2i
y (Xw)t

2i.

This stalk cohomology vanishes in odd degrees and the highest power of t that can occur here
is tℓ(w)−ℓ(y)−1. Besides making the essential connection with geometry this result is a “categorifi-
cation” of the Hecke algebra: it replaces numbers and coefficients with (cohomology) groups. It
implies that the coefficients of Pyw are non-negative integers.

17.9. The proof is tedious but does not require sophisticated methods; it is completely worked out
in some great online notes by Konstanze Rietsch (following an outline of T. A. Springer [Bourbaki],
as communicated to him by R. MacPherson). [work out a few simple examples] For brevity let
IC•e = IC•

Ow
. The support condition for intersection cohomology implies that h(ICw) is a linear

combination of h(jw!Cw) with coefficients that are polynomials which satisfy the degree restriction.
The proof that h(ICw) is fixed under the involution ι takes some work.

First it is shown, if s is a simple reflection with corresponding orbit closure Os ⊂ X ×X that

h(COs
) ◦ A• = (ϕs + 1).h(A•) ∈ H.

The orbit closure OD fibers over X with fiber equal to P1. So this equation is believable but it
takes a bit of work, considering the cases sw > w and sw < w separately.
One way to prove this is to consider the Bott-Samelson resolution of the Schubert variety Xw.

It is obtained as a sequence of blowups by simple reflections. One checks at each stage of the
induction that the result is preserved by ι. This proves that h(ICw) = cw ∈ H.

Finally, again using the Bott Samelsom resolution and induction, one proves that h(ICw ◦
ICw′) = cwcw′ . This proves that h is multiplicative.
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Digression: Hecke algebra and modular forms

Let G = SLn(R), let K = O(n) and let Γ0 = SLn(Z). Then D = G/K be the (contractible)
symmetric space of positive definite symmetric matrices of determinant one. Let X = Γ0\D.
This is the moduli space of Riemannian tori. (For each lattice L ⊂ Rn of determinant one we
get a torus Rn/L and an invariant Riemannian metric on it.) Each g ∈ GQ = SLn(Q) gives a
correspondence on this space as follows. Let Γ′ = Γ0 ∩ (g−1Γ0g) and let X ′ = Γ′\D. Then the
correspondence X ′ → X × X is given by Γ′x 7→ (Γ0x,Γ0gx). It is well defined and each of the
projections X ′ → X is a finite covering. Moreover, the isomorphism class of this correspondence
depends only on the double coset Γ0gΓ0. (Replacing g by γg where γ ∈ Γ0 does not change
the correspondence. Replacing g by gγ changes the correspondence but it gives an isomorphic
correspondence.) Therefore points in the double coset space

Γ0\ SLn(Q)/Γ0

may be interpetred as defining correspondences on X, which therefore acts on the homology, coho-
mology, functions etc. ofX. So the same is true of linear combinations of points. The Hecke algebra
of compactly supported functions (meaning, functions with finite support) on Γ0\ SLn(Q)/Γ0 also
acts on H∗(X). Such functions are called Hecke operators.

This construction makes more sense in the adèlic setting where natural Haar measures can be
used in order to define the algebra structure and the action without resorting to correspondences.
In this setting there is an equality

SLn(Z)\ SLn(R)/K ∼= SLn(Q)\ SLm(AQ)/K. SLn(Ẑ)

and the Hecke algebra is the convolution algebra of locally constant functions with compact support

f ∈ C∞c (SLn(Q)\ SLn(Af )/ SLn(Q))

where AQ denotes the adèles of Q and Af the finite adèles.

18. Lecture 19: The affine theory

18.1. Affine Weyl group. The symmetric group Sn has Dynkin diagram : [diagram] It is gener-
ated by simple reflections s1, · · · , sn−1 with the relations

(1) s2i = 1
(2) sisi+1si = si+1sisi+1 for (1 ≤ i ≤ n− 2)
(3) sisj = sjsi if |i− j| > 1.

It can be interpreted as acting on Rn−1 = {
∑

xi = 0} ⊂ Rn with si acting as reflection across the
hyperplane xi = xi+1. This decomposes Rn−1 into Weyl chambers, one for each element of Sn.

The affine symmetric group S̃n has Dynkin diagram: It is generated by simple reflections
s0, s1, · · · , sn with the same relations as Sn and the additional relations (corresponding to edges
s0s1 and sns0). It can be interpreted as acting on Rn−1 by adding a reflecting hyperplane to the
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previous picture. Then it acts simply transitively on the alcoves. If we take the fundamental alcove

as the basepoint (identity), then every alcove becomes labeled by a unique element of S̃n.

I

A

B

AB

BAB

BA

C

BC

CBC

CB

CA

ACA

AC

This diagram ilustrates the affineWeyl group for SL3. The red lines are the reflecting hyperplanes
of the finite Weyl group (generated by A and B). The blue line is the affine reflection, C.

18.2. The affine symmetric group can also be described as Sn ⋉ A where A is the root lattice of
translations, {

(a1, · · · , an) ∈ Zn|
∑

ai = 0
}

on which Sn acts by permutations. The group A may also be interpretred as the cocharacter group
of the maximal torus T consisting of diagonal matrices of determinant one. The affine Weyl group
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can be described as

{ω : Z→ Z| ω(i+ n) = ω(i) + n}.
In this realization each element is determined by its value on {1, · · · , n} and so it may be written
as [ω(1), · · · , ω(n)]. Then elements in the lattice of translations are the elements [a1, · · · , an] with∑

ai = 0 and they act by addition, that is, ω(i) = ai+ i for 1 ≤ i ≤ n. Then every element ω ∈ S̃n

can be expressed as a permutation followed by a translation.

18.3. Affine Hecke algebra. Let GQp = SLn(Qp), as a locally compact topological group and
set K = G(Zp) = SLm(Zp). Let BFp be the Borel subgroup of SLn(Z/pZ). The Iwahori subgroup
Ip is the preimage π−1(Bp) under the (mod p) mapping ϕ : K → SLn(Z/pZ), that is, it consists
of n× n matrices with entries in Zp, whose diagonal entries are invertible in Zp, and whose lower
diagonal entries are multiples of p. It is compact and open in GQp .

The Iwahori Hecke algebra is the convolution algebra of locally constant complex valued
functions

f ∈ C∞c (Ip\GQp/Ip)

with compact support on GQp that are bi-invariant under Ip.

Haar measure µ on GQp is normalized so that µ(Ip) = 1.
The Bruhat decomposition in this case reads GQp =

⨿
w∈Wa

IpwIp where Wa is the affine Weyl
group. ThenHI is generated by characteristic functions ϕw for w ∈ Wa and with the same relations
as before: ϕ2

s = (q − 1)ϕs + qϕ1. The Kazhdan Lusztig canonical basis cw is defined exactly as
before. The Kazhdan Lusztig theorem works in this context as well and it gives a basis of HI

consisting of elements cw for w ∈ Wa the affine Weyl group.
The field Qp is analogous to the field Fq((T )) of formal Laurent series (meaning formal power

series with finitely many negative powers of T and coefficients in Fq). The ring Zp corresponds to
Fq[[T ]] (the ring of formal power series). Reduction modulo T gives a homomorphism ϕ : Fq[[T ]]→
Fq and the Iwahori subgroup Ip((T )) = ϕ−1(Bq) is defined similarly. Then an Iwahori Hecke algebra
over Fq is defined to be the convolution algebra of locally constant complex valued functions

f ∈ C∞c (Ip[[T ]]\GFq((T ))/Ip[[T ]])

with compact support that are bi-invariant under the Iwahori subgroup.
All of this has a complex analog following the same procedure as in the finite case. Instead of

the flag manifold over C one uses the “affine flag manifold” SLn(C((T )))/I where C((T )) is the
field of formal Laurent series (that is, power series with finitely many negative powers of T ) and
where I = ϕ−1(B) is the Iwahori subgroup defined by (modT ) reduction,

ϕ : SLn(C[[T ]])→ SLn(C).

The quotient SLn ((T ))/I is infinite dimensional but it is an increasing limit of finite dimensional
complex algebraic varieties, and each I orbit of an element w ∈ Wa is a (generalized) “Schubert
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cell” or Bruhat cell, of dimension ℓ(w). The Kazhdan Lusztig polynomials Pyw have non-negative
coefficients and they may be interpreted as the local intersection cohomology Poincaré polynomials
of one Schubert cell at a point in another Schubert cell.

However, the sheaf-convolution construction does not work in this setting because the orbits
of I on X × X (where X denotes the affine flag manifold) have infinite dimension and infinite
codimension. Instead, another approach is needed, which will be described later in the case of the
affine Grassmannian.

18.4. Overview. There are strong analogies between these constructions over different fields. The
following chart gives some idea of the parallels between the different cases.

Field C Fq Qp C((T )) Fq((T )

Group SLn(C) SLn(Fq) SLn(Qp) SLn(C((T ))) SLn(Fq((T )))

symbol GC Gq GQp G((T )) Gq((T ))

Borel/Iwahori

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

) ( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

)
ϕ−1(B) ϕ−1(B) ϕ−1(Bq)

symbol BC BFq Ip I[[T ]] Iq[[T ]]

Weyl group Sn Sn Wa Wa Wa

Bruhat decomp
⨿

w∈W BwB
⨿

w∈W BwB
⨿

w∈Wa
IwI

⨿
w∈Wa

IwI
⨿

w∈Wa
IwI

Flag manifold GC/BC GFq/BFq GQp/Ip G((T ))/I((T )) Gq((T ))/Iq[[T ]]

Parabolic/Parahoric

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

) ( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)
SLn(Zp) SLn(C[[T ]]) SLn(Fq[[T ]])

symbol PC PFq Kp G[[T ]] Gq[[T ]]

Bruhat decomp
⨿

a∈AKpaKp

⨿
a∈A G[[T ]]aG[[T ]]

⨿
a∈A Gq[[T ]]aGq[[T ]]

Grassmannian GC/PC GFq/PFq GQp/Kp G((T ))/G[[T ]] Gq((T ))/Gq[[T ]]
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18.5. Definition. The affine Grassmannian is the quotient

X = SLn(C((T )))/ SLn(C[[T ]]).

If we think of C((T ))n = ∪∞N=0t
−NC[[T ]] then a lattice in C((T ))n is a C[[T ]] submodule M ⊂

C((T ))n (meaning that it is preserved under multiplication by T ) such that

T−NC[[T ]]n ⊃M ⊃ TNC[[T ]]n

for sufficiently large N , and which satisfies the determinant one conditon, ∧nM = C[[T ]]. The
affine Grassmannian is the set of all such lattices. In fact the group SLn(C((T ))) acts transitively
on the set of such lattices and the stabilizer of the standard lattice C[[T ]]n is the parahoric subgroup
SLn(C[[T ]]).


T−1

0 T 2

0 0 T−3

0 0 0 T 2

K =

T−4

T−3 •
T−2 •
T−1 • •
T 0 • •
T 1 • •
T 2 • • • •
T 3 • • • •

18.6. Its stratification. The affine Grassmannian X is an infinite increasing union of projective
varieties. It has two interesting stratifications. The first, is by orbits of the Iwahori subgroup
I[[T ]]. These orbits are indexed by the group of translations A in affine Weyl group and the orbit

Xa = I[[T ]]aK is a Schubert cell: it is an affine space of dimension ℓ(a) with Xy ⊂ Xw iff y < w in
the Bruhat order on Wa. In other words (setting I = I[[T ]] for brevity)

X =
⨿
a∈A

IaK/K because SLn(C((T ))) = IAK

which is the analog of the Iwasawa decomposition of G. The lattice of translations A may be
identified with the group of all diagonal matrices diag(T a1 , T a2 , · · ·T an) such that

∑
i ai = 0. Such

an element may be interpreted as a cocharacter of the maximal torus T of diagonal matrices, that
is, A ∼= χ∗(T).
The second stratification is by orbits of the subgroup K = SLn(C[[T ]]). The (finite dimensional)

Bruhat decomposition SLn(C) =
⨿

w∈W BwB implies that K =
⨿

w∈W IwI. So each K orbit is a
union of n! Schubert cells. Let T be the torus of diagonal matrices (of determinant one) in SLn.
Then W acts on T and on its group of cocharacters A = χ∗(T), which we have identified with the
lattice of translations in the affine Weyl group Wa. A fundamental domain for this action is the
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positive cone A+ ⊂ T+. So the Bruhat decomposition becomes, in this case:

SLn(C((T ))) =
⨿

a∈A+
KaK and X =

⨿
a∈A+

KaK/K.

The strata are no longer cells, but each stratum has the structure of a vector bundle over a
nonsingular projective algebraic variety, so it is simply connected.

18.7. Two more views of the affine Grassmannian. Let C[T ] be the ring of polynomials and
let C(T ) be the field of rational functions p(T )/q(T ). There is a natural map

G(C(T ))/G(C[T ])→ G(C((T )))/G(C[[T ]]).
It turns out to be an isomorphism. We can also consider G(C(T )) to be the loop group

LG =
{
f : S1 → G|f ∈ C(T )

}
consisting of all mappings which are rational functions. (Similarly one could consider analytic,
smooth, or continuous functions; the results are homotopy equivalent). If LG+ denotes mappings
that can be extended (holomorphically, or as a polynomial) over the origin in C then the quotient

LG/LG+ ∼= G(C(T ))/G(C[T ])
is sometimes referred to (by physicists) as the fundamental homogeneous space.
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19. Perverse sheaves on the affine Grassmannian

19.1. Spherical Hecke algebra. The Hecke algebra

H(G(Qp)//G(Zp)) resp. H(G(Fq((T ))//G(Fq[[T ]])) etc.

of locally constant compactly supported bi-invariant functions is called the spherical Hecke algebra,
that is,

H(G(Qp)//G(Zp)) = C∞c (SLn(Zp)\ SLn(Qp)/ SLn(Zp)).

Recall that the representation ring R(G) of a (complex) reductive group G is isomorphic iso-
morphic to the Weyl invariants

R(G) ∼= Z[χ∗(T)]W

in the group of characters of a maximal torus T. In fact, a fundamental domain for the action of
W on χ∗(T) is given by the positive Weyl chamber, χ∗(T)+. To such a character λ ∈ χ∗(T)+ one
associates the irreducible representation Vλ with highest weight λ. Its trace is a character of T.
As a consequence, there are many equivalent ways to view this Hecke algebra.

(1) By theorems of Satake and MacDonald, there is a natural isomorphism

H(G(Qp)//G(Zp)) ∼= C[X∗(T)]W

of the Hecke algebra with the Weyl invariants in the group algebra of the cocharacter group
of the maximal torus.

(2) This in turn may be identified with the Weyl invariants C[X∗(T̂)]W in the characters of the
dual torus.

(3) Which, by the adjoint quotient map, is isomorphic to the group of conjugation-invariant
polynomial functions on PGLn. (Recall that we previously identified this as a polynomial
algebra, given by the coefficients of the characteristic polynomial.)

(4) This may be identified with C ⊗ K(RepPGLn
) (that is, the Grothendieck group of the

category of finite dimensional (rational) representations of PGLn) by associating, to any
representation ρ its character (or trace), which is a Weyl invariant polynomial function.

(5) In fact, these identifications can be made over the integers. See [Gross] who considers the
Hecke algebra HG of Z-valued functions on this double coset and describes isomorphisms

HG −−−→
(
HT ⊗ Z[q 1

2 , q−
1
2 ]
)W

←−−− Rep(Ĝ)⊗ Z[q 1
2 , q−

1
2 ].

Here Ĝ is the Langlands dual group of the group G. (The dual of SLn is PGLn.)

Digression: Dual group

(from Wikipedia, who took it from [Springer])
A root datum consists of a quadruple (X∗,Φ, X∗,Φ

∨) where X∗, X∗ are free abelian groups of
finite rank together with a perfect pairing ⟨, ⟩ : X∗ × X∗ → Z, where Φ ⊂ X∗ and Φ∨ ⊂ X∗
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are finite subsets, and where there is a bijection Φ → Φ∨, denoted α 7→ α∨, and satisfying the
following conditions:

(1) ⟨α, α∨⟩ = 2 for all α ∈ Φ
(2) The map x 7→ x− ⟨x, α∨⟩α takes Φ to Φ and
(3) the induced action on X∗ takes Φ

∨ to Φ∨.

If G is a reductive algebraic group over an algebraically closed field then it defines a root datum
where X∗ is the lattice of characters of a (split) maximal torus T , where X∗ is the lattice of
cocharacters of T , where Φ is the set of roots and Φ∨ is the set of coroots. A connected reductive
algebraic group over an algebraically closed field K is determined up to isomorphism by its root
datum and every root datum corresponds to such a group. LetG be a connected reductive algebraic
group with root datum (X∗,Φ, X∗,Φ

∨). Then the connected reductive algebraic group with root
datum (X∗,Φ

∨, X∗,Φ) is called the Langlands dual group and it is denoted LG.
Langlands duality switches adjoint groups with simply connected groups. Takes type An to An

but it switches types Sp(2n) with SO(2n+ 1). It preserves the type SO(2n).

19.2. Lusztig’s character formula. As above let G = SLn(C((T ))), let K = SLn(C[[T ]]),
let I ⊂ K be the Iwahori subgroup. The affine flag manifold Y = G/I fibers over the affine
Grassmannian X = G/K with fiber isomorphic to K/I ∼= SLn(C)/B(C) the finite dimensional
flag manifold, which is smooth. Consequently the singularities of I-orbit closures in X are the
same as the singularities of I orbit closures in Y . The K orbits on X are indexed by cocharacters
in the positive cone. If λ = diag(a1, a2, · · · , an) ∈ Zn is in the positive cone (and

∑
ai = 0)

let xλ = diag(T a1 , T a2 , · · · , T an) ∈ SLn(C((T ))). The K orbit Xλ corresponding to a is Xλ =
KxλK/K ⊂ G/K. If µ ≤ λ then the point xµ lies in the closure of the stratum Xλ and the local
intersection cohomology Poincaré polynomial∑

i≥0

dim(IH2i
xµ
(Xλ))t

i = Pµ,λ(t)

is given by the Kazhdan Lusztig polynomial Pµ,λ for the affine Weyl group. Lusztig [Lu] proves

19.3. Theorem. Let µ ≤ λ ∈ χ∗(T)+ ∼= χ∗(T∗)+. Let Vλ be the representation (of LG(C)) of
highest weight λ. It decomposes into weight spaces (Vλ)(µ) under the action of the maximal
torus. Then

dim(Vλ(µ)) = Pµλ(1).

That is, the local intersection cohomology Euler characteristic of the affine Schubert varieties
(and of the affine K orbits) equals the weight multiplicity in the irreducible representation. (If
you wish to add up these polynomials in order to get the intersection cohomology of the whole
orbit closure, then you must do so with a shift tℓ(λ)−ℓ(µ) corresponding to the codimension in
Xλ of the I-orbit that contains the point xµ.) Consequently Lusztig considers the full Kazhdan
Lusztig polynomial Pµλ(q) be a q-analog of the weight multiplicity. The individual coefficients were
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eventually shown (by R. Brylinski, Lusztig, others) to equal the multiplicity of the weight µ in a
certain layer V r

λ /V
r−1
λ of the filtration of Vλ that is induced by the principal nilpotent element.

19.4. Moment map. The complex torus {(a1, · · · , an) ∈ Cn|
∏

i ai = 1} ∼= (C×)n−1 acts on
X with a the moment map (for the action of (S1)n−1) µ : X → a∗. Each fixed point xλ =
(T λ1 , · · · , T λn) corresponds to a cocharacter λ = (λ1, · · · , λn) ∈ Zn (with

∑
i λi = 0). The torus

action preserves both stratifications and the image of each stratum closure is a convex polyhedron.
We can put all this information on the same diagram. Fix λ ∈ χ∗(T)+. Let Vλ be the irreducible
representation of PGL3 with highest weight λ. Let Xλ be the K-orbit of the point xλ. Then µ(Xλ)
is the convex polyhedron spanned by the W orbit of the point λ. The lattice points µ inside this
polyhedron correspond to the weight spaces Vλ(µ). At each of these points the Kazhdan Lusztig
polynomial Pµ,λ(t) gives the dimension of this weight space.

For SL3 the moment map image gives the triangular lattice which can be interpreted as the
weight lattice for PGL3. The moment map image of the first stratum is a hexagon and in fact the
first stratum has the structure of a vector bundle over the flag manifold F1,2(C3). The closure of
this stratum consists of adding a single point, so it is the Thom space of this bundle. The local
intersection cohomology at the vertex (which appears at the origin in the diagram) is the primitive
cohomology of the flag manifold (that is, 1 + t).

The following diagram represents the moment map image of the affine Grassmannian for SL3;
it also equals the weight diagram for PGL3(C). The dotted red lines are reflecting hyperplanes
for the Weyl group. The red dot is a highest weight λ for PGLe; the other dots are their Weyl
images. The blue hexagon is the outline of the moment map images; it is also the collection of
weights in the irreducible representation of highest weight λ. The 1 and 1 + t beneth the dots are
the Kazhdan Lusztig polynomials.
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11

1 1

1 1

1 + t

(1, 0,−1)

(0, 1,−1)(0,−1, 1)

(−1, 0, 1)(−1, 1, 0)

(1,−1, 0)

19.5. Perverse sheaves on X. Throughout this section, to simplify notation, letG = SLn(C((T ))),
K = SLn(C[[T ]]) and X = G/K. We would like to imitate the construction with the flag manifold,
and create a convolution product for sheaves on X ×X that are constructible with respect to the
stratification by G orbits, that is, if pij : X ×X ×X → X ×X as before, set

A• ◦B• = Rp13∗(p
∗
12(A

•)⊗ p∗23(B
•)).

Unfortunately the orbits of G on X ×X have infinite dimension and infinite codimension so this
simply does not make sense. V. Ginzburg and (later) K. Vilonen and I. Mirkovič found a way
around this problem.

Let P(X) denote the category of perverse sheaves, constructible with respect to the above orbit
stratification of X. (Ginzburg shows this is equivalent to the category of K-equivariant perverse
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sheaves on X.) Since each stratum is simply connected the local systems associated to these
sheaves are trivial. It turns out that the intersection cohomology sheaves live only in even degrees
and this implies that every perverse sheaf is isomorphic to a direct sum of IC• sheaves of stratum
closures.

Mirkovič and Vilonen define a tensor product structure on P(X) as follows. Consider the diagram

X ×X
p←−−− G×X

q−−−→ G×K X
m−−−→ X

Here, k.(g, x) = (gk, k−1x) so that G×K X is a bundle over X whose fibers are copies of X, and
m(g, x) = gx. If A•, B• ∈ P (X) it turns out that there exists C• a perverse sheaf on G ×K X,
constructible with respect to the G orbits on this space, such that

q∗(C•) = p∗(π∗1(A
•)⊗ π∗2(B

•)

where π1, π2 : X ×X → X are the two projections. Then set A• ◦B• = Rm∗(C
•).

19.6. Theorem. If A•, B• ∈ P(X) then so is A• ◦ B•. The functor h : A• 7→ H∗(X;A•) is
exact and it induces an equivalence of categories

P(X) ∼ Rep(LG)

which takes A• ◦ B• to the tensor product h(A•) ⊗ h(B•) of the associated representations.
If λ ∈ χ∗(T)+ then h(IC•(Xλ)) = Vλ is the irreducible representation of highest weight λ.

19.7. Although it sounds intimidating, the convolution product of sheaves is exactly parallel to
the previous case of the finite (dimensional) flag manifold. Consider the weight diagram for SL3

and the moment map image of torus fixed points in the affine Grassmannian for PGL3. The
coordinate lattices are indicated on Figure 12, for example, the point (1, 0, 0) corresponds to the

lattice sK =

T−2

T−1 •
T 0 • • •
T 1 • • •
T 2 • • •

where s is a certain simple reflection in the affine Weyl group. So the

orbit of G(C[[T ]]) in X × X corresponding to this element consists of the set of pairs of lattices

L0
s−→ L that are in relative position s, that is,{

(L0, L1)| L0 ⊂ L1 ⊂ T−1L0 and dim(L1/L0) = 1
}
.

If we fix L0 to be the standard lattice, then we see that the orbit Os ⊂ X is isomorphic to P1 so
its IC sheaf is the constant sheaf.

Let us consider the convolution product of this sheaf with itself. Thus the total space of the
correspondence consists of triples of lattices

C =
{
(L0, L1, L2)| L0

s−→ L1
s−→ L2

}
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(1,0,0)

(0,1,0) (1,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

Figure 12. SL3: Reflecting hyperplanes and moment map image of O(1,1,0)

in their appropriate relative positions. Apply π13 to obtain the correspondence

π23(C) =
{
(L0, L2)| L0 ⊂ L2 ⊂ T−2L0 and dim(L2/L0) = 2

}
.

Again, taking L0 to be the standard lattice, we need to understand the decomposition into orbits
of Rπ23∗(QC

). There are two types of such lattices: the first type consists of those lattices in

the orbit xK that was considered in §18.6, that is, lattices like this:

T−3

T−2 •
T−1 • ⋆ ⋆

T 0 • • •
T 1 • • •
T 2 • • •

which project

under the moment map to an image that contains the W -translates of (2, 0, 0). The second type
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is lattices like this:

T−3

T−2

T−1 • •
T 0 • • •
T 1 • • •
T 2 • • •

which project under the moment map to an image containing

(1, 1, 0). That is,
m : C → O(2,0,0) ∪ O(1,1,0).

The map m is guaranteed to be semi-small and Rm∗(QC
) breaks into a direct sum of copies of IC

sheaves of these two strata the multiplicities equal to the number of components of the fiber. One
checks that the multiplicity equals one.

(1,0,0)

(0,1,0) (1,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(2,0,0)

(0,2,0)

(0,0,2)

Figure 13. O(1,0,0) ◦ O(1,0,0) = O(2,0,0) + O(1,1,0)

By taking the cohomology of these sheaes we obtain highest weight representations: V(1,0,0) = std,
V(1,1,0) = std∨, and V(2,0,0) = ∧2(std) (where std is the standard representation) so that

std⊗ std ∼= std∨ ⊕ ∧2(std).
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19.8. Remarks. Theorem 19.6 should be regarded as a categorification of Satake’s isomorphism.
In fact, taking the K group of the Grothendieck group on both sides gives

K(P(X)) ∼= H(G,K) ∼= χ∗(T)
W

which is the classical Satake isomorphism.
If we could duplicate the construction in the finite dimensional case we would consider G orbits

on X ×X. Ginzburg, Mirkovič and Vilonen replace X ×X with G×K X which is a fiber bundle
over X with fiber isomorphic to X. They replace the G orbits with the strata Sλ,µ which is a fiber
bundle over Xµ with fiber isomorphic to Xλ.

It is totally nonobvious that the convolution of perverse sheaves is perverse. This depends on
the fact that the mapping m : G ×K X → X is semi-small in a very strong sense. For each
λ, µ ∈ χ∗(T)+ let Sλ,µ = p−1(Xλ) ×K Xµ. These form a stratification of G ×K X. It turns
out that the restriction m : Sλ,µ → X is semi-small (onto its image, which is a union of strata
Xτ ). This implies that Rm∗(L[dλ,µ]) is perverse, for any locally constant sheaf L on Sλ,µ (where
dλ,µ = dim(Sλ,µ).

19.9. Tannakian category. (see [Deligne & Milne]) There is a general theorem that a reductive
algebraic group (say, over an algebraically closed field) can be recovered from its cartegory of
representations. More generally if C is a tensor category, that is, an abelian category together
with a “tensor” structure (A,B ∈ C =⇒ A ◦ B ∈ C) that is commutative and associative in
a functorial way (satisfies the em associativity constraint and the commutativity constraint, and
if h : C → {V S} is a rigid fiber functor (that is, an exact functor to vector spaces such that
h(A ◦ B) = h(A) ⊗ h(B)) then the group of automorphisms of h (that is, the group of natural
transformations h→ h) is an algebraic group G whose category of representations is equivalent to
the original category C.

It turns out that P(X) is such a Tannakian category and that h is a rigid fiber functor. Therefore
the group of automorphisms of h is isomorphic to the Langlands dual group LG.


