
ar
X

iv
:m

at
h/

00
10

14
4v

1 
 [

m
at

h.
A

G
] 

 1
3 

O
ct

 2
00

0

A GEOMETRIC PROOF OF THE EXISTENCE OF WHITNEY

STRATIFICATIONS

V. YU. KALOSHIN

1. Introduction

A stratification of a set, e.g. an analytic variety, is, roughly, a partition of it into mani-
folds so that these manifolds fit together “regularly”. Stratification theory was originated
by Thom and Whitney for algebraic and analytic sets. It was one of the key ingredients
in Mather’s proof of the topological stability theorem [Ma] (see [GM] and [PW] for the
history and further applications of stratification theory).

In this paper, given a partition of a singular set (which we know always exists), we
prove that there is a “regular” partition. Our proof is based on a remark that if there are
two parts of the partition V and W of different dimension and V ⊂ W , then irregularity of
the partition at a point x in V corresponds to the existence of nonunique limits of tangent
planes TyW as y approaches x.

Consider either the category of (semi)analytic (or (semi)algebraic) sets. Call a subset
V ⊂ R

m (or Cm) a semivariety if locally at each point x ∈ R
m (or Cm) it is a finite union

of subsets defined by equations and inequalities

f1 = · · · = fk = 0

{

g1 6= 0, . . . , gl 6= 0 (complex case),

g1 > 0, . . . , gl > 0 (real case),
(1)

where fi’s and gj ’s are real (or complex) analytic (or algebraic) depending on the case
under consideration.

In the real algebraic case semivarieties are usually called semialgebraic sets; in the
complex algebraic case they are called constructible, and in either analytic case they are
called semianalytic sets. Semivarieties are closed under Boolean operations.

Definition 1. (Whitney) Let Vi, Vj be disjoint manifolds in R
m (or Cm), dimVj > dimVi,

and let x ∈ Vi ∩ Vj. A triple (Vj , Vi, x) is called a(resp. b)- regular if
A) when a sequence {yn} ⊂ Vj tends to x and TynVj tends in the Grassmanian bundle

to a subspace τx of Rm (or C
m), then TxVi ⊂ τx;

B) when sequences {yn} ⊂ Vj and {xn} ⊂ Vi each tends to x, the unit vector (xn −
yn)/|xn − yn| tends to a vector v, and TynVj tends to τx, then v ∈ τx

1.
Vj is called a(resp. b)- regular over Vi if each triple (Vj , Vi, x) is a(resp. b)- regular.

The author is partially supported by the Sloan Dissertation Fellowship and the American Institute of
Mathematics Five-Year Fellowship.

1This way of defining b-regularity is due to Mather [Ma]. Whitney’s definition [Wh] is equivalent to
this one provided of a-regularity
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2 Whitney’s stratification

Definition 2. (Whitney) Let V be a semivariety in R
m (or Cm). A disjoint decomposition

V =
⊔

i∈I

Vi, Vi ∪ Vj = ∅ for i 6= j(2)

into smooth semivarieties {Vi}i∈I , called strata, is called an a(resp. b)-regular stratification
if

1. each point has a neighborhood intersecting only finitely many strata;
2. the frontier Vj \ Vj of each stratum Vj is a union of other strata

⊔

i∈J(i) Vi;

3. any triple (Vj , Vi, x) such that x ∈ Vi ⊂ Vj is a(resp. b)-regular.

Theorem 1. [Wh],[Th],[Lo] For any semivariety V in R
m (or C

m) there is an a(resp.
b)-regular stratification.

The existence of stratifications in the complex analytic case was proved by Whitney
[Wh]. Later Thom published a sketch of a proof [Th]. Then Lojasiewicz [Lo] extended
these results to the semianalytic case. The most illuminating proof is due to Wall [Wa],
where based on Milnor’s curve selection lemma [Mi] he simplifies the above proofs. Hi-
ronaka [Hi] gave an elegant proof using his resolution of singularities, but it requires
background in algebraic geometry. We give a geometric proof based on Milnor’s curve
selection lemma [Mi], [Wa], Rolle’s lemma, and a transversality theorem. The rest of the
paper is devoted to this proof.

Proof of theorem 1: A semivariety V has well-defined dimension, say d ≤ m. Denote by
Vreg the set of points, where V is locally a real (or complex) analytic submanifold of Rm

(or Cm) of dimension d. Vreg is a semivariety, moreover, Vsing = V \ Vreg is a semivariety
of positive codimension in V , i.e. dimVsing < dimV . In the analytic case all these results
may be found in Lojasiewicz [Lo]; in the algebraic case they are not difficult (see e.g. [Mi]).

Step 1. There is a filtration of V by semivarieties

V 0 ⊂ V 1 ⊂ · · · ⊂ V d = V,(3)

where for each k = 1, . . . , d the set V k \ V k−1 is a manifold of dimension k. This follows
from the Lojasiewicz result. Indeed, consider Vsing ⊂ V , then V \ Vsing is a manifold of
dimension d and dimVsing < d. Inductive application of these arguments completes the
proof.

A refinement of a decomposition V =
⊔

i∈I Vi is a decomposition V =
⊔

i′∈I′ Vi′ such
that any stratum Vj of the first decomposition is a union of some strata of the second one,
i.e. there is a set I ′(j) ⊂ I ′ such that Vj =

⊔

i′∈I′(j) Vi′ .

Step 2. Let V ⊂ R
m (or C

m) be a manifold and W ⊂ V be a semivariety. Denote
by IntV (W ) the set of interior points of W in V w.r.t. the induced from R

m (resp.
C
m) topology. Let Vi and Vj be a pair of distinct strata. For each point x ∈ Vi ∩ Vj

denote by V con,x
j a local connected component of Vj at x, i.e. a connected component of

intersection of Vj with a ball centered at x and call it essential if the closure of V con,x
j

has x is in the interior, x ∈ IntVi
(Vi ∩ V con,x

j ). Denote by V ess,x
j the union of all local

essential components of Vj. Lojasiewicz [Lo] showed that Vj has only a finitely many local
connected components.
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Theorem 2. For any two disjoint strata Vj and Vi the set of points

Singa(resp.b)(Vj , Vi) = {x ∈ Vi ∩ Vj : (V ess,x
j , Vi, x) is not a(resp. b)− regular},

is a semivariety in Vi and dimSinga(resp.b)(Vj , Vi) < dimVi.

Let us show that this theorem is sufficient to prove Theorem 1. Consider a decompo-
sition V =

⊔

i∈I Vi and split the strata into two groups: the first group consists of strata
of dimension at least k and the second group is of the rest. Suppose that each stratum
from the first group is a(resp. b)-regular over each stratum from the second group. Then
by definition of a(resp. b)-regularity any refinement of a stratum from the second group
preserves this a(resp. b)-regularity.

Now apply this refinement inductively. Consider strata in V d \ V d−1 of dimension d.
Using Theorem 2 and the result of Lojasiewicz [Lo] that a frontier of a semivariety has
dimension less than a semivariety itself, refine V d−1 so that each d-dimensional stratum
is a(resp. b)-regular over each stratum in V d−1. The above remark shows that any further
refinement of the strata in V d−1 preserves the a(resp. b)-regularity of strata from V d\V d−1

over it. This reduces the problem of the existence of stratification for d-dimensional
semivarieties to the same problem for (d − 1)-dimensional semivarieties. Induction on
dimension completes the proof of Theorem 1.

Our proof is based on the observation that if Vi ⊂ Vj are a pair of strata a(resp. b)-
regularity of Vj over Vi at x in Vi is closely related to whether the limit of tangent planes
TyVj is unique or not as y from Vj tends to x. The rest of the paper is devoted to the proof
of Theorem 2 which consists of two steps. In section 1.1 we relate a(resp. b)-regularity
with (non)uniqueness of limits of tangent planes TyVj , then based on it and Rolle’s lemma
in section 1.3 we prove Theorem 2.

1.1. The key definitions. Let Vi and Vj be a pair of distinct strata. Define

Una(Vj , Vi) = {x ∈ Vi ∩ Vj : for any V con,x
j , there exists τx ⊂ TxR

m

(resp. TxC
m) such that for any {yn} ⊂ V con,x

j tending to x, TynVj → τx},
(4)

Since a(resp. b)-regularity is a local property, w.l.o.g. we can assume that locally Vi

is an s-plane with a basis of unit vectors e1, . . . , es. Using an idea of Kuo [Ku] (see also

[Wa]) we define a Kuo map Pa(resp. b) : Vj → R which measures non a(resp. b)-regularity
in terms of an angle between a vector or a plane and the tangent plane to Vj . Denote by

πi : R
m → V ⊥

i (resp. π⊥
i : Rm → Vi) the orthogonal projection along Vi (resp. V ⊥

i ) onto
the complement V ⊥

i (resp. Vi) with x being the origin of Rm and by

πj : Vj × R
m → R

m, πj,t : Vj → R
m for t = 1, . . . , s+ 1 defined by

πj(y, v) = πTyVj
(v), πj,t(y) = πj(y, et), πj,s+1(y) = πj(y, πi(y)/|πi(y)|),

(5)

where πj(y, v) is the orthogonal projection of v along the tangent plane TyVj to Vj at y

naturally embedded into R
m. Define analytic functions Pa(resp. b) : Vj → R by Pa(y) =

∑s
t=1 |πj,t(y)|

2 (resp. Pb(y) =
∑s+1

t=1 |πj,t(y)|
2). By the definition the level sets of Pa(resp. b)

are semivarieties.
Notice that the first s terms of the function Pa(y) measure the angle between TxVi = Vi

and TyVj and the last term measures the angle between the V ⊥
i - component of (y−x)/|y−x|
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and TyVj. Since any vector can be decomposed into Vi and V ⊥
i components, this proves

the following
Fact 1. For any pair distinct strata Vj and Vi existence of a sequence {yn} ⊂ Vj tending

to x with a nonzero limit of Pa(resp. b)(yn) is equivalent to a(resp. b)-irregularity of Vj

over Vi at x.

Unb(Vj , Vi) = {x ∈ Una(Vj , Vi) : for any V con,x
j , there exists ǫ ∈ R

such that for any {yn} ⊂ V con,x
j tending to x, Pb(yn) → ǫ},

(6)

Lemma 1. Let Vi and Vj be a pair of disjoint strata in R
m (or C

m) with Vi ∩ Vj 6= ∅.
Then Singa(resp.b)(Vj , Vi) and Una(resp.b)(Vj , Vi) are semivarieties and

Singa(Vj , Vi) ⊂ Singb(Vj , Vi), Singa(resp.b)(Vj , Vi) ⊂ Vi \ Una(resp.b)(Vj , Vi).

Remark 1. The new result here is that Singa(resp.b)(Vj , Vi) ⊂ Vi \Una(resp.b)(Vj , Vi). The
other inclusion may be found in [Wh], [Ma], [Lo].

Proof: Let’s first prove that Singa(Vj , Vi) is a semivariety. Consider Vi × TVj =
{(x, y, TyVj) : x ∈ Vi, y ∈ Vj}. It is a semivariety in an appropriate Grassmanian
bundle over R

m × R
m (resp. C

m × C
m) and so is its closure. The condition TxVi 6⊂ τx is

semialgebraic and a projection of a semivariety is a semivariety. In the real (resp. complex)
algebraic case it is called the Tarski-Seidenberg Principle [Ja] (resp. elimination theory
[Mu]). In the real analytic case it depends on a generalization due to Lojasiewicz [Lo] to
varieties analytic in some variables and algebraic in others. In the complex analytic case, a
proof may be found in [Wh]. Similar arguments show Singb(Vj , Vi) and Una(resp.b)(Vj , Vi)
are semivarieties.

Now let’s see that Singa(Vj , Vi) ⊂ Singb(Vj , Vi). For any sequence {yn} ⊂ Vj such that
TynVj has a limit τx as yn tends to x and any v ∈ TxVi there is a sequence {xn} ⊂ Vi such
that xn tends to x slower than the sequence {yn}, i.e. |yn − x|/|xn − x| → 0 and the unit
vectors (xn − yn)/|xn − yn| tends to v as n → ∞2. If x /∈ Singb(Vj , Vi), then v belongs to
τx. Since any v ∈ TxVi belongs to τx, TxVi also belongs to τx.

To see that Singa(Vj , Vi) ⊂ Vi \ Una(Vj , Vi), suppose x ∈ Singa(Vj , Vi) ∩ Una(Vj , Vi).
Fix an a-irregular essential local connected component V con,x

j of Vj at x. There is a dimVj-

plane τx such that for any sequence {yn} ⊂ V con,x
j tending to x we have TynVj → τx. Since

x ∈ Singa(Vj , Vi), we have TxVi 6⊂ τx, i.e. there is a unit vector v ∈ TxVi which has a

positive angle with τx, i.e. < (v, τx) = 2δ > 0. Denote by Cδ,v(x) = {y ∈ R
m : ( y−x

|y−x| , v) >

1−δ} the δ-cone around v centered at x and by lv(x) the ray starting at x in the direction
of v. The intersection V con,x

j ∩Cδ,v(x) = V con,x
j,δ,v is a semivariety and lv(x) is in its closure.

By the Lojasiewicz result V con,x
j,δ,v consists of a finite number of connected components.

So one can choose a connected component W con,x
j,δ,v ⊂ V con,x

j,δ,v which contains lv(x) in the

closure. By Milnor’s curve selection lemma [Mi], [Wa] there is an analytic curve γ which
belongs to W con,x

j,δ,v ∪ {x}. Since γ is analytic, it has a limiting tangent vector w at x

2This was first noticed by J.Mather [Ma]
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which is by our construction should belong to τx and Cδ,v(x). This is a contradiction with
< (v, τx) = 2δ.

To see that Singb(Vj , Vi) ⊂ Vi \ Unb(Vj , Vi) it is sufficient to prove that Singb(Vj , Vi)
∩Una(Vj , Vi) ⊂ Vi \ Unb(Vj , Vi). Let x ∈ Singb(Vj , Vi) ∩ Una(Vj, Vi) and V con,x

j be a

b-irregular essential local connected component at x. Since x ∈ Una(Vj , Vi), there is a
unique limiting tangent plane τx = lim TynVj independent of {yn} ⊂ V con,x

j tending to x
and by the previous passage x is a-regular, i.e. Vi ⊂ τx. By Fact 1 and b-irregularity of x
there is a sequence {yn} ∈ V con,x

j such that |Pb(yn)| → 2δ 6= 0. Let’s prove existence of a

sequence {y′n} ∈ V con,x
j such that |Pb(yn)| → ǫ < δ which shows that x /∈ Unb(Vj , Vi).

For each x̃ ∈ Vi close to x consider the “level” set V con,x
j (x̃) = V con,x

j ∩ (V ⊥
i + {x̃}) over

x̃. Transversality of τx with V ⊥
i and uniqueness of limTynV

con,x
j imply that V con,x

j (x̃) is

a manifold and τj(y) = TyVj ∩ V ⊥
i depends continuously on y in V con,x

j . Consider the

set of x̃ ∈ Vi for which have the corresponding “level” set V con,x
j (x̃) has x̃ in the closure,

i.e. x̃ ∈ V con,x
j (x̃). Since V con,x

j is essential, the set of such x̃’s is everywhere dense in

a neighborhood of x in Vi. Moreover, the “angle” function Pb is bounded in absolute
value by δ on each local connected “level” component of V con,x

j (x̃) having x̃ in its closure.

Thus, one can find a sequence of points {yn} ⊂ V con,x
j tending to x each point yn of which

belongs to a “level” connected component of V con,x
j (π⊥

i (yn)), having π⊥
i (yn) ∈ Vi in the

closure. By construction |Pb(yn)| < δ for all n. Q.E.D.

1.2. Separation of Planes. Consider the real case. The complex case can be done in
a similar way. Let τ0 and τ1 be two distinct orientable k-dimensional planes in R

m. An
orientable (m − k)-dimensional plane l in R

m separates τ0 and τ1 if l is transversal to τ0
and τ1 and the orientations induced by τ0 + l and τ1 + l in R

m are different. Notice that
there always exists an open set of orientable (m − k)-planes separating any two distinct
orientable k-plane.

Rolle’s Lemma. If a continuous family of orientable k-planes {τt}t∈[0,1] connects τ0
and τ1 and an orientable (m − k)-plane l separates τ0 and τ1. Then for some t∗ ∈ (0, 1)
transversality of τt∗ and l fails.

In what follows we use the transversality theorem [GM] which says : if V ⊂ R
m is a

manifold, then almost every plane of dimension k is transversal to V .

1.3. A reduction lemma.

Lemma 2. Let Vj and Vi be a distinct strata and dimVj > dimVi. Then there is a set
of strata {V p

j }p∈Z (resp. {V p
i }p∈Z) in Vj (resp. in Vi) each of positive codimension in Vj

(resp. in Vi) such that

Singa(resp. b)(Vj , Vi) ⊂
⋃

p∈Z

Singa(resp. b)(V
p
j , Vi)

⋃

p∈Z

V p
i .(7)

Remarks. 1. Inductive application of this lemma to the right-hand side of (7) reduces
dimensions of V p

j ’s up to dimVi.

2. By the result of Lojasiewicz [Lo] dimension of the frontier of a semivariety (Singa(resp.b)(V
p
j , Vi) ⊂

Vi ∩ V p
j ) has dimension strictly smaller that a semivariety itself.
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3. By lemma 1 the set Singa(resp. b)(Vj , Vi) is a semivariety. Since a countable union of
semivarieties of positive codimension in Vi contains Singa(resp. b)(Vj , Vi), Singa(resp. b)(Vj , Vi)
has a positive codimension in Vi which proves Theorem 2.

Proof: If x ∈ Singa(resp. b)(Vj , Vi), then by the construction of Pa(resp.b), for some

ǫ > 0 there is a sequence {yn} ⊂ V con,x
j with Pa(resp.b)(yn) → ǫ. There are two cases:

1) there are different limits: Pa(resp.b)(y′n) → ǫ′, Pa(resp.b)(yn) → ǫ′′, and ǫ′ 6= ǫ′′;

2) the limit Pa(resp.b)(yn) is unique, positive, and independent of {yn}
3.

Consider case 1). By Sard’s lemma there is a regular value ǫ∗ ∈ (ǫ′, ǫ′′) of Pa(resp.b).

By the rank theorem V ǫ∗

j = (Pa(resp.b))−1(ǫ∗) is a smooth semivariety of codimension

1 in Vj. Let’s show that x ∈ V ǫ∗

j . Consider a local connected component V con,x
j and

two sequences {y′n} and {y′′n} in V con,x
j converging to x such that Pa(resp.b)(y′n) → ǫ′ and

Pa(resp.b)(y′′n) → ǫ′′ as n → ∞. Pa(resp.b) is continuous and V con,x
j is connected, thus we

can connect each y′n and y′′n in V con,x
j by a curve and find a sequence ỹn → x for which

Pa(resp.b)(ỹn) = ǫ∗. Thus x ∈ V ǫ∗

j . Consider a countable dense set {ǫp}p∈Z+
in [0, k+ 1] of

regular values of Pa(resp.b) so that for any two ǫ′ 6= ǫ′′, there is a separating ǫp ∈ (ǫ′, ǫ′′).

Define V p
j = (Pa(resp.b))−1(ǫp). Thus any b-irregular point x is in the closure of the union

∪p∈Z+
V p
j . After consideration of case 2), we will prove that V p

j is b-irregular over Vi at
those x.

Consider case 2). By Lemma 1 in this case if x ∈ Singa(resp. b)(Vj , Vi), then x belongs

to Vi \ Una(Vj, Vi). Therefore, there are two sequences {y0n}, {y1n} in a local connected
component V con,x

j tending to x such that Ty0n
Vj → τ0, Ty1n

Vj → τ1, and τ0 6= τ1. Choose

an orientation of Ty0
0
Vj. By connecting y00 locally with all other points {ysn} one can induce

an orientation on all other TysnVj so that the orientations of τ0 and τ1 coincide with the
orientations of the limits.

Denote dimVj by k. There is an orientable (m − k)-plane lj separating τ0 and τ1 and
transversal to Vj (by the transversality theorem). Consider the orthogonal projection

πlj along lj onto its orthogonal complement l⊥j . Denote by plj ,j its restriction to Vj,

plj ,j = πlj |Vj
: Vj → l⊥j . Denote by Crit(lj, Vj) the set of critical points of plj ,j in Vj

where the rank of plj ,j is not maximal. Then Crit(lj, Vj) is a semivariety in Vj and

dimCrit(lj, Vj) < dimVj. Connect two points y0n and y1n by a curve in Vj, then Ty0n
Vj

deformates continuously to Ty0n
Vj. Then by Rolle’s Lemma there is a critical point of plj ,j

in V con,x
j arbitrarily close to x. Thus x ∈ Crit(lj, Vj).

By the transversality theorem there is a countable dense set of orientable (m−k)-planes
{lrj}r∈Z+

transversal to Vj and separating any two distinct orientable k-planes τ0 and τ1.
Therefore, we have

Vi \ Una(Vj , Vi) ⊂
⋃

r∈Z+

{

Crit(lrj , Vj) \ Crit(lrj , Vj)
}

.(8)

3one can show that this case is impossible
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By lemma 1 we know that Vi \ Una(Vj , Vi) is a semivariety. We know that Crit(lj, Vj)
⊂ Vj is a semivariety and dimCrit(lj , Vj) < dimVj. Thus we can decompose it into strata
Crit(lj, Vj) =

⊔

p∈Lj
V p
j . Renumerate these V p

j ’s to have {V p
j }p∈Z−

.

Consider strata {V p
j }p∈Z ⊂ Vj which we constructed in the cases 1 and 2. Then

Singa(resp. b)(Vj , Vi) ⊂
⋃

p∈Z

{

V p
j \ V p

j

}

.(9)

The definitions of Pa(resp.b) and πj,s explicitly imply that (7) is satisfied, because Pa(resp.b)(yn)
has a positive limit point for any {yn} ⊂ V p

j . If one projects along a smaller plane

(TynV
p
j ⊂ TynVj), then the size of the projection is larger. Thus for the Kuo map

P
a(resp.b)
jp,i : V p

j → R, defined in (5), the sequence P
a(resp.b)
jp,i (yn) also has a positive limit

point. Now to separate interior and boundary points of the closures V p
j in Vi define the

set V p
i = (Vi ∩ V p

j ) \ IntVi
(Vi ∩ V p

j ). This completes the proof of the lemma and Theorem
2. Q.E.D.
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