A GEOMETRIC PROOF OF THE EXISTENCE OF WHITNEY STRATIFICATIONS

V. YU. KALOSHIN

1. Introduction

A stratification of a set, e.g. an analytic variety, is, roughly, a partition of it into manifolds so that these manifolds fit together "regularly". Stratification theory was originated by Thom and Whitney for algebraic and analytic sets. It was one of the key ingredients in Mather's proof of the topological stability theorem (Ma] (see GM] and PW for the history and further applications of stratification theory).

In this paper, given a partition of a singular set (which we know always exists), we prove that there is a "regular" partition. Our proof is based on a remark that if there are two parts of the partition V and W of different dimension and $V \subset \bar{W}$, then irregularity of the partition at a point x in V corresponds to the existence of nonunique limits of tangent planes $T_{y} W$ as y approaches x.

Consider either the category of (semi)analytic (or (semi)algebraic) sets. Call a subset $V \subset \mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{C}^{m}\right)$ a semivariety if locally at each point $x \in \mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{C}^{m}\right)$ it is a finite union of subsets defined by equations and inequalities

$$
f_{1}=\cdots=f_{k}=0 \quad \begin{cases}g_{1} \neq 0, \ldots, g_{l} \neq 0 & \text { (complex case) }, \tag{1}\\ g_{1}>0, \ldots, g_{l}>0 & \text { (real case) }\end{cases}
$$

where f_{i} 's and g_{j} 's are real (or complex) analytic (or algebraic) depending on the case under consideration.

In the real algebraic case semivarieties are usually called semialgebraic sets; in the complex algebraic case they are called constructible, and in either analytic case they are called semianalytic sets. Semivarieties are closed under Boolean operations.
Definition 1. (Whitney) Let V_{i}, V_{j} be disjoint manifolds in $\mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{C}^{m}\right)$, $\operatorname{dim} V_{j}>\operatorname{dim} V_{i}$, and let $x \in V_{i} \cap \overline{V_{j}}$. A triple $\left(V_{j}, V_{i}, x\right)$ is called a(resp. b)- regular if
A) when a sequence $\left\{y_{n}\right\} \subset V_{j}$ tends to x and $T_{y_{n}} V_{j}$ tends in the Grassmanian bundle to a subspace τ_{x} of $\mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{C}^{m}\right)$, then $T_{x} V_{i} \subset \tau_{x}$;
B) when sequences $\left\{y_{n}\right\} \subset V_{j}$ and $\left\{x_{n}\right\} \subset V_{i}$ each tends to x, the unit vector $\left(x_{n}-\right.$ $\left.y_{n}\right) /\left|x_{n}-y_{n}\right|$ tends to a vector v, and $T_{y_{n}} V_{j}$ tends to τ_{x}, then $v \in \tau_{x} \rrbracket$.
V_{j} is called a resp. b)- regular over V_{i} if each triple $\left(V_{j}, V_{i}, x\right)$ is a (resp. b)- regular.

[^0]Definition 2. (Whitney) Let V be a semivariety in \mathbb{R}^{m} (or \mathbb{C}^{m}). A disjoint decomposition

$$
\begin{equation*}
V=\bigsqcup_{i \in I} V_{i}, \quad V_{i} \cup V_{j}=\emptyset \quad \text { for } \quad i \neq j \tag{2}
\end{equation*}
$$

into smooth semivarieties $\left\{V_{i}\right\}_{i \in I}$, called strata, is called an a (resp. b)-regular stratification if

1. each point has a neighborhood intersecting only finitely many strata;
2. the frontier $\overline{V_{j}} \backslash V_{j}$ of each stratum V_{j} is a union of other strata $\bigsqcup_{i \in J(i)} V_{i}$;
3. any triple $\left(V_{j}, V_{i}, x\right)$ such that $x \in V_{i} \subset \overline{V_{j}}$ is a(resp. b)-regular.

Theorem 1. Wh, Th, Ld For any semivariety V in \mathbb{R}^{m} (or \mathbb{C}^{m}) there is an a (resp. b)-regular stratification.

The existence of stratifications in the complex analytic case was proved by Whitney [Wh]. Later Thom published a sketch of a proof (Th]. Then Lojasiewicz [Ld] extended these results to the semianalytic case. The most illuminating proof is due to Wall [Wa], where based on Milnor's curve selection lemma Mi] he simplifies the above proofs. Hironaka [Hi] gave an elegant proof using his resolution of singularities, but it requires background in algebraic geometry. We give a geometric proof based on Milnor's curve selection lemma Mi], Wa, Rolle's lemma, and a transversality theorem. The rest of the paper is devoted to this proof.

Proof of theorem 17: A semivariety V has well-defined dimension, say $d \leq m$. Denote by $V_{\text {reg }}$ the set of points, where V is locally a real (or complex) analytic submanifold of \mathbb{R}^{m} (or \mathbb{C}^{m}) of dimension $d . V_{\text {reg }}$ is a semivariety, moreover, $V_{\text {sing }}=V \backslash V_{\text {reg }}$ is a semivariety of positive codimension in V, i.e. $\operatorname{dim} V_{\text {sing }}<\operatorname{dim} V$. In the analytic case all these results may be found in Lojasiewicz [D]; in the algebraic case they are not difficult (see e.g. Mi]).

Step 1. There is a filtration of V by semivarieties

$$
\begin{equation*}
V^{0} \subset V^{1} \subset \cdots \subset V^{d}=V \tag{3}
\end{equation*}
$$

where for each $k=1, \ldots, d$ the set $V^{k} \backslash V^{k-1}$ is a manifold of dimension k. This follows from the Lojasiewicz result. Indeed, consider $V_{\text {sing }} \subset V$, then $V \backslash V_{\text {sing }}$ is a manifold of dimension d and $\operatorname{dim} V_{\text {sing }}<d$. Inductive application of these arguments completes the proof.

A refinement of a decomposition $V=\bigsqcup_{i \in I} V_{i}$ is a decomposition $V=\bigsqcup_{i^{\prime} \in I^{\prime}} V_{i^{\prime}}$ such that any stratum V_{j} of the first decomposition is a union of some strata of the second one, i.e. there is a set $I^{\prime}(j) \subset I^{\prime}$ such that $V_{j}=\bigsqcup_{i^{\prime} \in I^{\prime}(j)} V_{i^{\prime}}$.

Step 2. Let $V \subset \mathbb{R}^{m}$ (or \mathbb{C}^{m}) be a manifold and $W \subset V$ be a semivariety. Denote by $\operatorname{Int}_{V}(W)$ the set of interior points of W in V w.r.t. the induced from \mathbb{R}^{m} (resp. \mathbb{C}^{m}) topology. Let V_{i} and V_{j} be a pair of distinct strata. For each point $x \in V_{i} \cap \overline{V_{j}}$ denote by $V_{j}^{\text {con,x }}$ a local connected component of V_{j} at x, i.e. a connected component of intersection of V_{j} with a ball centered at x and call it essential if the closure of $V_{j}^{\text {con, } x}$ has x is in the interior, $x \in \operatorname{Int}_{V_{i}}\left(V_{i} \cap \overline{V_{j}^{\text {con,x}}}\right)$. Denote by $V_{j}^{\text {ess,x }}$ the union of all local essential components of V_{j}. Lojasiewicz Lo showed that V_{j} has only a finitely many local connected components.

Theorem 2. For any two disjoint strata V_{j} and V_{i} the set of points
$\operatorname{Sing}_{a(\text { resp.b) }}\left(V_{j}, V_{i}\right)=\left\{x \in V_{i} \cap \overline{V_{j}}:\left(V_{j}^{\text {ess }, x}, V_{i}, x\right)\right.$ is not $a($ resp. $b)$ - regular $\}$,
is a semivariety in V_{i} and $\operatorname{dim} \operatorname{Sing}_{a(\operatorname{resp} . b)}\left(V_{j}, V_{i}\right)<\operatorname{dim} V_{i}$.
Let us show that this theorem is sufficient to prove Theorem 1. Consider a decomposition $V=\bigsqcup_{i \in I} V_{i}$ and split the strata into two groups: the first group consists of strata of dimension at least k and the second group is of the rest. Suppose that each stratum from the first group is a (resp. b)-regular over each stratum from the second group. Then by definition of a (resp. b)-regularity any refinement of a stratum from the second group preserves this a (resp. b)-regularity.

Now apply this refinement inductively. Consider strata in $V^{d} \backslash V^{d-1}$ of dimension d. Using Theorem 2 and the result of Lojasiewicz [D] that a frontier of a semivariety has dimension less than a semivariety itself, refine V^{d-1} so that each d-dimensional stratum is a (resp. b)-regular over each stratum in V^{d-1}. The above remark shows that any further refinement of the strata in V^{d-1} preserves the $a\left(\right.$ resp. b)-regularity of strata from $V^{d} \backslash V^{d-1}$ over it. This reduces the problem of the existence of stratification for d-dimensional semivarieties to the same problem for $(d-1)$-dimensional semivarieties. Induction on dimension completes the proof of Theorem 1 .

Our proof is based on the observation that if $V_{i} \subset \overline{V_{j}}$ are a pair of strata $a($ resp. b)regularity of V_{j} over V_{i} at x in V_{i} is closely related to whether the limit of tangent planes $T_{y} V_{j}$ is unique or not as y from V_{j} tends to x. The rest of the paper is devoted to the proof of Theorem 2 which consists of two steps. In section 1.1 we relate a (resp. b)-regularity with (non) uniqueness of limits of tangent planes $T_{y} V_{j}$, then based on it and Rolle's lemma in section 1.3 we prove Theorem 2 .
1.1. The key definitions. Let V_{i} and V_{j} be a pair of distinct strata. Define

$$
\begin{equation*}
U n_{a}\left(V_{j}, V_{i}\right)=\left\{x \in V_{i} \cap \overline{V_{j}}: \text { for any } V_{j}^{\text {con,x }}, \text { there exists } \tau_{x} \subset T_{x} \mathbb{R}^{m}\right. \tag{4}
\end{equation*}
$$

(resp. $T_{x} \mathbb{C}^{m}$) such that for any $\left\{y_{n}\right\} \subset V_{j}^{\text {con,x }}$ tending to $\left.x, \quad T_{y_{n}} V_{j} \rightarrow \tau_{x}\right\}$,
Since a (resp. b)-regularity is a local property, w.l.o.g. we can assume that locally V_{i} is an s-plane with a basis of unit vectors e_{1}, \ldots, e_{s}. Using an idea of Kuo Ku (see also Wa) we define a Kuo map $\mathcal{P}^{a(\text { resp. b) }}: V_{j} \rightarrow \mathbb{R}$ which measures non $a($ resp. b)-regularity in terms of an angle between a vector or a plane and the tangent plane to V_{j}. Denote by $\pi_{i}: \mathbb{R}^{m} \rightarrow V_{i}^{\perp}$ (resp. $\pi_{i}^{\perp}: \mathbb{R}^{m} \rightarrow V_{i}$) the orthogonal projection along V_{i} (resp. V_{i}^{\perp}) onto the complement V_{i}^{\perp} (resp. V_{i}) with x being the origin of \mathbb{R}^{m} and by

$$
\begin{array}{r}
\pi_{j}: V_{j} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \pi_{j, t}: V_{j} \rightarrow \mathbb{R}^{m} \text { for } t=1, \ldots, s+1 \text { defined by } \\
\pi_{j}(y, v)=\pi_{T_{y} V_{j}}(v), \pi_{j, t}(y)=\pi_{j}\left(y, e_{t}\right), \pi_{j, s+1}(y)=\pi_{j}\left(y, \pi_{i}(y) /\left|\pi_{i}(y)\right|\right) \tag{5}
\end{array}
$$

where $\pi_{j}(y, v)$ is the orthogonal projection of v along the tangent plane $T_{y} V_{j}$ to V_{j} at y naturally embedded into \mathbb{R}^{m}. Define analytic functions $\mathcal{P}^{a(r e s p . b)}: V_{j} \rightarrow \mathbb{R}$ by $\mathcal{P}^{a}(y)=$ $\sum_{t=1}^{s}\left|\pi_{j, t}(y)\right|^{2}\left(\right.$ resp. $\left.\mathcal{P}^{b}(y)=\sum_{t=1}^{s+1}\left|\pi_{j, t}(y)\right|^{2}\right)$. By the definition the level sets of $\mathcal{P}^{a(r e s p . b)}$ are semivarieties.

Notice that the first s terms of the function $\mathcal{P}^{a}(y)$ measure the angle between $T_{x} V_{i}=V_{i}$ and $T_{y} V_{j}$ and the last term measures the angle between the V_{i}^{\perp} - component of $(y-x) /|y-x|$
and $T_{y} V_{j}$. Since any vector can be decomposed into V_{i} and V_{i}^{\perp} components, this proves the following

Fact 1. For any pair distinct strata V_{j} and V_{i} existence of a sequence $\left\{y_{n}\right\} \subset V_{j}$ tending to x with a nonzero limit of $\mathcal{P}^{a(r e s p . ~ b) ~}\left(y_{n}\right)$ is equivalent to a(resp. b)-irregularity of V_{j} over V_{i} at x.

$$
\begin{array}{r}
U n_{b}\left(V_{j}, V_{i}\right)=\left\{x \in U n_{a}\left(V_{j}, V_{i}\right): \text { for any } V_{j}^{\text {con }, x} \text {, there exists } \epsilon \in \mathbb{R}\right. \\
\text { such that for any } \left.\left\{y_{n}\right\} \subset V_{j}^{\text {con }, x} \text { tending to } x, \mathcal{P}^{b}\left(y_{n}\right) \rightarrow \epsilon\right\}, \tag{6}
\end{array}
$$

Lemma 1. Let V_{i} and V_{j} be a pair of disjoint strata in \mathbb{R}^{m} (or \mathbb{C}^{m}) with $V_{i} \cap \overline{V_{j}} \neq \emptyset$. Then $\operatorname{Sing}_{a(\mathrm{resp} . b)}\left(V_{j}, V_{i}\right)$ and $U n_{a(\mathrm{resp} . b)}\left(V_{j}, V_{i}\right)$ are semivarieties and

$$
\operatorname{Sing}_{a}\left(V_{j}, V_{i}\right) \subset \operatorname{Sing}_{b}\left(V_{j}, V_{i}\right), \quad \operatorname{Sing}_{a(\text { resp. } b)}\left(V_{j}, V_{i}\right) \subset V_{i} \backslash U n_{a(\text { resp.b) }}\left(V_{j}, V_{i}\right)
$$

Remark 1. The new result here is that $\operatorname{Sing}_{a(\mathrm{resp.b)}}\left(V_{j}, V_{i}\right) \subset V_{i} \backslash U n_{a(\text { resp.b) }}\left(V_{j}, V_{i}\right)$. The other inclusion may be found in Wh , Ma , [L0].

Proof: Let's first prove that $\operatorname{Sing}_{a}\left(V_{j}, V_{i}\right)$ is a semivariety. Consider $V_{i} \times T V_{j}=$ $\left\{\left(x, y, T_{y} V_{j}\right): x \in V_{i}, y \in V_{j}\right\}$. It is a semivariety in an appropriate Grassmanian bundle over $\mathbb{R}^{m} \times \mathbb{R}^{m}$ (resp. $\mathbb{C}^{m} \times \mathbb{C}^{m}$) and so is its closure. The condition $T_{x} V_{i} \not \subset \tau_{x}$ is semialgebraic and a projection of a semivariety is a semivariety. In the real (resp. complex) algebraic case it is called the Tarski-Seidenberg Principle (Ja) (resp. elimination theory Mul). In the real analytic case it depends on a generalization due to Lojasiewicz (L0) to varieties analytic in some variables and algebraic in others. In the complex analytic case, a proof may be found in Wh. Similar arguments show $\operatorname{Sing}_{b}\left(V_{j}, V_{i}\right)$ and $U n_{a(\text { resp.b) }}\left(V_{j}, V_{i}\right)$ are semivarieties.

Now let's see that $\operatorname{Sing}_{a}\left(V_{j}, V_{i}\right) \subset \operatorname{Sing}_{b}\left(V_{j}, V_{i}\right)$. For any sequence $\left\{y_{n}\right\} \subset V_{j}$ such that $T_{y_{n}} V_{j}$ has a limit τ_{x} as y_{n} tends to x and any $v \in T_{x} V_{i}$ there is a sequence $\left\{x_{n}\right\} \subset V_{i}$ such that x_{n} tends to x slower than the sequence $\left\{y_{n}\right\}$, i.e. $\left|y_{n}-x\right| /\left|x_{n}-x\right| \rightarrow 0$ and the unit vectors $\left(x_{n}-y_{n}\right) /\left|x_{n}-y_{n}\right|$ tends to v as $\left.n \rightarrow \infty\right|^{2}$. If $x \notin \operatorname{Sing} g_{b}\left(V_{j}, V_{i}\right)$, then v belongs to τ_{x}. Since any $v \in T_{x} V_{i}$ belongs to $\tau_{x}, T_{x} V_{i}$ also belongs to τ_{x}.

To see that $\operatorname{Sing}_{a}\left(V_{j}, V_{i}\right) \subset V_{i} \backslash U n_{a}\left(V_{j}, V_{i}\right)$, suppose $x \in \operatorname{Sing}_{a}\left(V_{j}, V_{i}\right) \cap U n_{a}\left(V_{j}, V_{i}\right)$. Fix an a-irregular essential local connected component $V_{j}^{\text {con,x }}$ of V_{j} at x. There is a $\operatorname{dim} V_{j^{-}}$ plane τ_{x} such that for any sequence $\left\{y_{n}\right\} \subset V_{j}^{\text {con, } x}$ tending to x we have $T_{y_{n}} V_{j} \rightarrow \tau_{x}$. Since $x \in \operatorname{Sing}_{a}\left(V_{j}, V_{i}\right)$, we have $T_{x} V_{i} \not \subset \tau_{x}$, i.e. there is a unit vector $v \in T_{x} V_{i}$ which has a positive angle with τ_{x}, i.e. $<\left(v, \tau_{x}\right)=2 \delta>0$. Denote by $C_{\delta, v}(x)=\left\{y \in \mathbb{R}^{m}:\left(\frac{y-x}{|y-x|}, v\right)>\right.$ $1-\delta\}$ the δ-cone around v centered at x and by $l_{v}(x)$ the ray starting at x in the direction of v. The intersection $V_{j}^{\text {con, } x} \cap C_{\delta, v}(x)=V_{j, \delta, v}^{c o n, x}$ is a semivariety and $l_{v}(x)$ is in its closure. By the Lojasiewicz result $V_{j, \delta, v}^{\text {con,x }}$ consists of a finite number of connected components. So one can choose a connected component $W_{j, \delta, v}^{c o n, x} \subset V_{j, \delta, v}^{c o n, x}$ which contains $l_{v}(x)$ in the closure. By Milnor's curve selection lemma Mi], Wa] there is an analytic curve γ which belongs to $W_{j, \delta, v}^{c o n, x} \cup\{x\}$. Since γ is analytic, it has a limiting tangent vector w at x

[^1]which is by our construction should belong to τ_{x} and $C_{\delta, v}(x)$. This is a contradiction with $<\left(v, \tau_{x}\right)=2 \delta$.

To see that $\operatorname{Sing}_{b}\left(V_{j}, V_{i}\right) \subset V_{i} \backslash U n_{b}\left(V_{j}, V_{i}\right)$ it is sufficient to prove that $\operatorname{Sing}_{b}\left(V_{j}, V_{i}\right)$ $\cap U n_{a}\left(V_{j}, V_{i}\right) \subset V_{i} \backslash U n_{b}\left(V_{j}, V_{i}\right)$. Let $x \in \operatorname{Sing}_{b}\left(V_{j}, V_{i}\right) \cap U n_{a}\left(V_{j}, V_{i}\right)$ and $V_{j}^{\text {con,x }}$ be a b-irregular essential local connected component at x. Since $x \in U n_{a}\left(V_{j}, V_{i}\right)$, there is a unique limiting tangent plane $\tau_{x}=\lim T_{y_{n}} V_{j}$ independent of $\left\{y_{n}\right\} \subset V_{j}^{\text {con }, x}$ tending to x and by the previous passage x is a-regular, i.e. $V_{i} \subset \tau_{x}$. By Fact 1 and b-irregularity of x there is a sequence $\left\{y_{n}\right\} \in V_{j}^{\text {con,x }}$ such that $\left|\mathcal{P}^{b}\left(y_{n}\right)\right| \rightarrow 2 \delta \neq 0$. Let's prove existence of a sequence $\left\{y_{n}^{\prime}\right\} \in V_{j}^{c o n, x}$ such that $\left|\mathcal{P}^{b}\left(y_{n}\right)\right| \rightarrow \epsilon<\delta$ which shows that $x \notin U n_{b}\left(V_{j}, V_{i}\right)$.

For each $\tilde{x} \in V_{i}$ close to x consider the "level" set $V_{j}^{\text {con,x }}(\tilde{x})=V_{j}^{\text {con,x }} \cap\left(V_{i}^{\perp}+\{\tilde{x}\}\right)$ over \tilde{x}. Transversality of τ_{x} with V_{i}^{\perp} and uniqueness of $\lim T_{y_{n}} V_{j}^{\text {con }, x}$ imply that $V_{j}^{\text {con,x }}(\tilde{x})$ is a manifold and $\tau_{j}(y)=T_{y} V_{j} \cap V_{i}^{\perp}$ depends continuously on y in $V_{j}^{\text {con,x }}$. Consider the set of $\tilde{x} \in V_{i}$ for which have the corresponding "level" set $V_{j}^{\text {con,x }}(\tilde{x})$ has \tilde{x} in the closure, i.e. $\tilde{x} \in \overline{V_{j}^{\text {con,x }}(\tilde{x})}$. Since $V_{j}^{\text {con }, x}$ is essential, the set of such \tilde{x} 's is everywhere dense in a neighborhood of x in V_{i}. Moreover, the "angle" function \mathcal{P}^{b} is bounded in absolute value by δ on each local connected "level" component of $V_{j}^{\text {con, } x}(\tilde{x})$ having \tilde{x} in its closure. Thus, one can find a sequence of points $\left\{y_{n}\right\} \subset V_{j}^{\text {con, } x}$ tending to x each point y_{n} of which belongs to a "level" connected component of $V_{j}^{\text {con, }}\left(\pi_{i}^{\perp}\left(y_{n}\right)\right)$, having $\pi_{i}^{\perp}\left(y_{n}\right) \in V_{i}$ in the closure. By construction $\left|\mathcal{P}^{b}\left(y_{n}\right)\right|<\delta$ for all n. Q.E.D.
1.2. Separation of Planes. Consider the real case. The complex case can be done in a similar way. Let τ_{0} and τ_{1} be two distinct orientable k-dimensional planes in \mathbb{R}^{m}. An orientable ($m-k$)-dimensional plane l in \mathbb{R}^{m} separates τ_{0} and τ_{1} if l is transversal to τ_{0} and τ_{1} and the orientations induced by $\tau_{0}+l$ and $\tau_{1}+l$ in \mathbb{R}^{m} are different. Notice that there always exists an open set of orientable $(m-k)$-planes separating any two distinct orientable k-plane.

Rolle's Lemma. If a continuous family of orientable k-planes $\left\{\tau_{t}\right\}_{t \in[0,1]}$ connects τ_{0} and τ_{1} and an orientable $(m-k)$-plane l separates τ_{0} and τ_{1}. Then for some $t^{*} \in(0,1)$ transversality of $\tau_{t^{*}}$ and l fails.

In what follows we use the transversality theorem [GM] which says : if $V \subset \mathbb{R}^{m}$ is a manifold, then almost every plane of dimension k is transversal to V.

1.3. A reduction lemma.

Lemma 2. Let V_{j} and V_{i} be a distinct strata and $\operatorname{dim} V_{j}>\operatorname{dim} V_{i}$. Then there is a set of strata $\left\{V_{j}^{p}\right\}_{p \in \mathbb{Z}}$ (resp. $\left\{V_{i}^{p}\right\}_{p \in \mathbb{Z}}$) in V_{j} (resp. in V_{i}) each of positive codimension in V_{j} (resp. in V_{i}) such that

$$
\begin{equation*}
\operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right) \subset \bigcup_{p \in \mathbb{Z}} \operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}^{p}, V_{i}\right) \bigcup_{p \in \mathbb{Z}} V_{i}^{p} \text {. } \tag{7}
\end{equation*}
$$

Remarks. 1. Inductive application of this lemma to the right-hand side of (7) reduces dimensions of V_{j}^{p} 's up to $\operatorname{dim} V_{i}$.
2. By the result of Lojasiewicz [D] dimension of the frontier of a semivariety $\left(\operatorname{Sing}_{a(\mathrm{resp} . b)}\left(V_{j}^{p}, V_{i}\right) \subset\right.$ $\left.V_{i} \cap \overline{V_{j}^{p}}\right)$ has dimension strictly smaller that a semivariety itself.
3. By lemma 0 the set $\operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right)$ is a semivariety. Since a countable union of semivarieties of positive codimension in V_{i} contains $\operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right)$, $\operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right)$ has a positive codimension in V_{i} which proves Theorem \mathbb{Z}_{6}.

Proof: If $x \in \operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right)$, then by the construction of $\mathcal{P}^{a(\text { resp. } b)}$, for some $\epsilon>0$ there is a sequence $\left\{y_{n}\right\} \subset V_{j}^{\text {con, } x}$ with $\mathcal{P}^{a(\text { resp.b) }}\left(y_{n}\right) \rightarrow \epsilon$. There are two cases:

1) there are different limits: $\mathcal{P}^{a(\text { resp.b) }}\left(y_{n}^{\prime}\right) \rightarrow \epsilon^{\prime}, \mathcal{P}^{a(\text { resp. } b)}\left(y_{n}\right) \rightarrow \epsilon^{\prime \prime}$, and $\epsilon^{\prime} \neq \epsilon^{\prime \prime}$;
2) the limit $\mathcal{P}^{a(\text { resp.b })}\left(y_{n}\right)$ is unique, positive, and independent of $\left\{y_{n}\right\}$.

Consider case 1). By Sard's lemma there is a regular value $\epsilon^{*} \in\left(\epsilon^{\prime}, \epsilon^{\prime \prime}\right)$ of $\mathcal{P}^{a(\text { resp.b) }}$. By the rank theorem $V_{j}^{\epsilon^{*}}=\left(\mathcal{P}^{a(\text { resp.b })}\right)^{-1}\left(\epsilon^{*}\right)$ is a smooth semivariety of codimension 1 in V_{j}. Let's show that $x \in \overline{V_{j}^{\epsilon^{*}}}$. Consider a local connected component $V_{j}^{\text {con,x }}$ and two sequences $\left\{y_{n}^{\prime}\right\}$ and $\left\{y_{n}^{\prime \prime}\right\}$ in $V_{j}^{\text {con, } x}$ converging to x such that $\mathcal{P}^{a(\text { resp.b) }}\left(y_{n}^{\prime}\right) \rightarrow \epsilon^{\prime}$ and $\mathcal{P}^{a(\text { resp.b })}\left(y_{n}^{\prime \prime}\right) \rightarrow \epsilon^{\prime \prime}$ as $n \rightarrow \infty$. $\mathcal{P}^{a(\text { resp.b })}$ is continuous and $V_{j}^{\text {con,x }}$ is connected, thus we can connect each y_{n}^{\prime} and $y_{n}^{\prime \prime}$ in $\underline{V}_{j}^{\text {con,x }}$ by a curve and find a sequence $\tilde{y}_{n} \rightarrow x$ for which $\mathcal{P}^{a(\text { resp. } b)}\left(\tilde{y}_{n}\right)=\epsilon^{*}$. Thus $x \in \overline{V_{j}^{\epsilon^{*}}}$. Consider a countable dense set $\left\{\epsilon_{p}\right\}_{p \in \mathbb{Z}_{+}}$in $[0, k+1]$ of regular values of $\mathcal{P}^{a(\text { resp. } b)}$ so that for any two $\epsilon^{\prime} \neq \epsilon^{\prime \prime}$, there is a separating $\epsilon_{p} \in\left(\epsilon^{\prime}, \epsilon^{\prime \prime}\right)$. Define $V_{j}^{p}=\left(\mathcal{P}^{a(\text { resp. } b)}\right)^{-1}\left(\epsilon_{p}\right)$. Thus any b-irregular point x is in the closure of the union $\cup_{p \in \mathbb{Z}_{+}} V_{j}^{p}$. After consideration of case 2), we will prove that V_{j}^{p} is b-irregular over V_{i} at those x.

Consider case 2). By Lemma 1 in this case if $x \in \operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right)$, then x belongs to $V_{i} \backslash U n_{a}\left(V_{j}, V_{i}\right)$. Therefore, there are two sequences $\left\{y_{n}^{0}\right\},\left\{y_{n}^{1}\right\}$ in a local connected component $V_{j}^{\text {con, } x}$ tending to x such that $T_{y_{n}^{0}} V_{j} \rightarrow \tau_{0}, T_{y_{n}^{1}} V_{j} \rightarrow \tau_{1}$, and $\tau_{0} \neq \tau_{1}$. Choose an orientation of $T_{y_{0}^{0}} V_{j}$. By connecting y_{0}^{0} locally with all other points $\left\{y_{n}^{s}\right\}$ one can induce an orientation on all other $T_{y_{n}^{s}} V_{j}$ so that the orientations of τ_{0} and τ_{1} coincide with the orientations of the limits.

Denote $\operatorname{dim} V_{j}$ by k. There is an orientable $(m-k)$-plane l_{j} separating τ_{0} and τ_{1} and transversal to V_{j} (by the transversality theorem). Consider the orthogonal projection $\pi_{l_{j}}$ along l_{j} onto its orthogonal complement l_{j}^{\perp}. Denote by $p_{l_{j}, j}$ its restriction to V_{j}, $p_{l_{j}, j}=\left.\pi_{l_{j}}\right|_{V_{j}}: V_{j} \rightarrow l_{j}^{\perp}$. Denote by $\operatorname{Crit}\left(l_{j}, V_{j}\right)$ the set of critical points of $p_{l_{j}, j}$ in V_{j} where the rank of $p_{l_{j}, j}$ is not maximal. Then $\operatorname{Crit}\left(l_{j}, V_{j}\right)$ is a semivariety in V_{j} and $\operatorname{dim} \operatorname{Crit}\left(l_{j}, V_{j}\right)<\operatorname{dim} V_{j}$. Connect two points y_{n}^{0} and y_{n}^{1} by a curve in V_{j}, then $T_{y_{n}^{0}} V_{j}$ deformates continuously to $T_{y_{n}^{0}} V_{j}$. Then by Rolle's Lemma there is a critical point of $p_{l_{j}, j}$ in $V_{j}^{\text {con }, x}$ arbitrarily close to x. Thus $x \in \overline{\operatorname{Crit}\left(l_{j}, V_{j}\right)}$.

By the transversality theorem there is a countable dense set of orientable $(m-k)$-planes $\left\{l_{j}^{r}\right\}_{r \in \mathbb{Z}_{+}}$transversal to V_{j} and separating any two distinct orientable k-planes τ_{0} and τ_{1}. Therefore, we have

$$
\begin{equation*}
V_{i} \backslash U n_{a}\left(V_{j}, V_{i}\right) \subset \bigcup_{r \in \mathbb{Z}_{+}}\left\{\overline{\operatorname{Crit}\left(l_{j}^{r}, V_{j}\right)} \backslash \operatorname{Crit}\left(l_{j}^{r}, V_{j}\right)\right\} . \tag{8}
\end{equation*}
$$

[^2]By lemma 11 we know that $V_{i} \backslash U n_{a}\left(V_{j}, V_{i}\right)$ is a semivariety. We know that $\operatorname{Crit}\left(l_{j}, V_{j}\right)$ $\subset V_{j}$ is a semivariety and $\operatorname{dim} \operatorname{Crit}\left(l_{j}, V_{j}\right)<\operatorname{dim} V_{j}$. Thus we can decompose it into strata $\operatorname{Crit}\left(l_{j}, V_{j}\right)=\bigsqcup_{p \in L_{j}} V_{j}^{p}$. Renumerate these V_{j}^{p},s to have $\left\{V_{j}^{p}\right\}_{p \in \mathbb{Z}_{-}}$.

Consider strata $\left\{V_{j}^{p}\right\}_{p \in \mathbb{Z}} \subset V_{j}$ which we constructed in the cases 1 and 2. Then

$$
\begin{equation*}
\operatorname{Sing}_{a(\text { resp. b) }}\left(V_{j}, V_{i}\right) \subset \bigcup_{p \in \mathbb{Z}}\left\{\overline{V_{j}^{p}} \backslash V_{j}^{p}\right\} \tag{9}
\end{equation*}
$$

The definitions of $\mathcal{P}^{a(\text { resp.b) }}$ and $\pi_{j, s}$ explicitly imply that (7) is satisfied, because $\mathcal{P}^{a(\text { resp.b) }}\left(y_{n}\right)$ has a positive limit point for any $\left\{y_{n}\right\} \subset V_{j}^{p}$. If one projects along a smaller plane $\left(T_{y_{n}} V_{j}^{p} \subset T_{y_{n}} V_{j}\right)$, then the size of the projection is larger. Thus for the Kuo map $\mathcal{P}_{j^{p}, i}^{a(\text { resp.b) }}: V_{j}^{p} \rightarrow \mathbb{R}$, defined in (5), the sequence $\mathcal{P}_{j^{p}, i}^{a(\text { resp.b) }}\left(y_{n}\right)$ also has a positive limit point. Now to separate interior and boundary points of the closures $\overline{V_{j}^{p}}$ in V_{i} define the set $V_{i}^{p}=\left(V_{i} \cap \overline{V_{j}^{p}}\right) \backslash I n t_{V_{i}}\left(V_{i} \cap \overline{V_{j}^{p}}\right)$. This completes the proof of the lemma and Theorem 2. Q.E.D.

Acknowledgments: I would like to thank my thesis advisor John Mather and David Nadler for stimulating discussions and numerous remarks on mathematics and the English usage of the paper.

References

[GM] Goresky, M. MacPherson, R.; Stratified Morse Theory, Springer, 1987;
[Hi] Hironaka, H.; Number Theory, Algebraic Geometry and Commutative Algebra, Volume in Honor of Y. Akizuki, Kinokunia, Tokyo, 1973;
[Ja] Jakobson, N.; Basic Algebra, vol. 1, 1974;
[Ku] Kuo, T.-C.; The ratio test for analytic Whitney stratifications, Lecture Notes, No. 192, pp.141-149;
[Lo] Lojasiewicz, S.; Ensemble Semi-Analytiques, IHES Lecture Notes, 1965;
[Ma] Mather, J.; Notes on Topological Stability, Lecture Notes, Harvard University, 1970;
[Mi] Milnor, J.; Singularities of Complex Hypersurfaces, Ann. of Math. Studies, no. 61, 1968;
[Mu] Mumford, D.; Algebraic Geometry I, Springer, New York, 1976
[PW] du Plessis, A. Wall. T.; The Geometry of Topological Stability, Oxford, 1995;
[Th] Thom, R.; Propriété Différentielle Locales des Ensembles Analytiques, Seminaire Bourbaki, 1964/65, exp. 281;
[Wa] Wall, T.; Regular Stratifications, Lecture Notes in Mathematics, No. 468, pp. 332-344;
[Wh] Whitney, H.; Tangents to an Analytic Variety, Ann. of Math. 81 (1965), pp. 496-549.
E-mail address: kaloshin@math.princeton.edu

[^0]: The author is partially supported by the Sloan Dissertation Fellowship and the American Institute of Mathematics Five-Year Fellowship.
 ${ }^{1}$ This way of defining b-regularity is due to Mather Ma. Whitney's definition Wh is equivalent to this one provided of a-regularity

[^1]: ${ }^{2}$ This was first noticed by J.Mather Ma

[^2]: ${ }^{3}$ one can show that this case is impossible

