
1.3 Trees 43

6. Prim’s algorithm (from [228]) provides another method for finding mini-
mum weight spanning trees.

Prim’s Algorithm

Given: A connected, weighted graph G.

i. Choose a vertex v, and mark it.

ii. From among all edges that have one marked end vertex and one un-
marked end vertex, choose an edge e of minimum weight. Mark the
edge e, and also mark its unmarked end vertex.

iii. If every vertex of G is marked, then the set of marked edges forms a
minimum weight spanning tree. If not, repeat step ii.

Use Prim’s algorithm to find minimum weight spanning trees for the graphs
in Figure 1.44. As you work, compare the stages to those of Kruskal’s al-
gorithm.

7. Give an example of a connected, weighted graph G having (i) a cycle with
two identical weights, which is neither the smallest nor the largest weight in
the graph, and (ii) a unique minimum weight spanning tree which contains
exactly one of these two identical weights.

1.3.4 Counting Trees

As for everything else, so for a mathematical theory: beauty can be
perceived but not explained.

— Arthur Cayley [214]

In this section we discuss two beautiful results on counting the number of span-
ning trees in a graph. The next chapter studies general techniques for counting
arrangements of objects, so these results are a sneak preview.

Cayley’s Tree Formula

Cayley’s Tree Formula gives us a way to count the number of different labeled
trees on n vertices. In this problem we think of the vertices as being fixed, and
we consider all the ways to draw a tree on those fixed vertices. Figure 1.45 shows
three different labeled trees on three vertices, and in fact, these are the only three.

There are 16 different labeled trees on four vertices, and they are shown in
Figure 1.46.

As an exercise, the ambitious student should try drawing all of the labeled trees
on five vertices. The cautious ambitious student might wish to look ahead at Cay-
ley’s formula before embarking on such a task.
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FIGURE 1.45. Labeled trees on three vertices.
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FIGURE 1.46. Labeled trees on four vertices.

Cayley proved the following theorem in 1889 [50]. The proof technique that we
will describe here is due to Prüfer7 [229]. Prüfer’s method is almost as noteworthy
as the result itself. He counted the labeled trees by placing them in one-to-one cor-
respondence with a set whose size is easy to determine—the set of all sequences
of length n− 2 whose entries come from the set {1, . . . , n}. There are nn−2 such
sequences.

Theorem 1.18 (Cayley’s Tree Formula). There are nn−2 distinct labeled trees of
order n.

The algorithm below gives the steps that Prüfer used to assign a particular se-
quence to a given tree, T , whose vertices are labeled 1, . . . , n. Each labeled tree
is assigned a unique sequence.

7With a name like that he was destined for mathematical greatness!
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Prüfer’s Method for Assigning a Sequence to a Labeled Tree

Given: A tree T , with vertices labeled 1, . . . , n.

1. Let i = 0, and let T0 = T .

2. Find the leaf on Ti with the smallest label and call it v.

3. Record in the sequence the label of v’s neighbor.

4. Remove v from Ti to create a new tree Ti+1.

5. If Ti+1 = K2, then stop. Otherwise, increment i by 1 and go back to step
2.

Let us run through this algorithm with a particular graph. In Figure 1.47, tree
T = T0 has 7 vertices, labeled as shown. The first step is finding the leaf with
smallest label: This would be 2. The neighbor of vertex 2 is the vertex labeled
4. Therefore, 4 is the first entry in the sequence. Removing vertex 2 produces
tree T1. The leaf with smallest label in T1 is 4, and its neighbor is 3. Therefore,
we put 3 in the sequence and delete 4 from T1. Vertex 5 is the smallest leaf in
tree T2 = T1 − {4}, and its neighbor is 1. So our sequence so far is 4, 3, 1. In
T3 = T2−{5} the smallest leaf is vertex 6, whose neighbor is 3. In T4 = T3−{6},
the smallest leaf is vertex 3, whose neighbor is 1. Since T5 = K2, we stop here.
Our resulting sequence is 4, 3, 1, 3, 1.

Notice that in the previous example, none of the leaves of the original tree T
appears in the sequence. More generally, each vertex v appears in the sequence
exactly deg(v) − 1 times. This is not a coincidence (see Exercise 1). We now
present Prüfer’s algorithm for assigning trees to sequences. Each sequence gets
assigned a unique tree.

Prüfer’s Method for Assigning a Labeled Tree to a Sequence

Given: A sequence σ = a1, a2, . . . , ak of entries from the set {1, . . . , k + 2}.

1. Draw k+2 vertices; label them v1, v2, . . . , vk+2. Let S = {1, 2, . . . , k+2}.

2. Let i = 0, let σ0 = σ, and let S0 = S.

3. Let j be the smallest number in Si that does not appear in the sequence σi.

4. Place an edge between vertex vj and the vertex whose subscript appears
first in the sequence σi.

5. Remove the first number in the sequence σi to create a new sequence σi+1.
Remove the element j from the set Si to create a new set Si+1.

6. If the sequence σi+1 is empty, place an edge between the two vertices
whose subscripts are in Si+1, and stop. Otherwise, increment i by 1 and
return to step 3.
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FIGURE 1.47. Creating a Prüfer sequence.

Let us apply this algorithm to a particular example. Let σ = 4, 3, 1, 3, 1 be
our initial sequence to which we wish to assign a particular labeled tree. Since
there are five terms in the sequence, our labels will come from the set S =
{1, 2, 3, 4, 5, 6, 7}. After drawing the seven vertices, we look in the set S = S0

to find the smallest subscript that does not appear in the sequence σ = σ0. Sub-
script 2 is the one, and so we place an edge between vertices v2 and v4, the first
subscript in the sequence. We now remove the first term from the sequence and
the label v2 from the set, forming a new sequence σ1 = 3, 1, 3, 1 and a new
set S1 = {1, 3, 4, 5, 6, 7}. The remaining steps in the process are shown in Fig-
ure 1.48.
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FIGURE 1.48. Building a labeled tree.

You will notice that the tree that was created from the sequence σ in the second
example is the very same tree that created the sequence σ in the first example.
Score one for Prüfer!

Matrix Tree Theorem

The second major result that we present in this section is the Matrix Tree The-
orem, and like Cayley’s Theorem, it provides a way of counting spanning trees
of labeled graphs. While Cayley’s Theorem in essence gives us a count on the
number of spanning trees of complete labeled graphs, the Matrix Tree Theorem
applies to labeled graphs in general. The theorem was proved in 1847 by Kirch-
hoff [175], and it demonstrates a wonderful connection between spanning trees
and matrices.


