ALGEBRAIC NUMBER THEORY PROBLEMS I

For problems marked with (\star) , a computer will be helpful for some of the computations.

- (1) (a) Prove that all quadratic extensions of Q have the form Q(√m) for some m ∈ Z.
 (b) Suppose m and n are squarefree and are not equal. Prove that Q(√m) ≠ Q(√n).
- (2) Prove or disprove: an algebraic number α is integral if and only if the norm and trace of α lie in \mathbb{Z} .
- (3) For any N, let ζ_N be a primitive Nth root of unity. Then the cyclotomic field $\mathbb{Q}(\zeta_N)$ is an Galois extension of degree $\varphi(N)$, with cyclic Galois group. The ring of integers in $\mathbb{Q}(\zeta_N)$ is $\mathbb{Z}[\zeta_N]$
 - (a) Find all proper subfields K of $\mathbb{Q}(\zeta_7)$ and their signatures, discriminants, and rings of integers \mathcal{O}_K .
 - (b) The Kronecker–Weber theorem asserts that all abelian fields are contained in a cyclotomic field. Let θ be a root of $x^3 - 3x + 1$. The field $L = \mathbb{Q}(\theta)$ is Galois with cyclic Galois group. Can you find a cyclotomic field containing it? Compute the signature of \mathcal{O}_L and its ring of integers \mathcal{O}_L .
- (4) (*) Let p and q be distinct primes, and let $L = \mathbb{Q}(\sqrt{p}, \sqrt{q})$. L is called a *biquadratic* field.
 - (a) Compute the Galois group of L and classify the subgroups of L.
 - (b) Formulate a conjecture about the structure of \mathcal{O}_L and prove it. *Hints:* Work in the \mathbb{Q} -basis $1, \sqrt{p}, \sqrt{q}, \sqrt{pq}$. Use what you know about quadratic fields to construct some integral elements.
- (5) Let β_1, \ldots, β_n be the roots of a polynomial f of degree n. Prove that $f'(\beta_i) = \prod_{i \neq j} (\beta_i \beta_j)$.
- (6) (A long problem) Let m be a cubefree integer. Compute the ring of integers of $\mathbb{Q}(\sqrt[3]{m})$. *Hint:* This is Marcus, Ch.2, Ex.41. He breaks the problem down into many steps to lead you through it.

Date: February 14, 2008.