Name (Last, First)
ID \# \qquad

Signature \qquad

Lecturer \qquad Section (01, 02, 03, etc.) \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

МАТН 233
Exam 1
February 21, 2018
7:00-9:00 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are six (6) questions and eight (8) pages including this one and the blank page at the end.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- In problems that require reasoning or algebraic calculation, it is not sufficient just to write answers only. You must explain how you arrived at your answers, and show your algebraic calculations.
- You can leave answers in terms of fractions and square roots except where rounded decimal values are specified.
- Calculators, crib sheets, notes, and textbooks are not allowed.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	POINTS	SCORE
1	20	
2	15	
3	15	
4	15	
5	20	
6	15	
TOTAL	100	

\#1. Short answers: 4 points each, no partial credit. Write answers in boxes.
(a) Find the center of the sphere $x^{2}+y^{2}+z^{2}-12 x+4 y-6 z+45=0$.

The center is \square.
(b) Find the distance from the point $(2,-7,4)$ to the x-axis.

The distance is \square
(c) Find the work done by the force vector $\mathbf{F}=\langle 3,-4,2\rangle$ in moving an object along the line segment from point $P=(0,1,2)$ to point $Q=(4,-7,3)$. Ignore units of measure.

$$
W=\square .
$$

(d) Find the scalar projection of $\mathbf{v}=(-2 / 3) \mathbf{i}+8 \mathbf{j}$ onto the vector $\mathbf{u}=3 \mathbf{i}+4 \mathbf{j}$.

(e) Let $\mathbf{r}(t)=\left\langle 3 t^{2}, 2 t+1, \frac{3}{t}\right\rangle$. Find $\left\|\mathbf{r}^{\prime}(1)\right\|$.

$$
\left\|\mathbf{r}^{\prime}(1)\right\|=\square .
$$

\#2. (15 points) The points $A(0,0,0), B(1,1,1), C(1,5,1)$, and $D(0,4,0)$ form the four vertices of the parallelogram $A B C D$.
(a) What is the length of the longer of the two diagonals?
(b) Find the area of the parallelogram. (Hint: use sides $A B$ and $A D$)
(c) Find an equation of the plane containing the parallelogram.
\#3. (15 points) Let $A=(3,5,2)$ and let $B=(7,9,4)$.
(a) Find the coordinates of the point at which the line containing both points A and B intersects the $x y$-plane.
(b) Find a vector function $\mathbf{r}(t)$ that describes the line segment from point A to point B.
\#4. (15 points) Let S be a surface in \mathbb{R}^{3} described by the equation $x^{2}+4 y^{2}-z=0$.
(a) Sketch the trace of S given the plane $z=16$.

(b) Sketch the trace of S given the plane $y=2$.

(c) Find parametric equations for the curve of intersection of the cylinder $x^{2}+y^{2}=1$ with the surface S.
\#5. (20 points) A particle moves along a path in space described by $\mathbf{r}(t)=$ $\langle 4 \sin t, 3 t,-4 \cos t\rangle$.
(a) Find parametric equations for the tangent line to the path where $t=0$.
(b) Find the length the path from $t=1$ to $t=4$.
\#6. (15 points) A moving particle starts at an initial position $\mathbf{r}(0)=\langle 1,3,1\rangle$ and with initial velocity $\mathbf{v}(0)=\langle 2,9,3\rangle$. Its acceleration vector function is $\mathbf{a}(t)=\langle 2,0,12 t\rangle$.
(a) Find the velocity vector function $\mathbf{v}(t)$.
(b) Find the position vector function $\mathbf{r}(t)$.
(c) Set up but do not evaluate an integral that gives the distance traveled by the particle from $t=1$ to $t=2$.

This page intentionally left blank

