MATH 233 PRACTICE MT\#2, VERSION \#2

DISCLAIMER: This practice exam is intended to give you an idea about what a two-hour midterm is like. It is not possible for any one exam to cover every topic, and the content, coverage and format of your actual exam could be different from this practice exam.

Part I: Multiple Choice Problems. You only need to give the answer; no justification is needed.
\#I-1. What is the geometric object defined by the spherical coordinates equation $\phi=\pi / 3$?
(a) a half cone
(b) a double cone
(c) a half-sphere
(d) a complete sphere
(e) a cylinder
(f) a plane
\#I-2. A table of values is given for a function $f(x, y)$ defined on $R=$ $[1,3] \times[0,4]$. Use this table to estimate $\iint f(x, y) d A$ using the upper right-hand corner method with $m=n=2$.
(a) -4
(b) 0
(c) 4
(d) -2
(e) $\mathbf{2}$
(f) 8

$x \backslash y$	0	1	2	3	4
1.0	2	0	-3	-6	-5
1.5	3	1	-4	-8	-6
2.0	4	3	0	-5	-6
2.5	5	5	3	-1	-4
3.0	7	8	6	3	0

\#I-3. Find the \boldsymbol{y}-coordinate of the center of mass of the thin plate that occupies the region

$$
\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}
$$

and has the density function $\rho(x, y)=x$.
(a) $1 / 6$
(b) $1 / 4$
(c) $1 / 3$
(d) $1 / 2$
(e) $2 / 3$
(f) $3 / 4$
\#I-4. Rewrite the double integral $\iint_{R}\left(\frac{x-y}{x+y}\right)^{4} d y d x$ using the change of variables $x=\frac{1}{2}(v+u), y=$ $\frac{1}{2}(v-u)$, where R is the triangular region bounded by the line $x+y=1$ and the two coordinate axes.
(a) $\frac{1}{2} \int_{0}^{1} \int_{-v}^{v} u^{4} v^{-4} d u d v$
(b) $2 \int_{0}^{2} \int_{-v}^{v} u^{4} v^{-4} d u d v$
(c) $\frac{1}{2} \int_{0}^{2} \int_{-v}^{v} u^{-4} v^{4} d u d v$
(d) $\frac{1}{2} \int_{0}^{1} \int_{-v}^{v} u^{4} v^{4} d u d v$
(e) $\mathbf{2} \int_{0}^{2} \int_{-v}^{v} u^{4} v^{4} d u d v$
(f) $\frac{1}{2} \int_{0}^{2} \int_{-v}^{v} u^{-4} v^{4} d u d v$

Page 1 of 2

Part II: Written Problems. To earn full credit for the following problems you must show your work.

You can leave answers in terms of fractions and square roots.
\#II-1. Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{1-y^{2}}} d y d x$.
\#II-2. Find the volume of the largest rectangular box that can be inscribed inside the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=6$.
\#II-3. (a) Set up the triple integral $\iiint d V$ over the tetrahedron formed by the three coordinate planes and the plane $x+2 y+3 z=6$ using three different orders of integration (you can pick any three ordes you want).
(b) Compute this triple integral using any order of integration.
\#II-4. Find the mass of a ball of radius R centered at the origin, where the density at any point P of the ball is proportional to the distance from P to the z-axis.
\#II-5. Find the volume of the solid bounded by $x^{2}+y^{2}=z^{2}$ and $x^{2}+y^{2}+z^{2}=8$.

Page 2 of 2

