DISCLAIMER: This practice exam is intended to give you an *idea* about what a two-hour midterm is like. It is not possible for any one exam to cover every topic, and the *content, coverage and format* of your actual exam could be different from this practice exam.

PART I: MULTIPLE CHOICE PROBLEMS. You only need to give the answer; no justification is needed.

#I-1. What is the geometric object defined by the spherical coordinates equation $\phi = \pi/3$?

(a) a half cone
(b) a double cone
(c) a half-sphere
(d) a complete sphere
(e) a cylinder
(f) a plane

#I-2 A table of values is given for a function $f(x, y)$ defined on $B =$	$x \backslash y$	0	1	2	3	4
$[1, 3] \times [0, 4]$ Use this table to estimate $\iint f(x, y) dA$ using the upper	1.0	2	0	-3	-6	-5
right-hand corner method with $m = n = 2$.	1.5	3	1	-4	-8	-6
	2.0	4	3	0	-5	-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	5	5	3	-1	-4
(a) -2 (e) 2 (1) 0	3.0	7	8	6	3	0

 $\{(x,y): 0\leq x\leq 1, 0\leq y\leq 1\}$

and has the density function $\rho(x, y) = x$.

(a) **1/6** (b) **1/4** (c) **1/3** (d) **1/2** (e) **2/3** (f) **3/4**

#I-4. Rewrite the double integral $\iint_R \left(\frac{x-y}{x+y}\right)^4 dy dx$ using the change of variables $x = \frac{1}{2}(v+u), y = \frac{1}{2}(v-u)$, where R is the triangular region bounded by the line x+y=1 and the two coordinate axes.

(a)
$$\frac{1}{2} \int_0^1 \int_{-v}^v u^4 v^{-4} du \, dv$$
 (b) $2 \int_0^2 \int_{-v}^v u^4 v^{-4} du dv$ (c) $\frac{1}{2} \int_0^2 \int_{-v}^v u^{-4} v^4 du \, dv$
(d) $\frac{1}{2} \int_0^1 \int_{-v}^v u^4 v^4 du \, dv$ (e) $2 \int_0^2 \int_{-v}^v u^4 v^4 du dv$ (f) $\frac{1}{2} \int_0^2 \int_{-v}^v u^{-4} v^4 du \, dv$

Page 1 of 2

PART II: WRITTEN PROBLEMS. To earn full credit for the following problems **you must show your work**.

You can leave answers in terms of fractions and square roots.

#II-1. Evaluate the integral
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{1}{\sqrt{1-y^2}} dy dx$$
.

#II-2. Find the volume of the largest rectangular box that can be inscribed inside the ellipsoid $x^2 + 2y^2 + 3z^2 = 6$.

#II-3. (a) Set up the triple integral $\iiint dV$ over the tetrahedron formed by the three coordinate planes and the plane x + 2y + 3z = 6 using three different orders of integration (you can pick any three ordes you want).

(b) Compute this triple integral using any order of integration.

#II-4. Find the mass of a ball of radius R centered at the origin, where the density at any point P of the ball is proportional to the distance from P to the z-axis.

#II-5. Find the volume of the solid bounded by $x^2 + y^2 = z^2$ and $x^2 + y^2 + z^2 = 8$.

Page 2 of 2